rte_flow_action_handle_create() did not mention what happens
with an indirect action when a device is stopped and started again.
It is natural for some indirect actions, like counter, to be persistent.
Keeping others at least saves application time and complexity.
However, not all PMDs can support it, or the support may be limited
by particular action kinds, that is, combinations of action type
and the value of the transfer bit in its configuration.
Add a device capability to indicate if at least some indirect actions
are kept across the above sequence. Without this capability the behavior
is still unspecified, and application is required to destroy
the indirect actions before stopping the device.
In the future, indirect actions may not be the only type of objects
shared between flow rules. The capability bit intends to cover all
possible types of such objects, hence its name.
Declare that the application can test for the persistence
of a particular indirect action kind by attempting to create
an indirect action of that kind when the device is stopped
and checking for the specific error type.
This is logical because if the PMD can to create an indirect action
when the device is not started and use it after the start happens,
it is natural that it can move its internal flow shared object
to the same state when the device is stopped and restore the state
when the device is started.
Indirect action persistence across a reconfigurations is not required.
In case a PMD cannot keep the indirect actions across reconfiguration,
it is allowed just to report an error.
Application must then flush the indirect actions before attempting it.
Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Previously, it was not specified what happens to the flow rules
when the device is stopped, possibly reconfigured, then started.
If flow rules were kept, it could be convenient for application
developers, because they wouldn't need to save and restore them.
However, due to the number of flows and possible creation rate it is
impractical to save all flow rules in DPDK layer. This means that flow
rules persistence really depends on whether PMD and HW can implement it
efficiently. It can also be limited by the rule item and action types,
and its attributes transfer bit (a combination of an item/action type
and a value of the transfer bit is called a rule feature).
Add a device capability bit for PMDs that can keep at least some
of the flow rules across restart. Without this capability behavior
is still unspecified and it is declared that the application must
flush the rules before stopping the device.
Allow the application to test for persistence of rules using
a particular feature by attempting to create a flow rule
using that feature when the device is stopped
and checking for the specific error.
This is logical because if the PMD can to create the flow rule
when the device is not started and use it after the start happens,
it is natural that it can move its internal flow rule object
to the same state when the device is stopped and restore the state
when the device is started.
Rule persistence across a reconfigurations is not required,
because tracking all the rules and configuration-dependent resources
they use may be infeasible. In case a PMD cannot keep the rules
across reconfiguration, it is allowed just to report an error.
Application must then flush the rules before attempting it.
Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Fix the mbuf offload flags namespace by adding an RTE_ prefix to the
name. The old flags remain usable, but a deprecation warning is issued
at compilation.
Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
Add 'RTE_ETH' namespace to all enums & macros in a backward compatible
way. The macros for backward compatibility can be removed in next LTS.
Also updated some struct names to have 'rte_eth' prefix.
All internal components switched to using new names.
Syntax fixed on lines that this patch touches.
Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Wisam Jaddo <wisamm@nvidia.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Chenbo Xia <chenbo.xia@intel.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
Added flow pattern items and header formats of L2TPv2 and PPP.
Signed-off-by: Wenjun Wu <wenjun1.wu@intel.com>
Signed-off-by: Jie Wang <jie1x.wang@intel.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
1. Introduction and Retrospective
Nowadays the networks are evolving fast and wide, the network
structures are getting more and more complicated, the new
application areas are emerging. To address these challenges
the new network protocols are continuously being developed,
considered by technical communities, adopted by industry and,
eventually implemented in hardware and software. The DPDK
framework follows the common trends and if we bother
to glance at the RTE Flow API header we see the multiple
new items were introduced during the last years since
the initial release.
The new protocol adoption and implementation process is
not straightforward and takes time, the new protocol passes
development, consideration, adoption, and implementation
phases. The industry tries to mitigate and address the
forthcoming network protocols, for example, many hardware
vendors are implementing flexible and configurable network
protocol parsers. As DPDK developers, could we anticipate
the near future in the same fashion and introduce the similar
flexibility in RTE Flow API?
Let's check what we already have merged in our project, and
we see the nice raw item (rte_flow_item_raw). At the first
glance, it looks superior and we can try to implement a flow
matching on the header of some relatively new tunnel protocol,
say on the GENEVE header with variable length options. And,
under further consideration, we run into the raw item
limitations:
- only fixed size network header can be represented
- the entire network header pattern of fixed format
(header field offsets are fixed) must be provided
- the search for patterns is not robust (the wrong matches
might be triggered), and actually is not supported
by existing PMDs
- no explicitly specified relations with preceding
and following items
- no tunnel hint support
As the result, implementing the support for tunnel protocols
like aforementioned GENEVE with variable extra protocol option
with flow raw item becomes very complicated and would require
multiple flows and multiple raw items chained in the same
flow (by the way, there is no support found for chained raw
items in implemented drivers).
This RFC introduces the dedicated flex item (rte_flow_item_flex)
to handle matches with existing and new network protocol headers
in a unified fashion.
2. Flex Item Life Cycle
Let's assume there are the requirements to support the new
network protocol with RTE Flows. What is given within protocol
specification:
- header format
- header length, (can be variable, depending on options)
- potential presence of extra options following or included
in the header the header
- the relations with preceding protocols. For example,
the GENEVE follows UDP, eCPRI can follow either UDP
or L2 header
- the relations with following protocols. For example,
the next layer after tunnel header can be L2 or L3
- whether the new protocol is a tunnel and the header
is a splitting point between outer and inner layers
The supposed way to operate with flex item:
- application defines the header structures according to
protocol specification
- application calls rte_flow_flex_item_create() with desired
configuration according to the protocol specification, it
creates the flex item object over specified ethernet device
and prepares PMD and underlying hardware to handle flex
item. On item creation call PMD backing the specified
ethernet device returns the opaque handle identifying
the object has been created
- application uses the rte_flow_item_flex with obtained handle
in the flows, the values/masks to match with fields in the
header are specified in the flex item per flow as for regular
items (except that pattern buffer combines all fields)
- flows with flex items match with packets in a regular fashion,
the values and masks for the new protocol header match are
taken from the flex items in the flows
- application destroys flows with flex items
- application calls rte_flow_flex_item_release() as part of
ethernet device API and destroys the flex item object in
PMD and releases the engaged hardware resources
3. Flex Item Structure
The flex item structure is intended to be used as part of the flow
pattern like regular RTE flow items and provides the mask and
value to match with fields of the protocol item was configured
for.
struct rte_flow_item_flex {
void *handle;
uint32_t length;
const uint8_t* pattern;
};
The handle is some opaque object maintained on per device basis
by underlying driver.
The protocol header fields are considered as bit fields, all
offsets and widths are expressed in bits. The pattern is the
buffer containing the bit concatenation of all the fields
presented at item configuration time, in the same order and
same amount. If byte boundary alignment is needed an application
can use a dummy type field, this is just some kind of gap filler.
The length field specifies the pattern buffer length in bytes
and is needed to allow rte_flow_copy() operations. The approach
of multiple pattern pointers and lengths (per field) was
considered and found clumsy - it seems to be much suitable for
the application to maintain the single structure within the
single pattern buffer.
4. Flex Item Configuration
The flex item configuration consists of the following parts:
- header field descriptors:
- next header
- next protocol
- sample to match
- input link descriptors
- output link descriptors
The field descriptors tell the driver and hardware what data should
be extracted from the packet and then control the packet handling
in the flow engine. Besides this, sample fields can be presented
to match with patterns in the flows. Each field is a bit pattern.
It has width, offset from the header beginning, mode of offset
calculation, and offset related parameters.
The next header field is special, no data are actually taken
from the packet, but its offset is used as a pointer to the next
header in the packet, in other words the next header offset
specifies the size of the header being parsed by flex item.
There is one more special field - next protocol, it specifies
where the next protocol identifier is contained and packet data
sampled from this field will be used to determine the next
protocol header type to continue packet parsing. The next
protocol field is like eth_type field in MAC2, or proto field
in IPv4/v6 headers.
The sample fields are used to represent the data be sampled
from the packet and then matched with established flows.
There are several methods supposed to calculate field offset
in runtime depending on configuration and packet content:
- FIELD_MODE_FIXED - fixed offset. The bit offset from
header beginning is permanent and defined by field_base
configuration parameter.
- FIELD_MODE_OFFSET - the field bit offset is extracted
from other header field (indirect offset field). The
resulting field offset to match is calculated from as:
field_base + (*offset_base & offset_mask) << offset_shift
This mode is useful to sample some extra options following
the main header with field containing main header length.
Also, this mode can be used to calculate offset to the
next protocol header, for example - IPv4 header contains
the 4-bit field with IPv4 header length expressed in dwords.
One more example - this mode would allow us to skip GENEVE
header variable length options.
- FIELD_MODE_BITMASK - the field bit offset is extracted
from other header field (indirect offset field), the latter
is considered as bitmask containing some number of one bits,
the resulting field offset to match is calculated as:
field_base + bitcount(*offset_base & offset_mask) << offset_shift
This mode would be useful to skip the GTP header and its
extra options with specified flags.
- FIELD_MODE_DUMMY - dummy field, optionally used for byte
boundary alignment in pattern. Pattern mask and data are
ignored in the match. All configuration parameters besides
field size and offset are ignored.
Note: "*" - means the indirect field offset is calculated
and actual data are extracted from the packet by this
offset (like data are fetched by pointer *p from memory).
The offset mode list can be extended by vendors according to
hardware supported options.
The input link configuration section tells the driver after
what protocols and at what conditions the flex item can follow.
Input link specified the preceding header pattern, for example
for GENEVE it can be UDP item specifying match on destination
port with value 6081. The flex item can follow multiple header
types and multiple input links should be specified. At flow
creation time the item with one of the input link types should
precede the flex item and driver will select the correct flex
item settings, depending on the actual flow pattern.
The output link configuration section tells the driver how
to continue packet parsing after the flex item protocol.
If multiple protocols can follow the flex item header the
flex item should contain the field with the next protocol
identifier and the parsing will be continued depending
on the data contained in this field in the actual packet.
The flex item fields can participate in RSS hash calculation,
the dedicated flag is present in the field description to specify
what fields should be provided for hashing.
5. Flex Item Chaining
If there are multiple protocols supposed to be supported with
flex items in chained fashion - two or more flex items within
the same flow and these ones might be neighbors in the pattern,
it means the flex items are mutual referencing. In this case,
the item that occurred first should be created with empty
output link list or with the list including existing items,
and then the second flex item should be created referencing
the first flex item as input arc, drivers should adjust
the item configuration.
Also, the hardware resources used by flex items to handle
the packet can be limited. If there are multiple flex items
that are supposed to be used within the same flow it would
be nice to provide some hint for the driver that these two
or more flex items are intended for simultaneous usage.
The fields of items should be assigned with hint indices
and these indices from two or more flex items supposed
to be provided within the same flow should be the same
as well. In other words, the field hint index specifies
the group of fields that can be matched simultaneously
within a single flow. If hint indices are specified,
the driver will try to engage not overlapping hardware
resources and provide independent handling of the field
groups with unique indices. If the hint index is zero
the driver assigns resources on its own.
6. Example of New Protocol Handling
Let's suppose we have the requirements to handle the new tunnel
protocol that follows UDP header with destination port 0xFADE
and is followed by MAC header. Let the new protocol header format
be like this:
struct new_protocol_header {
rte_be32 header_length; /* length in dwords, including options */
rte_be32 specific0; /* some protocol data, no intention */
rte_be32 specific1; /* to match in flows on these fields */
rte_be32 crucial; /* data of interest, match is needed */
rte_be32 options[0]; /* optional protocol data, variable length */
};
The supposed flex item configuration:
struct rte_flow_item_flex_field field0 = {
.field_mode = FIELD_MODE_DUMMY, /* Affects match pattern only */
.field_size = 96, /* three dwords from the beginning */
};
struct rte_flow_item_flex_field field1 = {
.field_mode = FIELD_MODE_FIXED,
.field_size = 32, /* Field size is one dword */
.field_base = 96, /* Skip three dwords from the beginning */
};
struct rte_flow_item_udp spec0 = {
.hdr = {
.dst_port = RTE_BE16(0xFADE),
}
};
struct rte_flow_item_udp mask0 = {
.hdr = {
.dst_port = RTE_BE16(0xFFFF),
}
};
struct rte_flow_item_flex_link link0 = {
.item = {
.type = RTE_FLOW_ITEM_TYPE_UDP,
.spec = &spec0,
.mask = &mask0,
};
struct rte_flow_item_flex_conf conf = {
.next_header = {
.tunnel = FLEX_TUNNEL_MODE_SINGLE,
.field_mode = FIELD_MODE_OFFSET,
.field_base = 0,
.offset_base = 0,
.offset_mask = 0xFFFFFFFF,
.offset_shift = 2 /* Expressed in dwords, shift left by 2 */
},
.sample = {
&field0,
&field1,
},
.nb_samples = 2,
.input_link[0] = &link0,
.nb_inputs = 1
};
Let's suppose we have created the flex item successfully, and PMD
returned the handle 0x123456789A. We can use the following item
pattern to match the crucial field in the packet with value 0x00112233:
struct new_protocol_header spec_pattern =
{
.crucial = RTE_BE32(0x00112233),
};
struct new_protocol_header mask_pattern =
{
.crucial = RTE_BE32(0xFFFFFFFF),
};
struct rte_flow_item_flex spec_flex = {
.handle = 0x123456789A
.length = sizeiof(struct new_protocol_header),
.pattern = &spec_pattern,
};
struct rte_flow_item_flex mask_flex = {
.length = sizeof(struct new_protocol_header),
.pattern = &mask_pattern,
};
struct rte_flow_item item_to_match = {
.type = RTE_FLOW_ITEM_TYPE_FLEX,
.spec = &spec_flex,
.mask = &mask_flex,
};
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
The generic modify field flow action introduced in [1] has
some issues related to the immediate source operand:
- immediate source can be presented either as an unsigned
64-bit integer or pointer to data pattern in memory.
There was no explicit pointer field defined in the union.
- the byte ordering for 64-bit integer was not specified.
Many fields have shorter lengths and byte ordering
is crucial.
- how the bit offset is applied to the immediate source
field was not defined and documented.
- 64-bit integer size is not enough to provide IPv6
addresses.
In order to cover the issues and exclude any ambiguities
the following is done:
- introduce the explicit pointer field
in rte_flow_action_modify_data structure
- replace the 64-bit unsigned integer with 16-byte array
- update the modify field flow action documentation
Appropriate deprecation notice has been removed.
[1] commit 73b68f4c54a0 ("ethdev: introduce generic modify flow action")
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Attributes "ingress" and "egress" can only apply unambiguosly
to non-"transfer" flows. In "transfer" flows, the standpoint
is effectively shifted to the embedded switch. There can be
many different endpoints connected to the switch, so the
use of "ingress" / "egress" does not shed light on which
endpoints precisely can be considered as traffic sources.
Add relevant deprecation notices and suggest the use of precise
traffic source items (PORT_REPRESENTOR and REPRESENTED_PORT).
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
PF, VF and PHY_PORT require that applications have extra
knowledge of the underlying NIC and thus are hard to use.
Also, the corresponding items depend on the direction
attribute (ingress / egress), which complicates their
use in applications and interpretation in PMDs.
The concept of PORT_ID is ambiguous as it doesn't say whether
the port in question is an ethdev or the represented entity.
Items and actions PORT_REPRESENTOR, REPRESENTED_PORT
should be used instead.
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
For use in "transfer" flows. Supposed to send matching traffic to the
entity represented by the given ethdev, at embedded switch level.
Such an entity can be a network (via a network port), a guest
machine (via a VF) or another ethdev in the same application.
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
For use in "transfer" flows. Supposed to send matching traffic to
the given ethdev (to the application), at embedded switch level.
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
For use in "transfer" flows. Supposed to match traffic entering the
embedded switch from the entity represented by the given ethdev.
Such an entity can be a network (via a network port), a guest
machine (via a VF) or another ethdev in the same application.
Must not be combined with direction attributes.
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
For use in "transfer" flows. Supposed to match traffic
entering the embedded switch from the given ethdev.
Must not be combined with direction attributes.
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Indirect actions should be used to do shared counters.
Signed-off-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
After 4 years, rte_flow has evolved enough to not require
special notes about what could be added in future.
Part of the removed plans were obsolete anyway.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ori Kam <orika@nvidia.com>
Currently, the flow meter policy does not support multiple actions
per color; also the allowed action types per color are very limited.
In addition, the policy cannot be pre-defined.
Due to the growing in flow actions offload abilities there is a potential
for the user to use variety of actions per color differently.
This new meter policy API comes to allow this potential in the most ethdev
common way using rte_flow action definition.
A list of rte_flow actions will be provided by the user per color
in order to create a meter policy.
In addition, the API forces to pre-define the policy before
the meters creation in order to allow sharing of single policy
with multiple meters efficiently.
meter_policy_id is added into struct rte_mtr_params.
So that it can get the policy during the meters creation.
Allow coloring the packet using a new rte_flow_action_color
as could be done by the old policy API.
Add two common policy template as macros in the head file.
The next API function were added:
- rte_mtr_meter_policy_add
- rte_mtr_meter_policy_delete
- rte_mtr_meter_policy_update
- rte_mtr_meter_policy_validate
The next struct was changed:
- rte_mtr_params
- rte_mtr_capabilities
The next API was deleted:
- rte_mtr_policer_actions_update
To support this API the following app were changed:
app/test-flow-perf: clean meter policer
app/testpmd: clean meter policer
To support this API the following drivers were changed:
net/softnic: support meter policy API
1. Cleans meter rte_mtr_policer_action.
2. Supports policy API to get color action as policer action did.
The color action will be mapped into rte_table_action_policer.
net/mlx5: clean meter creation management
Cleans and breaks part of the current meter management
in order to allow better design with policy API.
Signed-off-by: Li Zhang <lizh@nvidia.com>
Signed-off-by: Haifei Luo <haifeil@nvidia.com>
Signed-off-by: Jiawei Wang <jiaweiw@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
Acked-by: Ray Kinsella <mdr@ashroe.eu>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Jasvinder Singh <jasvinder.singh@intel.com>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
This commit introduces the conntrack action and item.
Usually the HW offloading is stateless. For some stateful offloading
like a TCP connection, HW module will help provide the ability of a
full offloading w/o SW participation after the connection was
established.
The basic usage is that in the first flow rule the application should
add the conntrack action and jump to the next flow table. In the
following flow rule(s) of the next table, the application should use
the conntrack item to match on the result.
A TCP connection has two directions traffic. To set a conntrack
action context correctly, the information of packets from both
directions are required.
The conntrack action should be created on one ethdev port and supply
the peer ethdev port as a parameter to the action. After context
created, it could only be used between these two ethdev ports
(dual-port mode) or a single port. The application should modify the
action via the API "rte_action_handle_update" only when before using
it to create a flow rule with conntrack for the opposite direction.
This will help the driver to recognize the direction of the flow to
be created, especially in the single-port mode, in which case the
traffic from both directions will go through the same ethdev port
if the application works as an "forwarding engine" but not an end
point. There is no need to call the update interface if the
subsequent flow rules have nothing to be changed.
Query will be supported via "rte_action_handle_query" interface,
about the current packets information and connection status. The
fields query capabilities depends on the HW.
For the packets received during the conntrack setup, it is suggested
to re-inject the packets in order to make sure the conntrack module
works correctly without missing any packet. Only the valid packets
should pass the conntrack, packets with invalid TCP information,
like out of window, or with invalid header, like malformed, should
not pass.
Naming and definition:
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/
netfilter/nf_conntrack_tcp.h
https://elixir.bootlin.com/linux/latest/source/net/netfilter/
nf_conntrack_proto_tcp.c
Other reference:
https://www.usenix.org/legacy/events/sec01/invitedtalks/rooij.pdf
Signed-off-by: Bing Zhao <bingz@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Currently, DPDK application can offload the checksum check,
and report it in the mbuf.
However, as more and more applications are offloading some or all
logic and action to the HW, there is a need to check the packet
integrity so the right decision can be taken.
The application logic can be positive meaning if the packet is
valid jump / do actions, or negative if packet is not valid
jump to SW / do actions (like drop) and add default flow
(match all in low priority) that will direct the miss packet
to the miss path.
Since currently rte_flow works in positive way the assumption is
that the positive way will be the common way in this case also.
When thinking what is the best API to implement such feature,
we need to consider the following (in no specific order):
1. API breakage.
2. Simplicity.
3. Performance.
4. HW capabilities.
5. rte_flow limitation.
6. Flexibility.
First option: Add integrity flags to each of the items.
For example add checksum_ok to IPv4 item.
Pros:
1. No new rte_flow item.
2. Simple in the way that on each item the app can see
what checks are available.
Cons:
1. API breakage.
2. Increase number of flows, since app can't add global rule and must
have dedicated flow for each of the flow combinations, for example
matching on ICMP traffic or UDP/TCP traffic with IPv4 / IPv6 will
result in 5 flows.
Second option: dedicated item
Pros:
1. No API breakage, and there will be no for some time due to having
extra space. (by using bits)
2. Just one flow to support the ICMP or UDP/TCP traffic with IPv4 /
IPv6.
3. Simplicity application can just look at one place to see all possible
checks.
4. Allow future support for more tests.
Cons:
1. New item, that holds number of fields from different items.
For starter the following bits are suggested:
1. packet_ok - means that all HW checks depending on packet layer have
passed. This may mean that in some HW such flow should be split to
number of flows or fail.
2. l2_ok - all check for layer 2 have passed.
3. l3_ok - all check for layer 3 have passed. If packet doesn't have
L3 layer this check should fail.
4. l4_ok - all check for layer 4 have passed. If packet doesn't
have L4 layer this check should fail.
5. l2_crc_ok - the layer 2 CRC is O.K.
6. ipv4_csum_ok - IPv4 checksum is O.K. It is possible that the
IPv4 checksum will be O.K. but the l3_ok will be 0. It is not
possible that checksum will be 0 and the l3_ok will be 1.
7. l4_csum_ok - layer 4 checksum is O.K.
8. l3_len_OK - check that the reported layer 3 length is smaller than the
frame length.
Example of usage:
1. Check packets from all possible layers for integrity.
flow create integrity spec packet_ok = 1 mask packet_ok = 1 .....
2. Check only packet with layer 4 (UDP / TCP)
flow create integrity spec l3_ok = 1, l4_ok = 1 mask l3_ok = 1
l4_ok = 1
Signed-off-by: Ori Kam <orika@nvidia.com>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Right now, rte_flow_shared_action_* APIs are used for some shared
actions, like RSS, count. The shared action should be created before
using it inside a flow. These shared actions sometimes are not
really shared but just some indirect actions decoupled from a flow.
The new functions rte_flow_action_handle_* are added to replace
the current shared functions rte_flow_shared_action_*.
There are two types of flow actions:
1. the direct (normal) actions that could be created and stored
within a flow rule. Such action is tied to its flow rule and
cannot be reused.
2. the indirect action, in the past, named shared_action. It is
created from a direct actioni, like count or rss, and then used
in the flow rules with an object handle. The PMD will take care
of the retrieve from indirect action to the direct action
when it is referenced.
The indirect action is accessed (update / query) w/o any flow rule,
just via the action object handle. For example, when querying or
resetting a counter, it could be done out of any flow using this
counter, but only the handle of the counter action object is
required.
The indirect action object could be shared by different flows or
used by a single flow, depending on the direct action type and
the real-life requirements.
The handle of an indirect action object is opaque and defined in
each driver and possibly different per direct action type.
The old name "shared" is improper in a sense and should be replaced.
Since the APIs are changed from "rte_flow_shared_action*" to the new
"rte_flow_action_handle*", the testpmd application code and command
line interfaces also need to be updated to do the adaption.
The testpmd application user guide is also updated. All the "shared
action" related parts are replaced with "indirect action" to have a
correct explanation.
The parameter of "update" interface is also changed. A general
pointer will replace the rte_flow_action struct pointer due to the
facts:
1. Some action may not support fields updating. In the example of a
counter, the only "update" supported should be the reset. So
passing a rte_flow_action struct pointer is meaningless and
there is even no such corresponding action struct. What's more,
if more than one operations should be supported, for some other
action, such pointer parameter may not meet the need.
2. Some action may need conditional or partial update, the current
parameter will not provide the ability to indicate which part(s)
to update.
For different types of indirect action objects, the pointer could
either be the same of rte_flow_action* struct - in order not to
break the current driver implementation, or some wrapper
structures with bits as masks to indicate which part to be
updated, depending on real needs of the corresponding direct
action. For different direct actions, the structures of indirect
action objects updating will be different.
All the underlayer PMD callbacks will be moved to these new APIs.
The RTE_FLOW_ACTION_TYPE_SHARED is kept for now in order not to
break the ABI. All the implementations are changed by using
RTE_FLOW_ACTION_TYPE_INDIRECT.
Since the APIs are changed from "rte_flow_shared_action*" to the new
"rte_flow_action_handle*" and the "update" interface's 3rd input
parameter is changed to generic pointer, the mlx5 PMD that uses these
APIs needs to do the adaption to the new APIs as well.
Signed-off-by: Bing Zhao <bingz@nvidia.com>
Acked-by: Andrey Vesnovaty <andreyv@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Fix the documentation about the MODIFY_FIELD flow action.
1. Include the rte_flow_field_id enumeration reference to point
to the full list of all supported Field IDs available.
2. Correct the formatting of the MODIFY_FIELD action and the
destination/source field definition tables.
Fixes: 73b68f4c54a0 ("ethdev: introduce generic modify flow action")
Cc: stable@dpdk.org
Signed-off-by: Alexander Kozyrev <akozyrev@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Since rte_flow is the only API for filtering operations,
the legacy driver interface filter_ctrl was too much complicated
for the simple task of getting the struct rte_flow_ops.
The filter type RTE_ETH_FILTER_GENERIC and
the filter operarion RTE_ETH_FILTER_GET are removed.
The new driver callback flow_ops_get replaces filter_ctrl.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Added more information of shared action on
how to update, query, and the benefits.
Signed-off-by: Xiaoyu Min <jackmin@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Reviewed-by: Asaf Penso <asafp@nvidia.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Implement the generic modify flow API to allow manipulations on
an arbitrary header field (as well as mark, metadata or tag) using
data from another field or a user-specified value.
This generic modify mechanism removes the necessity to implement
a separate RTE Flow action every time we need to modify a new packet
field in the future.
Supported operation are:
- set: copy data from source to destination.
- add: integer addition, stores the result in destination.
- sub: integer subtraction, stores the result in destination.
The field ID is used to specify the desired source/destination packet
field in order to simplify the API for various encapsulation models.
Specifying the packet field ID with the needed encapsulation level
is able to quickly get a packet field for any inner packet header.
Alternatively, the special ID (ITEM_START) can be used to point to
the very beginning of a packet. This ID in conjunction with the
offset parameter provides great flexibility to copy/modify any part of
a packet as needed.
The number of bits to use from a source as well as the offset can be
be specified to allow a partial copy or dividing a big packet field
into multiple small fields (e.g. copying 128 bits of IPv6 to 4 tags).
An immediate value (or a pointer to it) can be specified instead of the
level and the offset for the special FIELD_VALUE ID (or FIELD_POINTER).
Can be used as a source only.
Signed-off-by: Alexander Kozyrev <akozyrev@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
A new generic shared actions API may be used to create shared
counter. There is no point to keep duplicate COUNT action specific
capability to create shared counters.
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
There is a discrepancy between ethdev API and flow rules guide
regarding flow rules maintenance after port stop.
librte_ethdev.h declares that flow rules will not be stored in PMD
after port stop:
>>>>> Quote start
Please note that some configuration is not stored between calls to
rte_eth_dev_stop()/rte_eth_dev_start(). The following configuration
will be retained:
- MTU
- flow control settings
- receive mode configuration (promiscuous mode, all-multicast mode,
hardware checksum mode, RSS/VMDQ settings etc.)
- VLAN filtering configuration
- default MAC address
- MAC addresses supplied to MAC address array
- flow director filtering mode (but not filtering rules)
- NIC queue statistics mappings
<<<< Quote end
PMD cannot always correctly restore flow rules after port stop / port
start because application may alter port configuration after port stop
without PMD knowledge about undergoing changes. Consider the
following scenario:
application configures 2 queues 0 and 1 and creates a flow rule with
'queue index 1' action. After that application stops the port and
removes queue 1.
Although PMD can implement flow rule shadow copy to be used for
restore after port start, attempt to restore flow rule from shadow
will fail in example above and PMD could not notify application about
that failure. As the result, flow rules map in HW will differ from
what application expects. In addition, flow rules shadow copy used
for port start restore consumes considerable amount of system memory,
especially in systems with millions of flow rules.
Signed-off-by: Gregory Etelson <getelson@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
flow_type_rss_offloads was misspelt as flow_tpe_rss_offloads
Fixes: 6abee736abe6 ("doc: update RSS flow action with best effort")
Cc: stable@dpdk.org
Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
rte_flow API provides the building blocks for vendor-agnostic flow
classification offloads. The rte_flow "patterns" and "actions"
primitives are fine-grained, thus enabling DPDK applications the
flexibility to offload network stacks and complex pipelines.
Applications wishing to offload tunneled traffic are required to use
the rte_flow primitives, such as group, meta, mark, tag, and others to
model their high-level objects. The hardware model design for
high-level software objects is not trivial. Furthermore, an optimal
design is often vendor-specific.
When hardware offloads tunneled traffic in multi-group logic,
partially offloaded packets may arrive to the application after they
were modified in hardware. In this case, the application may need to
restore the original packet headers. Consider the following sequence:
The application decaps a packet in one group and jumps to a second
group where it tries to match on a 5-tuple, that will miss and send
the packet to the application. In this case, the application does not
receive the original packet but a modified one. Also, in this case,
the application cannot match on the outer header fields, such as VXLAN
vni and 5-tuple.
There are several possible ways to use rte_flow "patterns" and
"actions" to resolve the issues above. For example:
1 Mapping headers to a hardware registers using the
rte_flow_action_mark/rte_flow_action_tag/rte_flow_set_meta objects.
2 Apply the decap only at the last offload stage after all the
"patterns" were matched and the packet will be fully offloaded.
Every approach has its pros and cons and is highly dependent on the
hardware vendor. For example, some hardware may have a limited number
of registers while other hardware could not support inner actions and
must decap before accessing inner headers.
The tunnel offload model resolves these issues. The model goals are:
1 Provide a unified application API to offload tunneled traffic that
is capable to match on outer headers after decap.
2 Allow the application to restore the outer header of partially
offloaded packets.
The tunnel offload model does not introduce new elements to the
existing RTE flow model and is implemented as a set of helper
functions.
For the application to work with the tunnel offload API it
has to adjust flow rules in multi-table tunnel offload in the
following way:
1 Remove explicit call to decap action and replace it with PMD actions
obtained from rte_flow_tunnel_decap_and_set() helper.
2 Add PMD items obtained from rte_flow_tunnel_match() helper to all
other rules in the tunnel offload sequence.
VXLAN Code example:
Assume application needs to do inner NAT on the VXLAN packet.
The first rule in group 0:
flow create <port id> ingress group 0
pattern eth / ipv4 / udp dst is 4789 / vxlan / end
actions {pmd actions} / jump group 3 / end
The first VXLAN packet that arrives matches the rule in group 0 and
jumps to group 3. In group 3 the packet will miss since there is no
flow to match and will be sent to the application. Application will
call rte_flow_get_restore_info() to get the packet outer header.
Application will insert a new rule in group 3 to match outer and inner
headers:
flow create <port id> ingress group 3
pattern {pmd items} / eth / ipv4 dst is 172.10.10.1 /
udp dst 4789 / vxlan vni is 10 /
ipv4 dst is 184.1.2.3 / end
actions set_ipv4_dst 186.1.1.1 / queue index 3 / end
Resulting of the rules will be that VXLAN packet with vni=10, outer
IPv4 dst=172.10.10.1 and inner IPv4 dst=184.1.2.3 will be received
decapped on queue 3 with IPv4 dst=186.1.1.1
Note: The packet in group 3 is considered decapped. All actions in
that group will be done on the header that was inner before decap. The
application may specify an outer header to be matched on. It's PMD
responsibility to translate these items to outer metadata.
API usage:
/**
* 1. Initiate RTE flow tunnel object
*/
const struct rte_flow_tunnel tunnel = {
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
.tun_id = 10,
}
/**
* 2. Obtain PMD tunnel actions
*
* pmd_actions is an intermediate variable application uses to
* compile actions array
*/
struct rte_flow_action **pmd_actions;
rte_flow_tunnel_decap_and_set(&tunnel, &pmd_actions,
&num_pmd_actions, &error);
/**
* 3. offload the first rule
* matching on VXLAN traffic and jumps to group 3
* (implicitly decaps packet)
*/
app_actions = jump group 3
rule_items = app_items; /** eth / ipv4 / udp / vxlan */
rule_actions = { pmd_actions, app_actions };
attr.group = 0;
flow_1 = rte_flow_create(port_id, &attr,
rule_items, rule_actions, &error);
/**
* 4. after flow creation application does not need to keep the
* tunnel action resources.
*/
rte_flow_tunnel_action_release(port_id, pmd_actions,
num_pmd_actions);
/**
* 5. After partially offloaded packet miss because there was no
* matching rule handle miss on group 3
*/
struct rte_flow_restore_info info;
rte_flow_get_restore_info(port_id, mbuf, &info, &error);
/**
* 6. Offload NAT rule:
*/
app_items = { eth / ipv4 dst is 172.10.10.1 / udp dst 4789 /
vxlan vni is 10 / ipv4 dst is 184.1.2.3 }
app_actions = { set_ipv4_dst 186.1.1.1 / queue index 3 }
rte_flow_tunnel_match(&info.tunnel, &pmd_items,
&num_pmd_items, &error);
rule_items = {pmd_items, app_items};
rule_actions = app_actions;
attr.group = info.group_id;
flow_2 = rte_flow_create(port_id, &attr,
rule_items, rule_actions, &error);
/**
* 7. Release PMD items after rule creation
*/
rte_flow_tunnel_item_release(port_id,
pmd_items, num_pmd_items);
References
1. https://mails.dpdk.org/archives/dev/2020-June/index.html
Signed-off-by: Eli Britstein <elibr@mellanox.com>
Signed-off-by: Gregory Etelson <getelson@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
RTE flow items & actions use positive values in item & action type.
Negative values are reserved for PMD private types. PMD
items & actions usually are not exposed to application and are not
used to create RTE flows.
The patch allows applications with access to PMD flow
items & actions ability to integrate RTE and PMD items & actions
and use them to create flow rule.
RTE flow item or action conversion library accepts positive known
element types with predefined sizes only. Private PMD items and
actions do not fit into this scheme because PMD type values are
negative, each PMD has it's own types numeration and element types and
their sizes are not visible at RTE level. To resolve these
limitations the patch proposes this solution:
1. PMD can expose elements of pointer size only. RTE flow
conversion functions will use pointer size for each configuration
object in private PMD element it processes;
2. RTE flow verification will not reject elements with negative type.
Signed-off-by: Gregory Etelson <getelson@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
This patch implements the change proposes in RFC [1], adding dedicated
fields to ETH and VLAN items structs, to clearly define the required
characteristic of a packet, and enable precise match criteria.
Documentation is updated accordingly.
[1] https://mails.dpdk.org/archives/dev/2020-August/177536.html
Signed-off-by: Dekel Peled <dekelp@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
To support two ports hairpin mode and keep the backward compatibility
for the application, two new attribute members of the hairpin queue
configuration structure will be added.
`tx_explicit` means if the application itself will insert the Tx part
flow rules. If not set, PMD will insert the rules implicitly.
`manual_bind` means if the hairpin Tx queue and peer Rx queue will be
bound automatically during the device start stage.
Different Tx and Rx queue pairs could have different values, but it
is highly recommended that all paired queues between one egress and
its peer ingress ports have the same values, in order not to bring
any chaos to the system. The actual support of these attribute
parameters will be checked and decided by the PMD drivers.
In the single port hairpin, if both are zero without any setting, the
behavior will remain the same as before. It means that no bind API
needs to be called and no Tx flow rules need to be inserted manually
by the application.
Signed-off-by: Bing Zhao <bingz@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Applications handling fragmented IPv6 packets need to match on IPv6
fragment extension header, in order to identify the fragments order
and location in the packet.
This patch introduces the IPv6 fragment extension header item,
proposed in [1].
Relevant definitions are moved from lib/librte_ip_frag/rte_ip_frag.h
to lib/librte_net/rte_ip.h, as they are needed for IPv6 header handling.
struct ipv6_extension_fragment renamed to rte_ipv6_fragment_ext to
adapt it to the common naming convention.
Default mask is not defined, since all fields are optional.
[1] http://mails.dpdk.org/archives/dev/2020-March/160255.html
Signed-off-by: Dekel Peled <dekelp@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Using the current implementation of DPDK, an application cannot match on
IPv6 packets, based on the existing extension headers, in a simple way.
Field 'Next Header' in IPv6 header indicates type of the first extension
header only. Following extension headers can't be identified by
inspecting the IPv6 header.
As a result, the existence or absence of specific extension headers
can't be used for packet matching.
For example, fragmented IPv6 packets contain a dedicated extension header
(which is implemented in a later patch of this series).
Non-fragmented packets don't contain the fragment extension header.
For an application to match on non-fragmented IPv6 packets, the current
implementation doesn't provide a suitable solution.
Matching on the Next Header field is not sufficient, since additional
extension headers might be present in the same packet.
To match on fragmented IPv6 packets, the same difficulty exists.
This patch implements the update as detailed in RFC [1].
A set of additional values will be added to IPv6 header struct.
These values will indicate the existence of every defined extension
header type, providing simple means for identification of existing
extensions in the packet header.
Continuing the above example, fragmented packets can be identified using
the specific value indicating existence of fragment extension header.
To match on non-fragmented IPv6 packets, need to use has_frag_ext 0.
To match on fragmented IPv6 packets, need to use has_frag_ext 1.
To match on any IPv6 packets, the has_frag_ext field should
not be specified for match.
[1] https://mails.dpdk.org/archives/dev/2020-August/177257.html
Signed-off-by: Dekel Peled <dekelp@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Introduce extension of flow action API enabling sharing of single
rte_flow_action in multiple flows. The API intended for PMDs, where
multiple HW offloaded flows can reuse the same HW essence/object
representing flow action and modification of such an essence/object
affects all the rules using it.
Motivation and example
===
Adding or removing one or more queues to RSS used by multiple flow rules
imposes per rule toll for current DPDK flow API; the scenario requires
for each flow sharing cloned RSS action:
- call `rte_flow_destroy()`
- call `rte_flow_create()` with modified RSS action
API for sharing action and its in-place update benefits:
- reduce the overhead of multiple RSS flow rules reconfiguration
- optimize resource utilization by sharing action across multiple
flows
Change description
===
Shared action
===
In order to represent flow action shared by multiple flows new action
type RTE_FLOW_ACTION_TYPE_SHARED is introduced (see `enum
rte_flow_action_type`).
Actually the introduced API decouples action from any specific flow and
enables sharing of single action by its handle across multiple flows.
Shared action create/use/destroy
===
Shared action may be reused by some or none flow rules at any given
moment, i.e. shared action resides outside of the context of any flow.
Shared action represent HW resources/objects used for action offloading
implementation.
API for shared action create (see `rte_flow_shared_action_create()`):
- should allocate HW resources and make related initializations required
for shared action implementation.
- make necessary preparations to maintain shared access to
the action resources, configuration and state.
API for shared action destroy (see `rte_flow_shared_action_destroy()`)
should release HW resources and make related cleanups required for shared
action implementation.
In order to share some flow action reuse the handle of type
`struct rte_flow_shared_action` returned by
rte_flow_shared_action_create() as a `conf` field of
`struct rte_flow_action` (see "example" section).
If some shared action not used by any flow rule all resources allocated
by the shared action can be released by rte_flow_shared_action_destroy()
(see "example" section). The shared action handle passed as argument to
destroy API should not be used any further i.e. result of the usage is
undefined.
Shared action re-configuration
===
Shared action behavior defined by its configuration can be updated via
rte_flow_shared_action_update() (see "example" section). The shared
action update operation modifies HW related resources/objects allocated
on the action creation. The number of operations performed by the update
operation should not depend on the number of flows sharing the related
action. On return of shared action update API action behavior should be
according to updated configuration for all flows sharing the action.
Shared action query
===
Provide separate API to query shared action state (see
rte_flow_shared_action_update()). Taking a counter as an example: query
returns value aggregating all counter increments across all flow rules
sharing the counter. This API doesn't query shared action configuration
since it is controlled by rte_flow_shared_action_create() and
rte_flow_shared_action_update() APIs and no supposed to change by other
means.
example
===
struct rte_flow_action actions[2];
struct rte_flow_shared_action_conf conf;
struct rte_flow_action action;
/* skipped: initialize conf and action */
struct rte_flow_shared_action *handle =
rte_flow_shared_action_create(port_id, &conf, &action, &error);
actions[0].type = RTE_FLOW_ACTION_TYPE_SHARED;
actions[0].conf = handle;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;
/* skipped: init attr0 & pattern0 args */
struct rte_flow *flow0 = rte_flow_create(port_id, &attr0, pattern0,
actions, error);
/* create more rules reusing shared action */
struct rte_flow *flow1 = rte_flow_create(port_id, &attr1, pattern1,
actions, error);
/* skipped: for flows 2 till N */
struct rte_flow *flowN = rte_flow_create(port_id, &attrN, patternN,
actions, error);
/* update shared action */
struct rte_flow_action updated_action;
/*
* skipped: initialize updated_action according to desired action
* configuration change
*/
rte_flow_shared_action_update(port_id, handle, &updated_action, error);
/*
* from now on all flows 1 till N will act according to configuration of
* updated_action
*/
/* skipped: destroy all flows 1 till N */
rte_flow_shared_action_destroy(port_id, handle, error);
Signed-off-by: Andrey Vesnovaty <andreyv@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Existing API supports AGE action to monitor the aging of a flow.
This patch implements RFC [1], introducing the response format for query
of an AGE action.
Application will be able to query the AGE action state.
The response will be returned in the format implemented here.
[1] https://mails.dpdk.org/archives/dev/2020-September/180061.html
Signed-off-by: Dekel Peled <dekelp@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
When using full offload, all traffic will be handled by the HW, and
forwarded to the requested VF or wire and the control application does
not see this traffic anymore. So there's a need for an action that
enables the control application some forwarded traffic visibility.
The solution introduces a new action that will sample the incoming
traffic and send a duplicated traffic with the specified ratio to the
application, while the original packet will continue to the target
destination.
The packets sampled equals is '1/ratio', the ratio value set to 1
means that the packets will be completely mirrored. The sample packet
can be assigned with different set of actions from the original packet.
In order to support the sample packet in rte_flow, new rte_flow action
definition RTE_FLOW_ACTION_TYPE_SAMPLE and structure rte_flow_action_sample
will be introduced.
Signed-off-by: Jiawei Wang <jiaweiw@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Currently, the rte_flow functions are not defined as thread safe.
DPDK applications either call the functions in single thread or
protect any concurrent calling for the rte_flow operations using
a lock.
For PMDs support the flow operations thread safe natively, the
redundant protection in application hurts the performance of the
rte_flow operation functions.
And the restriction of thread safe is not guaranteed for the
rte_flow functions also limits the applications' expectation.
This feature is going to change the rte_flow functions to be thread
safe. As different PMDs have different flow operations, some may
support thread safe already and others may not. For PMDs don't
support flow thread safe operation, a new lock is defined in ethdev
in order to protects thread unsafe PMDs from rte_flow level.
A new RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE device flag is added to
determine whether the PMD supports thread safe flow operation or not.
For PMDs support thread safe flow operations, set the
RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE flag, rte_flow level functions will
skip the thread safe helper lock for these PMDs. Again the rte_flow
level thread safe lock only works when PMD operation functions are
not thread safe.
For the PMDs which don't want the default mutex lock, just set the
flag in the PMD, and add the prefer type of lock in the PMD. Then
the default mutex lock is easily replaced by the PMD level lock.
The change has no effect on the current DPDK applications. No change
is required for the current DPDK applications. For the standard posix
pthread_mutex, if no lock contention with the added rte_flow level
mutex, the mutex only does the atomic increasing in
pthread_mutex_lock() and decreasing in
pthread_mutex_unlock(). No futex() syscall will be involved.
Signed-off-by: Suanming Mou <suanmingm@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Ori Kam <orika@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Using the rte_flow action RSS types field,
may result in undefined outcome.
For example selecting both UDP and TCP,
selecting TCP RSS type but the pattern is targeting UDP traffic.
another option is that the PMD doesn't support all requested types.
Until now, it wasn't clear what will happen in such cases.
This commit clarify this issue by stating that the PMD
will work in the best-effort mode, and will fail
in case the requested type is not supported.
Signed-off-by: Ori Kam <orika@nvidia.com>
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Add a new item "rte_flow_item_ecpri" in order to match eCRPI header.
eCPRI is a packet based protocol used in the fronthaul interface of
5G networks. Header format definition could be found in the
specification via the link below:
https://www.gigalight.com/downloads/standards/ecpri-specification.pdf
eCPRI message can be over Ethernet layer (.1Q supported also) or over
UDP layer. Message header formats are the same in these two variants.
Signed-off-by: Bing Zhao <bingz@mellanox.com>
Acked-by: Ori Kam <orika@mellanox.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
Specified pattern may be translated in different manner.
For example the pattern "eth / ipv4" can be translated to match
untagged packets only, since the pattern doesn't specify a VLAN item.
It can also be translated to match both tagged and untagged packets,
for the same reason.
This patch updates the rte_flow documentation to clearly specify the
required pattern to use.
For example:
To match tagged ipv4 packets, the pattern "eth / vlan / ipv4 / end"
should be used.
To match untagged ipv4 packets, the pattern "eth / ipv4 / end"
should be used.
To match all IPV4 packets, both tagged and untagged, need to apply
two rules with the patterns above.
To match both tagged and untagged packets of any type, the pattern
"eth / end" should be used.
Signed-off-by: Dekel Peled <dekelp@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Ori Kam <orika@mellanox.com>
One of the reasons to destroy a flow is the fact that no packet matches
the flow for "timeout" time.
For example, when TCP\UDP sessions are suddenly closed.
Currently, there is not any DPDK mechanism for flow aging and the
applications use their own ways to detect and destroy aged-out flows.
The flow aging implementation need include:
- A new rte_flow action: RTE_FLOW_ACTION_TYPE_AGE to set the timeout and
the application flow context for each flow.
- A new ethdev event: RTE_ETH_EVENT_FLOW_AGED for the driver to report
that there are new aged-out flows.
- A new rte_flow API: rte_flow_get_aged_flows to get the aged-out flows
contexts from the port.
- Support input flow aging command line in Testpmd.
The new event type addition in the enum is flagged as an ABI breakage,
so an ignore rule is added for these reasons:
- It is not changing value of existing types (except MAX)
- The new value is not used by existing API if the event is not
registered
In general, it is safe adding new ethdev event types at the end of the
enum, because of event callback registration mechanism.
Signed-off-by: Dong Zhou <dongz@mellanox.com>
Acked-by: Ori Kam <orika@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Matan Azrad <matan@mellanox.com>
This patch adds the new flow item RTE_FLOW_ITEM_TYPE_PFCP to flow API to
match a PFCP header.
Add sample PFCP rules for testpmd guide. Since Session Endpoint
Identifier (SEID) only will be present in PFCP Session header and PFCP
Session headers shall be identified when the S field is equal to 1, when
create rules for PFCP Session header with certain SEID the S field need
be set 1.
Signed-off-by: Xiao Zhang <xiao.zhang@intel.com>
Acked-by: Ori Kam <orika@mellanox.com>
This patch adds the new flow item RTE_FLOW_ITEM_TYPE_L2TPV3OIP to
flow API to match a L2TPv3 over IP header. This patch supports only
L2TPv3 over IP header format which is different to L2TPv2/L2TPv3
over UDP. The difference in header formats between L2TPv3 over IP
and L2TP over UDP require a separate implementation for each.
Signed-off-by: Rory Sexton <rory.sexton@intel.com>
Signed-off-by: Dariusz Jagus <dariuszx.jagus@intel.com>
Acked-by: Ori Kam <orika@mellanox.com>
For some overlay network, such as VXLAN, the DSCP field in the new outer
IP header after VXLAN decapsulation may need to be updated accordingly.
This commit introduce the DSCP modify action for IPv4 and IPv6.
Signed-off-by: Suanming Mou <suanmingm@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Ori Kam <orika@mellanox.com>
Shoot repeated words in all our guides.
Cc: stable@dpdk.org
Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Kevin Traynor <ktraynor@redhat.com>
The dynamic mbuf fields were introduced by [1]. The egress metadata is
good candidate to be moved from statically allocated field tx_metadata to
dynamic one. Because mbufs are used in half-duplex fashion only, it is
safe to share this dynamic field with ingress metadata.
The shared dynamic field contains either egress (if application going to
transmit mbuf with tx_burst) or ingress (if mbuf is received with rx_burst)
metadata and can be accessed by RTE_FLOW_DYNF_METADATA() macro or with
rte_flow_dynf_metadata_set() and rte_flow_dynf_metadata_get() helper
routines. PKT_TX_DYNF_METADATA/PKT_RX_DYNF_METADATA flag will be set
along with the data.
The mbuf dynamic field must be registered by calling
rte_flow_dynf_metadata_register() prior accessing the data.
The availability of dynamic mbuf metadata field can be checked with
rte_flow_dynf_metadata_avail() routine.
DEV_TX_OFFLOAD_MATCH_METADATA offload and configuration flag is removed.
The metadata support in PMDs is engaged on dynamic field registration.
Metadata feature is getting complex. We might have some set of actions
and items that might be supported by PMDs in multiple combinations,
the supported values and masks are the subjects to query by perfroming
trials (with rte_flow_validate).
[1] http://patches.dpdk.org/patch/62040/
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Ori Kam <orika@mellanox.com>
Currently, metadata can be set on egress path via mbuf tx_metadata field
with PKT_TX_METADATA flag and RTE_FLOW_ITEM_TYPE_META matches metadata.
This patch extends the metadata feature usability.
1) RTE_FLOW_ACTION_TYPE_SET_META
When supporting multiple tables, Tx metadata can also be set by a rule and
matched by another rule. This new action allows metadata to be set as a
result of flow match.
2) Metadata on ingress
There's also need to support metadata on ingress. Metadata can be set by
SET_META action and matched by META item like Tx. The final value set by
the action will be delivered to application via metadata dynamic field of
mbuf which can be accessed by RTE_FLOW_DYNF_METADATA() macro or with
rte_flow_dynf_metadata_set() and rte_flow_dynf_metadata_get() helper
routines. PKT_RX_DYNF_METADATA flag will be set along with the data.
The mbuf dynamic field must be registered by calling
rte_flow_dynf_metadata_register() prior to use SET_META action.
The availability of dynamic mbuf metadata field can be checked
with rte_flow_dynf_metadata_avail() routine.
If application is going to engage the metadata feature it registers
the metadata dynamic fields, then PMD checks the metadata field
availability and handles the appropriate fields in datapath.
For loopback/hairpin packet, metadata set on Rx/Tx may or may not be
propagated to the other path depending on hardware capability.
MARK and METADATA look similar and might operate in similar way,
but not interacting.
Initially, there were proposed two metadata related actions:
- RTE_FLOW_ACTION_TYPE_FLAG
- RTE_FLOW_ACTION_TYPE_MARK
These actions set the special flag in the packet metadata, MARK action
stores some specified value in the metadata storage, and, on the packet
receiving PMD puts the flag and value to the mbuf and applications can
see the packet was threated inside flow engine according to the appropriate
RTE flow(s). MARK and FLAG are like some kind of gateway to transfer some
per-packet information from the flow engine to the application via
receiving datapath. Also, there is the item of type RTE_FLOW_ITEM_TYPE_MARK
provided. It allows us to extend the flow match pattern with the capability
to match the metadata values set by MARK/FLAG actions on other flows.
From the datapath point of view, the MARK and FLAG are related to the
receiving side only. It would useful to have the same gateway on the
transmitting side and there was the feature of type RTE_FLOW_ITEM_TYPE_META
was proposed. The application can fill the field in mbuf and this value
will be transferred to some field in the packet metadata inside the flow
engine. It did not matter whether these metadata fields are shared because
of MARK and META items belonged to different domains (receiving and
transmitting) and could be vendor-specific.
So far, so good, DPDK proposes some entities to control metadata inside
the flow engine and gateways to exchange these values on a per-packet basis
via datapaths.
As we can see, the MARK and META means are not symmetric, there is absent
action which would allow us to set META value on the transmitting path.
So, the action of type:
- RTE_FLOW_ACTION_TYPE_SET_META was proposed.
The next, applications raise the new requirements for packet metadata.
The flow ngines are getting more complex, internal switches are introduced,
multiple ports might be supported within the same flow engine namespace.
From the DPDK points of view, it means the packets might be sent on one
eth_dev port and received on the other one, and the packet path inside
the flow engine entirely belongs to the same hardware device. The simplest
example is SR-IOV with PF, VFs and the representors. And there is a
brilliant opportunity to provide some out-of-band channel to transfer
some extra data from one port to another one, besides the packet data
itself. And applications would like to use this opportunity.
It is supposed for application to use trials (with rte_flow_validate)
to detect which metadata features (FLAG, MARK, META) actually supported
by PMD and underlying hardware. It might depend on PMD configuration,
system software, hardware settings, etc., and should be detected
in run time.
Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Ori Kam <orika@mellanox.com>
A tag is a transient data which can be used during flow match. This can be
used to store match result from a previous table so that the same pattern
need not be matched again on the next table. Even if outer header is
decapsulated on the previous match, the match result can be kept.
Some device expose internal registers of its flow processing pipeline and
those registers are quite useful for stateful connection tracking as it
keeps status of flow matching. Multiple tags are supported by specifying
index.
Example testpmd commands are:
flow create 0 ingress pattern ... / end
actions set_tag index 2 value 0xaa00bb mask 0xffff00ff /
set_tag index 3 value 0x123456 mask 0xffffff /
vxlan_decap / jump group 1 / end
flow create 0 ingress pattern ... / end
actions set_tag index 2 value 0xcc00 mask 0xff00 /
set_tag index 3 value 0x123456 mask 0xffffff /
vxlan_decap / jump group 1 / end
flow create 0 ingress group 1
pattern tag index is 2 value spec 0xaa00bb value mask 0xffff00ff /
eth ... / end
actions ... jump group 2 / end
flow create 0 ingress group 1
pattern tag index is 2 value spec 0xcc00 value mask 0xff00 /
tag index is 3 value spec 0x123456 value mask 0xffffff /
eth ... / end
actions ... / end
flow create 0 ingress group 2
pattern tag index is 3 value spec 0x123456 value mask 0xffffff /
eth ... / end
actions ... / end
Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Ori Kam <orika@mellanox.com>
Add new rte_flow_item_higig2_hdr in order to match higig2 header.
It is a layer 2.5 protocol and used in Broadcom switches.
Header format is based on the following document.
http://read.pudn.com/downloads558/doc/comm/2301468/HiGig_protocol.pdf
Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
Add new rte_flow_item_ah in order to match the Authentication Header
based on RFC 2402.
Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Add new rte_flow_item_igmp in order to match the Internet Group
Management Protocol based on RFC 2236.
Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>