Add the ioat driver to the doxygen documentation.
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: Kevin Laatz <kevin.laatz@intel.com>
Acked-by: Radu Nicolau <radu.nicolau@intel.com>
When the --werror meson build option is set, we can set the WARN_AS_ERRORS
doxygen option in the doxygen config flag to get the same behaviour for API
doc building as for building the rest of DPDK. This can help catch
documentation errors sooner in the development process.
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
As RegEx usage become more used by DPDK applications, for example:
* Next Generation Firewalls (NGFW)
* Deep Packet and Flow Inspection (DPI)
* Intrusion Prevention Systems (IPS)
* DDoS Mitigation
* Network Monitoring
* Data Loss Prevention (DLP)
* Smart NICs
* Grammar based content processing
* URL, spam and adware filtering
* Advanced auditing and policing of user/application security policies
* Financial data mining - parsing of streamed financial feeds
* Application recognition.
* Dmemory introspection.
* Natural Language Processing (NLP)
* Sentiment Analysis.
* Big data database acceleration.
* Computational storage.
Number of PMD providers started to work on HW implementation,
along side with SW implementations.
This lib adds the support for those kind of devices.
The RegEx Device API is composed of two parts:
- The application-oriented RegEx API that includes functions to setup
a RegEx device (configure it, setup its queue pairs and start it),
update the rule database and so on.
- The driver-oriented RegEx API that exports a function allowing
a RegEx poll Mode Driver (PMD) to simultaneously register itself as
a RegEx device driver.
RegEx device components and definitions:
+-----------------+
| |
| o---------+ rte_regexdev_[en|de]queue_burst()
| PCRE based o------+ | |
| RegEx pattern | | | +--------+ |
| matching engine o------+--+--o | | +------+
| | | | | queue |<==o===>|Core 0|
| o----+ | | | pair 0 | | |
| | | | | +--------+ +------+
+-----------------+ | | |
^ | | | +--------+
| | | | | | +------+
| | +--+--o queue |<======>|Core 1|
Rule|Database | | | pair 1 | | |
+------+----------+ | | +--------+ +------+
| Group 0 | | |
| +-------------+ | | | +--------+ +------+
| | Rules 0..n | | | | | | |Core 2|
| +-------------+ | | +--o queue |<======>| |
| Group 1 | | | pair 2 | +------+
| +-------------+ | | +--------+
| | Rules 0..n | | |
| +-------------+ | | +--------+
| Group 2 | | | | +------+
| +-------------+ | | | queue |<======>|Core n|
| | Rules 0..n | | +-------o pair n | | |
| +-------------+ | +--------+ +------+
| Group n |
| +-------------+ |<-------rte_regexdev_rule_db_update()
| | | |<-------rte_regexdev_rule_db_compile_activate()
| | Rules 0..n | |<-------rte_regexdev_rule_db_import()
| +-------------+ |------->rte_regexdev_rule_db_export()
+-----------------+
RegEx: A regular expression is a concise and flexible means for matching
strings of text, such as particular characters, words, or patterns of
characters. A common abbreviation for this is â~@~\RegExâ~@~].
RegEx device: A hardware or software-based implementation of RegEx
device API for PCRE based pattern matching syntax and semantics.
PCRE RegEx syntax and semantics specification:
http://regexkit.sourceforge.net/Documentation/pcre/pcrepattern.html
RegEx queue pair: Each RegEx device should have one or more queue pair to
transmit a burst of pattern matching request and receive a burst of
receive the pattern matching response. The pattern matching
request/response embedded in *rte_regex_ops* structure.
Rule: A pattern matching rule expressed in PCRE RegEx syntax along with
Match ID and Group ID to identify the rule upon the match.
Rule database: The RegEx device accepts regular expressions and converts
them into a compiled rule database that can then be used to scan data.
Compilation allows the device to analyze the given pattern(s) and
pre-determine how to scan for these patterns in an optimized fashion that
would be far too expensive to compute at run-time. A rule database
contains a set of rules that compiled in device specific binary form.
Match ID or Rule ID: A unique identifier provided at the time of rule
creation for the application to identify the rule upon match.
Group ID: Group of rules can be grouped under one group ID to enable
rule isolation and effective pattern matching. A unique group identifier
provided at the time of rule creation for the application to identify
the rule upon match.
Scan: A pattern matching request through *enqueue* API.
It may possible that a given RegEx device may not support all the
features
of PCRE. The application may probe unsupported features through
struct rte_regexdev_info::pcre_unsup_flags
By default, all the functions of the RegEx Device API exported by a PMD
are lock-free functions which assume to not be invoked in parallel on
different logical cores to work on the same target object. For instance,
the dequeue function of a PMD cannot be invoked in parallel on two logical
cores to operates on same RegEx queue pair. Of course, this function
can be invoked in parallel by different logical core on different queue
pair. It is the responsibility of the upper level application to
enforce this rule.
In all functions of the RegEx API, the RegEx device is
designated by an integer >= 0 named the device identifier *dev_id*
At the RegEx driver level, RegEx devices are represented by a generic
data structure of type *rte_regexdev*.
RegEx devices are dynamically registered during the PCI/SoC device
probing phase performed at EAL initialization time.
When a RegEx device is being probed, a *rte_regexdev* structure and
a new device identifier are allocated for that device. Then, the
regexdev_init() function supplied by the RegEx driver matching the
probed device is invoked to properly initialize the device.
The role of the device init function consists of resetting the hardware
or software RegEx driver implementations.
If the device init operation is successful, the correspondence between
the device identifier assigned to the new device and its associated
*rte_regexdev* structure is effectively registered.
Otherwise, both the *rte_regexdev* structure and the device identifier
are freed.
The functions exported by the application RegEx API to setup a device
designated by its device identifier must be invoked in the following
order:
- rte_regexdev_configure()
- rte_regexdev_queue_pair_setup()
- rte_regexdev_start()
Then, the application can invoke, in any order, the functions
exported by the RegEx API to enqueue pattern matching job, dequeue
pattern matching response, get the stats, update the rule database,
get/set device attributes and so on
If the application wants to change the configuration (i.e. call
rte_regexdev_configure() or rte_regexdev_queue_pair_setup()), it must
call rte_regexdev_stop() first to stop the device and then do the
reconfiguration before calling rte_regexdev_start() again. The enqueue and
dequeue functions should not be invoked when the device is stopped.
Finally, an application can close a RegEx device by invoking the
rte_regexdev_close() function.
Each function of the application RegEx API invokes a specific function
of the PMD that controls the target device designated by its device
identifier.
For this purpose, all device-specific functions of a RegEx driver are
supplied through a set of pointers contained in a generic structure of
type *regexdev_ops*.
The address of the *regexdev_ops* structure is stored in the
*rte_regexdev* structure by the device init function of the RegEx driver,
which is invoked during the PCI/SoC device probing phase, as explained
earlier.
In other words, each function of the RegEx API simply retrieves the
*rte_regexdev* structure associated with the device identifier and
performs an indirect invocation of the corresponding driver function
supplied in the *regexdev_ops* structure of the *rte_regexdev*
structure.
For performance reasons, the address of the fast-path functions of the
RegEx driver is not contained in the *regexdev_ops* structure.
Instead, they are directly stored at the beginning of the *rte_regexdev*
structure to avoid an extra indirect memory access during their
invocation.
RTE RegEx device drivers do not use interrupts for enqueue or dequeue
operation. Instead, RegEx drivers export Poll-Mode enqueue and dequeue
functions to applications.
The *enqueue* operation submits a burst of RegEx pattern matching
request to the RegEx device and the *dequeue* operation gets a burst of
pattern matching response for the ones submitted through *enqueue*
operation.
Typical application utilisation of the RegEx device API will follow the
following programming flow.
- rte_regexdev_configure()
- rte_regexdev_queue_pair_setup()
- rte_regexdev_rule_db_update() Needs to invoke if precompiled rule
database not
provided in rte_regexdev_config::rule_db for rte_regexdev_configure()
and/or application needs to update rule database.
- rte_regexdev_rule_db_compile_activate() Needs to invoke if
rte_regexdev_rule_db_update function was used.
- Create or reuse exiting mempool for *rte_regex_ops* objects.
- rte_regexdev_start()
- rte_regexdev_enqueue_burst()
- rte_regexdev_dequeue_burst()
Signed-off-by: Jerin Jacob <jerinj@marvell.com>
Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Signed-off-by: Ori Kam <orika@mellanox.com>
With Doxygen 1.8.18, a warning appears when tagging
the main markdown header with {#index}.
That's why the tag has been removed from the API index in DPDK 20.05.
Unfortunately it makes the index page classified as a standard
"related page" instead of being the "main page".
The tag {#mainpage} could be used instead of {#index}.
Another solution, chosen here, is to specify the main page file
in the Doxygen configuration with the variable USE_MDFILE_AS_MAINPAGE.
Fixes: 76fb8fc486f9 ("doc: fix build with doxygen 1.8.18")
Cc: stable@dpdk.org
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Tested-by: David Marchand <david.marchand@redhat.com>
Add log infra for node specific logging.
Also, add null rte_node that just ignores all the objects
directed to it.
Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Graph architecture abstracts the data processing functions as
"node" and "link" them together to create a complex "graph" to enable
reusable/modular data processing functions.
These APIs enables graph framework operations such as create, lookup,
dump and destroy on graph and node operations such as clone,
edge update, and edge shrink, etc. The API also allows creating the
stats cluster to monitor per graph and per node stats.
This patch defines the public API for graph support.
This patch also adds support for the build infrastructure and
update the MAINTAINERS file for the graph subsystem.
Signed-off-by: Jerin Jacob <jerinj@marvell.com>
Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
The EAL API (with doxygen documentation) is moved from
common/include/ to include/, which makes more clear that
it is the global API for all environments and architectures.
Note that the arch-specific and OS-specific include files are not
in this global include directory, but include/generic/ should
cover the doxygen documentation for them.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: David Marchand <david.marchand@redhat.com>
Add the doxygen for ice protocol extraction feature APIs.
Signed-off-by: Haiyue Wang <haiyue.wang@intel.com>
Reviewed-by: Xiaolong Ye <xiaolong.ye@intel.com>
Ubuntu ships with a patched version of doxygen that enables
HAVE_DOT (disabled by default). Enabling this option causes the warning:
"""
warning: Included by graph for 'rte_common.h' not generated,
too many nodes. Consider increasing DOT_GRAPH_MAX_NODES
"""
This reproduces with doxygen version 1.8.13 and
dot - graphviz version 2.40.1 on Ubuntu 18.04.
This will force doxygen not to assume that dot (part of Graphviz)
is installed, and will result in dot not being used for visualization.
If someone still needs to generate the graphs, the following can
be considered:
- Increase DOT_GRAPH_MAX_NODES to a large value.
- Set HAVE_DOT for more powerful graphs.
- Set DOT_IMAGE_FORMAT=svg to generate svg images.
- Set INTERACTIVE_SVG=YES to allow zooming and panning.
See:
- http://changelogs.ubuntu.com/changelogs/pool/main/d/doxygen/doxygen_1.8.13-10/changelog
- http://www.doxygen.nl/manual/config.html#cfg_have_dot
- https://github.com/doxygen/doxygen/issues/7345
Signed-off-by: Ali Alnubani <alialnu@mellanox.com>
Acked-by: John McNamara <john.mcnamara@intel.com>
Add FIB (Forwarding Information Base) library. This library
implements a dataplane structures and algorithms designed for
fast longest prefix match.
Internally it consists of two parts - RIB (control plane ops) and
implementation for the dataplane tasks.
Initial version provides two implementations for both IPv4 and IPv6:
dummy (uses RIB as a dataplane) and DIR24_8 (same as current LPM)
Due to proposed design it allows to extend FIB with new algorithms
in future (for example DXR, poptrie, etc).
Signed-off-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
Add RIB (Routing Information Base) library. This library
implements an IPv4 routing table optimized for control plane
operations. It implements a control plane struct containing routes
in a tree and provides fast add/del operations for routes.
Also it allows to perform fast subtree traversals
(i.e. retrieve existing subroutes for a given prefix).
This structure will be used as a control plane helper structure
for FIB implementation. Also it might be used standalone in other
different places such as bitmaps for example.
Internal implementation is level compressed binary trie.
Signed-off-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
I modified the API config file to incorporate a search button into the
API documentation page.
Signed-off-by: Aideen McLoughlin <aideen.mcloughlin@intel.com>
The APIs in the rte_bus_vdev.h file were not part of the API
documentation. I added this header file to the doxygen config file with
the name vdev.
Signed-off-by: Aideen McLoughlin <aideen.mcloughlin@intel.com>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
Add RCU library supporting quiescent state based memory reclamation method.
This library helps identify the quiescent state of the reader threads so
that the writers can free the memory associated with the lock less data
structures.
Signed-off-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
Reviewed-by: Ola Liljedahl <ola.liljedahl@arm.com>
Acked-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Tested-by: Jerin Jacob <jerinj@marvell.com>
Tested-by: Ruifeng Wang <ruifeng.wang@arm.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
The rte_stack library provides an API for configuration and use of a
bounded stack of pointers. Push and pop operations are MT-safe, allowing
concurrent access, and the interface supports pushing and popping multiple
pointers at a time.
The library's interface is modeled after another DPDK data structure,
rte_ring, and its lock-based implementation is derived from the stack
mempool handler. An upcoming commit will migrate the stack mempool handler
to rte_stack.
Signed-off-by: Gage Eads <gage.eads@intel.com>
Reviewed-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Since compat library is only a single header, we can easily move it into
the EAL common headers instead of tracking it separately. The downside of
this is that it becomes a little more difficult to have any libs that are
built before EAL depend on it. Thankfully, this is not a major problem as
the only library which uses rte_compat.h and is built before EAL (kvargs)
already has the path to the compat.h header file explicitly called out as
an include path.
However, to ensure that we don't hit problems later with this, we can add
EAL common headers folder to the global include list in the meson build
which means that all common headers can be safely used by all libraries, no
matter what their build order.
As a side-effect, this patch also fixes an issue with building on BSD using
meson, due to compat lib no longer needing to be listed as a dependency.
Fixes: a8499f65a1d1 ("log: add missing experimental tag")
Cc: stable@dpdk.org
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: David Marchand <david.marchand@redhat.com>
Tested-by: David Marchand <david.marchand@redhat.com>
Tested-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
This patch enables the population of timestamp field
in mbuf on packet receive.
It may give performance impact on LX2xxx platforms.
So, it has been made optional for Lx2xxx platform.
One shall call, rte_dpaa2_enable_ts() to enable it.
Nothing is required for LS2 and LS1088 platforms.
Signed-off-by: Akhil Goyal <akhil.goyal@nxp.com>
Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com>
This patch adds the infrastructure and initial code for the telemetry
library.
The telemetry init is registered with eal_init(). We can then check to see
if --telemetry was passed as an eal option. If --telemetry was parsed, then
we call telemetry init at the end of eal init.
Control threads are used to get CPU cycles for telemetry, which are
configured in this patch also.
Signed-off-by: Ciara Power <ciara.power@intel.com>
Signed-off-by: Brian Archbold <brian.archbold@intel.com>
Signed-off-by: Kevin Laatz <kevin.laatz@intel.com>
Signed-off-by: Radu Nicolau <radu.nicolau@intel.com>
Acked-by: Harry van Haaren <harry.van.haaren@intel.com>
The option GENERATE_DEPRECATEDLIST will create a page
"Deprecated List" in "Related Pages" menu.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
This will allow the same config file to be used from Meson.
The result has been verified to be identical via diffoscope.
Signed-off-by: Luca Boccassi <bluca@debian.org>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>