net/iavf: support generic flow API

This patch added iavf_flow_create, iavf_flow_destroy,
iavf_flow_flush and iavf_flow_validate support,
these are used to handle all the generic filters.

This patch supported basic L2, L3, L4 and GTPU patterns.

Signed-off-by: Qiming Yang <qiming.yang@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
Qiming Yang 2020-04-03 13:42:41 +08:00 committed by Ferruh Yigit
parent 497eb88c14
commit ff2d0c345c
8 changed files with 1275 additions and 0 deletions

View File

@ -19,6 +19,7 @@ Multicast MAC filter = Y
RSS hash = Y
RSS key update = Y
RSS reta update = Y
Flow API = Y
VLAN filter = Y
CRC offload = Y
VLAN offload = Y

View File

@ -97,6 +97,12 @@ New Features
* Enable MAC address as FDIR input set for ipv4-other, ipv4-udp and ipv4-tcp.
* **Updated the Intel iavf driver.**
Update the Intel iavf driver with new features and improvements, including:
* Added generic filter support.
* **Updated the Intel ice driver.**
Updated the Intel ice driver with new features and improvements, including:

View File

@ -23,6 +23,7 @@ EXPORT_MAP := rte_pmd_iavf_version.map
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_ethdev.c
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_vchnl.c
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx.c
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_generic_flow.c
ifeq ($(CONFIG_RTE_ARCH_X86), y)
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_sse.c
endif

View File

@ -83,6 +83,12 @@ struct iavf_vsi {
struct virtchnl_eth_stats eth_stats_offset;
};
struct rte_flow;
TAILQ_HEAD(iavf_flow_list, rte_flow);
struct iavf_flow_parser_node;
TAILQ_HEAD(iavf_parser_list, iavf_flow_parser_node);
/* TODO: is that correct to assume the max number to be 16 ?*/
#define IAVF_MAX_MSIX_VECTORS 16
@ -117,6 +123,10 @@ struct iavf_info {
uint16_t msix_base; /* msix vector base from */
/* queue bitmask for each vector */
uint16_t rxq_map[IAVF_MAX_MSIX_VECTORS];
struct iavf_flow_list flow_list;
rte_spinlock_t flow_ops_lock;
struct iavf_parser_list rss_parser_list;
struct iavf_parser_list dist_parser_list;
};
#define IAVF_MAX_PKT_TYPE 1024

View File

@ -27,6 +27,7 @@
#include "iavf.h"
#include "iavf_rxtx.h"
#include "iavf_generic_flow.h"
static int iavf_dev_configure(struct rte_eth_dev *dev);
static int iavf_dev_start(struct rte_eth_dev *dev);
@ -68,6 +69,11 @@ static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg);
int iavf_logtype_init;
int iavf_logtype_driver;
@ -127,6 +133,7 @@ static const struct eth_dev_ops iavf_eth_dev_ops = {
.mtu_set = iavf_dev_mtu_set,
.rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable,
.filter_ctrl = iavf_dev_filter_ctrl,
};
static int
@ -1292,6 +1299,34 @@ iavf_dev_interrupt_handler(void *param)
iavf_enable_irq0(hw);
}
static int
iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
if (!dev)
return -EINVAL;
switch (filter_type) {
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &iavf_flow_ops;
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
return ret;
}
static int
iavf_dev_init(struct rte_eth_dev *eth_dev)
{
@ -1299,6 +1334,7 @@ iavf_dev_init(struct rte_eth_dev *eth_dev)
IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
int ret = 0;
PMD_INIT_FUNC_TRACE();
@ -1368,6 +1404,12 @@ iavf_dev_init(struct rte_eth_dev *eth_dev)
/* configure and enable device interrupt */
iavf_enable_irq0(hw);
ret = iavf_flow_init(adapter);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize flow");
return ret;
}
return 0;
}
@ -1377,6 +1419,8 @@ iavf_dev_close(struct rte_eth_dev *dev)
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
iavf_dev_stop(dev);
iavf_shutdown_adminq(hw);
@ -1387,6 +1431,8 @@ iavf_dev_close(struct rte_eth_dev *dev)
rte_intr_callback_unregister(intr_handle,
iavf_dev_interrupt_handler, dev);
iavf_disable_irq0(hw);
iavf_flow_uninit(adapter);
}
static int

View File

@ -0,0 +1,931 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_tailq.h>
#include "iavf.h"
#include "iavf_generic_flow.h"
static struct iavf_engine_list engine_list =
TAILQ_HEAD_INITIALIZER(engine_list);
static int iavf_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
static struct rte_flow *iavf_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
static int iavf_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error);
static int iavf_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error);
static int iavf_flow_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error);
const struct rte_flow_ops iavf_flow_ops = {
.validate = iavf_flow_validate,
.create = iavf_flow_create,
.destroy = iavf_flow_destroy,
.flush = iavf_flow_flush,
.query = iavf_flow_query,
};
/* empty */
enum rte_flow_item_type iavf_pattern_empty[] = {
RTE_FLOW_ITEM_TYPE_END,
};
/* L2 */
enum rte_flow_item_type iavf_pattern_ethertype[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_ethertype_vlan[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_ethertype_qinq[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
};
/* ARP */
enum rte_flow_item_type iavf_pattern_eth_arp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
/* non-tunnel IPv4 */
enum rte_flow_item_type iavf_pattern_eth_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* non-tunnel IPv6 */
enum rte_flow_item_type iavf_pattern_eth_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv6_icmp6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP6,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_icmp6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP6,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_icmp6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP6,
RTE_FLOW_ITEM_TYPE_END,
};
/* GTPU */
enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_GTPU,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_GTPU,
RTE_FLOW_ITEM_TYPE_GTP_PSC,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_GTPU,
RTE_FLOW_ITEM_TYPE_GTP_PSC,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_GTPU,
RTE_FLOW_ITEM_TYPE_GTP_PSC,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_GTPU,
RTE_FLOW_ITEM_TYPE_GTP_PSC,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
typedef struct iavf_flow_engine * (*parse_engine_t)(struct iavf_adapter *ad,
struct rte_flow *flow,
struct iavf_parser_list *parser_list,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
void
iavf_register_flow_engine(struct iavf_flow_engine *engine)
{
TAILQ_INSERT_TAIL(&engine_list, engine, node);
}
int
iavf_flow_init(struct iavf_adapter *ad)
{
int ret;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
void *temp;
struct iavf_flow_engine *engine;
TAILQ_INIT(&vf->flow_list);
TAILQ_INIT(&vf->rss_parser_list);
TAILQ_INIT(&vf->dist_parser_list);
rte_spinlock_init(&vf->flow_ops_lock);
TAILQ_FOREACH_SAFE(engine, &engine_list, node, temp) {
if (engine->init == NULL) {
PMD_INIT_LOG(ERR, "Invalid engine type (%d)",
engine->type);
return -ENOTSUP;
}
ret = engine->init(ad);
if (ret && ret != -ENOTSUP) {
PMD_INIT_LOG(ERR, "Failed to initialize engine %d",
engine->type);
return ret;
}
}
return 0;
}
void
iavf_flow_uninit(struct iavf_adapter *ad)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct iavf_flow_engine *engine;
struct rte_flow *p_flow;
struct iavf_flow_parser_node *p_parser;
void *temp;
TAILQ_FOREACH_SAFE(engine, &engine_list, node, temp) {
if (engine->uninit)
engine->uninit(ad);
}
/* Remove all flows */
while ((p_flow = TAILQ_FIRST(&vf->flow_list))) {
TAILQ_REMOVE(&vf->flow_list, p_flow, node);
if (p_flow->engine->free)
p_flow->engine->free(p_flow);
rte_free(p_flow);
}
/* Cleanup parser list */
while ((p_parser = TAILQ_FIRST(&vf->rss_parser_list))) {
TAILQ_REMOVE(&vf->rss_parser_list, p_parser, node);
rte_free(p_parser);
}
while ((p_parser = TAILQ_FIRST(&vf->dist_parser_list))) {
TAILQ_REMOVE(&vf->dist_parser_list, p_parser, node);
rte_free(p_parser);
}
}
int
iavf_register_parser(struct iavf_flow_parser *parser,
struct iavf_adapter *ad)
{
struct iavf_parser_list *list = NULL;
struct iavf_flow_parser_node *parser_node;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
parser_node = rte_zmalloc("iavf_parser", sizeof(*parser_node), 0);
if (parser_node == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory.");
return -ENOMEM;
}
parser_node->parser = parser;
if (parser->engine->type == IAVF_FLOW_ENGINE_HASH) {
list = &vf->rss_parser_list;
TAILQ_INSERT_TAIL(list, parser_node, node);
} else if (parser->engine->type == IAVF_FLOW_ENGINE_FDIR) {
list = &vf->dist_parser_list;
TAILQ_INSERT_HEAD(list, parser_node, node);
} else {
return -EINVAL;
}
return 0;
}
void
iavf_unregister_parser(struct iavf_flow_parser *parser,
struct iavf_adapter *ad)
{
struct iavf_parser_list *list = NULL;
struct iavf_flow_parser_node *p_parser;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
void *temp;
if (parser->engine->type == IAVF_FLOW_ENGINE_HASH)
list = &vf->rss_parser_list;
else if (parser->engine->type == IAVF_FLOW_ENGINE_FDIR)
list = &vf->dist_parser_list;
if (list == NULL)
return;
TAILQ_FOREACH_SAFE(p_parser, list, node, temp) {
if (p_parser->parser->engine->type == parser->engine->type) {
TAILQ_REMOVE(list, p_parser, node);
rte_free(p_parser);
}
}
}
static int
iavf_flow_valid_attr(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group.");
return -rte_errno;
}
return 0;
}
/* Find the first VOID or non-VOID item pointer */
static const struct rte_flow_item *
iavf_find_first_item(const struct rte_flow_item *item, bool is_void)
{
bool is_find;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (is_void)
is_find = item->type == RTE_FLOW_ITEM_TYPE_VOID;
else
is_find = item->type != RTE_FLOW_ITEM_TYPE_VOID;
if (is_find)
break;
item++;
}
return item;
}
/* Skip all VOID items of the pattern */
static void
iavf_pattern_skip_void_item(struct rte_flow_item *items,
const struct rte_flow_item *pattern)
{
uint32_t cpy_count = 0;
const struct rte_flow_item *pb = pattern, *pe = pattern;
for (;;) {
/* Find a non-void item first */
pb = iavf_find_first_item(pb, false);
if (pb->type == RTE_FLOW_ITEM_TYPE_END) {
pe = pb;
break;
}
/* Find a void item */
pe = iavf_find_first_item(pb + 1, true);
cpy_count = pe - pb;
rte_memcpy(items, pb, sizeof(struct rte_flow_item) * cpy_count);
items += cpy_count;
if (pe->type == RTE_FLOW_ITEM_TYPE_END)
break;
pb = pe + 1;
}
/* Copy the END item. */
rte_memcpy(items, pe, sizeof(struct rte_flow_item));
}
/* Check if the pattern matches a supported item type array */
static bool
iavf_match_pattern(enum rte_flow_item_type *item_array,
const struct rte_flow_item *pattern)
{
const struct rte_flow_item *item = pattern;
while ((*item_array == item->type) &&
(*item_array != RTE_FLOW_ITEM_TYPE_END)) {
item_array++;
item++;
}
return (*item_array == RTE_FLOW_ITEM_TYPE_END &&
item->type == RTE_FLOW_ITEM_TYPE_END);
}
struct iavf_pattern_match_item *
iavf_search_pattern_match_item(const struct rte_flow_item pattern[],
struct iavf_pattern_match_item *array,
uint32_t array_len,
struct rte_flow_error *error)
{
uint16_t i = 0;
struct iavf_pattern_match_item *pattern_match_item;
/* need free by each filter */
struct rte_flow_item *items; /* used for pattern without VOID items */
uint32_t item_num = 0; /* non-void item number */
/* Get the non-void item number of pattern */
while ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_END) {
if ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_VOID)
item_num++;
i++;
}
item_num++;
items = rte_zmalloc("iavf_pattern",
item_num * sizeof(struct rte_flow_item), 0);
if (!items) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No memory for PMD internal items.");
return NULL;
}
pattern_match_item = rte_zmalloc("iavf_pattern_match_item",
sizeof(struct iavf_pattern_match_item), 0);
if (!pattern_match_item) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate memory.");
return NULL;
}
iavf_pattern_skip_void_item(items, pattern);
for (i = 0; i < array_len; i++)
if (iavf_match_pattern(array[i].pattern_list,
items)) {
pattern_match_item->input_set_mask =
array[i].input_set_mask;
pattern_match_item->pattern_list =
array[i].pattern_list;
pattern_match_item->meta = array[i].meta;
rte_free(items);
return pattern_match_item;
}
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported pattern");
rte_free(items);
rte_free(pattern_match_item);
return NULL;
}
static struct iavf_flow_engine *
iavf_parse_engine_create(struct iavf_adapter *ad,
struct rte_flow *flow,
struct iavf_parser_list *parser_list,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct iavf_flow_engine *engine = NULL;
struct iavf_flow_parser_node *parser_node;
void *temp;
void *meta = NULL;
TAILQ_FOREACH_SAFE(parser_node, parser_list, node, temp) {
if (parser_node->parser->parse_pattern_action(ad,
parser_node->parser->array,
parser_node->parser->array_len,
pattern, actions, &meta, error) < 0)
continue;
engine = parser_node->parser->engine;
RTE_ASSERT(engine->create != NULL);
if (!(engine->create(ad, flow, meta, error)))
return engine;
}
return NULL;
}
static struct iavf_flow_engine *
iavf_parse_engine_validate(struct iavf_adapter *ad,
struct rte_flow *flow,
struct iavf_parser_list *parser_list,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct iavf_flow_engine *engine = NULL;
struct iavf_flow_parser_node *parser_node;
void *temp;
void *meta = NULL;
TAILQ_FOREACH_SAFE(parser_node, parser_list, node, temp) {
if (parser_node->parser->parse_pattern_action(ad,
parser_node->parser->array,
parser_node->parser->array_len,
pattern, actions, &meta, error) < 0)
continue;
engine = parser_node->parser->engine;
if (engine->validation == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Validation not support");
continue;
}
if (engine->validation(ad, flow, meta, error)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Validation failed");
break;
}
}
return engine;
}
static int
iavf_flow_process_filter(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct iavf_flow_engine **engine,
parse_engine_t iavf_parse_engine,
struct rte_flow_error *error)
{
int ret = IAVF_ERR_CONFIG;
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
ret = iavf_flow_valid_attr(attr, error);
if (ret)
return ret;
*engine = iavf_parse_engine(ad, flow, &vf->rss_parser_list, pattern,
actions, error);
if (*engine != NULL)
return 0;
*engine = iavf_parse_engine(ad, flow, &vf->dist_parser_list, pattern,
actions, error);
if (*engine == NULL)
return -EINVAL;
return 0;
}
static int
iavf_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct iavf_flow_engine *engine;
return iavf_flow_process_filter(dev, NULL, attr, pattern, actions,
&engine, iavf_parse_engine_validate, error);
}
static struct rte_flow *
iavf_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct iavf_flow_engine *engine = NULL;
struct rte_flow *flow = NULL;
int ret;
flow = rte_zmalloc("iavf_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory");
return flow;
}
ret = iavf_flow_process_filter(dev, flow, attr, pattern, actions,
&engine, iavf_parse_engine_create, error);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to create flow");
rte_free(flow);
flow = NULL;
goto free_flow;
}
flow->engine = engine;
TAILQ_INSERT_TAIL(&vf->flow_list, flow, node);
PMD_DRV_LOG(INFO, "Succeeded to create (%d) flow", engine->type);
free_flow:
rte_spinlock_unlock(&vf->flow_ops_lock);
return flow;
}
static int
iavf_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
int ret = 0;
if (!flow || !flow->engine || !flow->engine->destroy) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Invalid flow");
return -rte_errno;
}
rte_spinlock_lock(&vf->flow_ops_lock);
ret = flow->engine->destroy(ad, flow, error);
if (!ret) {
TAILQ_REMOVE(&vf->flow_list, flow, node);
rte_free(flow);
} else {
PMD_DRV_LOG(ERR, "Failed to destroy flow");
}
rte_spinlock_unlock(&vf->flow_ops_lock);
return ret;
}
static int
iavf_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct rte_flow *p_flow;
void *temp;
int ret = 0;
TAILQ_FOREACH_SAFE(p_flow, &vf->flow_list, node, temp) {
ret = iavf_flow_destroy(dev, p_flow, error);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to flush flows");
return -EINVAL;
}
}
return ret;
}
static int
iavf_flow_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error)
{
int ret = -EINVAL;
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_flow_query_count *count = data;
if (!flow || !flow->engine || !flow->engine->query_count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Invalid flow");
return -rte_errno;
}
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = flow->engine->query_count(ad, flow, count, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
return ret;
}

View File

@ -0,0 +1,279 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#ifndef _IAVF_GENERIC_FLOW_H_
#define _IAVF_GENERIC_FLOW_H_
#include <rte_flow_driver.h>
/* protocol */
#define IAVF_PROT_MAC_INNER (1ULL << 1)
#define IAVF_PROT_MAC_OUTER (1ULL << 2)
#define IAVF_PROT_VLAN_INNER (1ULL << 3)
#define IAVF_PROT_VLAN_OUTER (1ULL << 4)
#define IAVF_PROT_IPV4_INNER (1ULL << 5)
#define IAVF_PROT_IPV4_OUTER (1ULL << 6)
#define IAVF_PROT_IPV6_INNER (1ULL << 7)
#define IAVF_PROT_IPV6_OUTER (1ULL << 8)
#define IAVF_PROT_TCP_INNER (1ULL << 9)
#define IAVF_PROT_TCP_OUTER (1ULL << 10)
#define IAVF_PROT_UDP_INNER (1ULL << 11)
#define IAVF_PROT_UDP_OUTER (1ULL << 12)
#define IAVF_PROT_SCTP_INNER (1ULL << 13)
#define IAVF_PROT_SCTP_OUTER (1ULL << 14)
#define IAVF_PROT_ICMP4_INNER (1ULL << 15)
#define IAVF_PROT_ICMP4_OUTER (1ULL << 16)
#define IAVF_PROT_ICMP6_INNER (1ULL << 17)
#define IAVF_PROT_ICMP6_OUTER (1ULL << 18)
#define IAVF_PROT_VXLAN (1ULL << 19)
#define IAVF_PROT_NVGRE (1ULL << 20)
#define IAVF_PROT_GTPU (1ULL << 21)
/* field */
#define IAVF_SMAC (1ULL << 63)
#define IAVF_DMAC (1ULL << 62)
#define IAVF_ETHERTYPE (1ULL << 61)
#define IAVF_IP_SRC (1ULL << 60)
#define IAVF_IP_DST (1ULL << 59)
#define IAVF_IP_PROTO (1ULL << 58)
#define IAVF_IP_TTL (1ULL << 57)
#define IAVF_IP_TOS (1ULL << 56)
#define IAVF_SPORT (1ULL << 55)
#define IAVF_DPORT (1ULL << 54)
#define IAVF_ICMP_TYPE (1ULL << 53)
#define IAVF_ICMP_CODE (1ULL << 52)
#define IAVF_VXLAN_VNI (1ULL << 51)
#define IAVF_NVGRE_TNI (1ULL << 50)
#define IAVF_GTPU_TEID (1ULL << 49)
#define IAVF_GTPU_QFI (1ULL << 48)
/* input set */
#define IAVF_INSET_NONE 0ULL
/* non-tunnel */
#define IAVF_INSET_SMAC (IAVF_PROT_MAC_OUTER | IAVF_SMAC)
#define IAVF_INSET_DMAC (IAVF_PROT_MAC_OUTER | IAVF_DMAC)
#define IAVF_INSET_VLAN_INNER (IAVF_PROT_VLAN_INNER)
#define IAVF_INSET_VLAN_OUTER (IAVF_PROT_VLAN_OUTER)
#define IAVF_INSET_ETHERTYPE (IAVF_ETHERTYPE)
#define IAVF_INSET_IPV4_SRC \
(IAVF_PROT_IPV4_OUTER | IAVF_IP_SRC)
#define IAVF_INSET_IPV4_DST \
(IAVF_PROT_IPV4_OUTER | IAVF_IP_DST)
#define IAVF_INSET_IPV4_TOS \
(IAVF_PROT_IPV4_OUTER | IAVF_IP_TOS)
#define IAVF_INSET_IPV4_PROTO \
(IAVF_PROT_IPV4_OUTER | IAVF_IP_PROTO)
#define IAVF_INSET_IPV4_TTL \
(IAVF_PROT_IPV4_OUTER | IAVF_IP_TTL)
#define IAVF_INSET_IPV6_SRC \
(IAVF_PROT_IPV6_OUTER | IAVF_IP_SRC)
#define IAVF_INSET_IPV6_DST \
(IAVF_PROT_IPV6_OUTER | IAVF_IP_DST)
#define IAVF_INSET_IPV6_NEXT_HDR \
(IAVF_PROT_IPV6_OUTER | IAVF_IP_PROTO)
#define IAVF_INSET_IPV6_HOP_LIMIT \
(IAVF_PROT_IPV6_OUTER | IAVF_IP_TTL)
#define IAVF_INSET_IPV6_TC \
(IAVF_PROT_IPV6_OUTER | IAVF_IP_TOS)
#define IAVF_INSET_TCP_SRC_PORT \
(IAVF_PROT_TCP_OUTER | IAVF_SPORT)
#define IAVF_INSET_TCP_DST_PORT \
(IAVF_PROT_TCP_OUTER | IAVF_DPORT)
#define IAVF_INSET_UDP_SRC_PORT \
(IAVF_PROT_UDP_OUTER | IAVF_SPORT)
#define IAVF_INSET_UDP_DST_PORT \
(IAVF_PROT_UDP_OUTER | IAVF_DPORT)
#define IAVF_INSET_SCTP_SRC_PORT \
(IAVF_PROT_SCTP_OUTER | IAVF_SPORT)
#define IAVF_INSET_SCTP_DST_PORT \
(IAVF_PROT_SCTP_OUTER | IAVF_DPORT)
#define IAVF_INSET_ICMP4_SRC_PORT \
(IAVF_PROT_ICMP4_OUTER | IAVF_SPORT)
#define IAVF_INSET_ICMP4_DST_PORT \
(IAVF_PROT_ICMP4_OUTER | IAVF_DPORT)
#define IAVF_INSET_ICMP6_SRC_PORT \
(IAVF_PROT_ICMP6_OUTER | IAVF_SPORT)
#define IAVF_INSET_ICMP6_DST_PORT \
(IAVF_PROT_ICMP6_OUTER | IAVF_DPORT)
#define IAVF_INSET_ICMP4_TYPE \
(IAVF_PROT_ICMP4_OUTER | IAVF_ICMP_TYPE)
#define IAVF_INSET_ICMP4_CODE \
(IAVF_PROT_ICMP4_OUTER | IAVF_ICMP_CODE)
#define IAVF_INSET_ICMP6_TYPE \
(IAVF_PROT_ICMP6_OUTER | IAVF_ICMP_TYPE)
#define IAVF_INSET_ICMP6_CODE \
(IAVF_PROT_ICMP6_OUTER | IAVF_ICMP_CODE)
#define IAVF_INSET_GTPU_TEID \
(IAVF_PROT_GTPU | IAVF_GTPU_TEID)
#define IAVF_INSET_GTPU_QFI \
(IAVF_PROT_GTPU | IAVF_GTPU_QFI)
/* empty pattern */
extern enum rte_flow_item_type iavf_pattern_empty[];
/* L2 */
extern enum rte_flow_item_type iavf_pattern_ethertype[];
extern enum rte_flow_item_type iavf_pattern_ethertype_vlan[];
extern enum rte_flow_item_type iavf_pattern_ethertype_qinq[];
/* ARP */
extern enum rte_flow_item_type iavf_pattern_eth_arp[];
/* non-tunnel IPv4 */
extern enum rte_flow_item_type iavf_pattern_eth_ipv4[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_icmp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv4_icmp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv4_icmp[];
/* non-tunnel IPv6 */
extern enum rte_flow_item_type iavf_pattern_eth_ipv6[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv6_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv6_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv6_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_sctp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv6_icmp6[];
extern enum rte_flow_item_type iavf_pattern_eth_vlan_ipv6_icmp6[];
extern enum rte_flow_item_type iavf_pattern_eth_qinq_ipv6_icmp6[];
/* GTPU */
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_ipv4[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_udp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_tcp[];
extern enum rte_flow_item_type iavf_pattern_eth_ipv4_gtpu_eh_ipv4_icmp[];
extern const struct rte_flow_ops iavf_flow_ops;
/* pattern structure */
struct iavf_pattern_match_item {
enum rte_flow_item_type *pattern_list;
/* pattern_list must end with RTE_FLOW_ITEM_TYPE_END */
uint64_t input_set_mask;
void *meta;
};
typedef int (*engine_init_t)(struct iavf_adapter *ad);
typedef void (*engine_uninit_t)(struct iavf_adapter *ad);
typedef int (*engine_validation_t)(struct iavf_adapter *ad,
struct rte_flow *flow,
void *meta,
struct rte_flow_error *error);
typedef int (*engine_create_t)(struct iavf_adapter *ad,
struct rte_flow *flow,
void *meta,
struct rte_flow_error *error);
typedef int (*engine_destroy_t)(struct iavf_adapter *ad,
struct rte_flow *flow,
struct rte_flow_error *error);
typedef int (*engine_query_t)(struct iavf_adapter *ad,
struct rte_flow *flow,
struct rte_flow_query_count *count,
struct rte_flow_error *error);
typedef void (*engine_free_t) (struct rte_flow *flow);
typedef int (*parse_pattern_action_t)(struct iavf_adapter *ad,
struct iavf_pattern_match_item *array,
uint32_t array_len,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
void **meta,
struct rte_flow_error *error);
/* engine types. */
enum iavf_flow_engine_type {
IAVF_FLOW_ENGINE_NONE = 0,
IAVF_FLOW_ENGINE_FDIR,
IAVF_FLOW_ENGINE_HASH,
IAVF_FLOW_ENGINE_MAX,
};
/**
* classification stages.
* for non-pipeline mode, we have two classification stages: Distributor/RSS
* for pipeline-mode we have three classification stages:
* Permission/Distributor/RSS
*/
enum iavf_flow_classification_stage {
IAVF_FLOW_STAGE_NONE = 0,
IAVF_FLOW_STAGE_RSS,
IAVF_FLOW_STAGE_DISTRIBUTOR,
IAVF_FLOW_STAGE_MAX,
};
/* Struct to store engine created. */
struct iavf_flow_engine {
TAILQ_ENTRY(iavf_flow_engine) node;
engine_init_t init;
engine_uninit_t uninit;
engine_validation_t validation;
engine_create_t create;
engine_destroy_t destroy;
engine_query_t query_count;
engine_free_t free;
enum iavf_flow_engine_type type;
};
TAILQ_HEAD(iavf_engine_list, iavf_flow_engine);
/* Struct to store flow created. */
struct rte_flow {
TAILQ_ENTRY(rte_flow) node;
struct iavf_flow_engine *engine;
void *rule;
};
struct iavf_flow_parser {
struct iavf_flow_engine *engine;
struct iavf_pattern_match_item *array;
uint32_t array_len;
parse_pattern_action_t parse_pattern_action;
enum iavf_flow_classification_stage stage;
};
/* Struct to store parser created. */
struct iavf_flow_parser_node {
TAILQ_ENTRY(iavf_flow_parser_node) node;
struct iavf_flow_parser *parser;
};
void iavf_register_flow_engine(struct iavf_flow_engine *engine);
int iavf_flow_init(struct iavf_adapter *ad);
void iavf_flow_uninit(struct iavf_adapter *ad);
int iavf_register_parser(struct iavf_flow_parser *parser,
struct iavf_adapter *ad);
void iavf_unregister_parser(struct iavf_flow_parser *parser,
struct iavf_adapter *ad);
struct iavf_pattern_match_item *
iavf_search_pattern_match_item(const struct rte_flow_item pattern[],
struct iavf_pattern_match_item *array,
uint32_t array_len,
struct rte_flow_error *error);
#endif

View File

@ -10,6 +10,7 @@ sources = files(
'iavf_ethdev.c',
'iavf_rxtx.c',
'iavf_vchnl.c',
'iavf_generic_flow.c',
)
if arch_subdir == 'x86'