Only a cosmetic change: the *_LEN defines are already used
when defining the buffer. Using sizeof() ensures that the length
stays consistent, even if the definition is modified.
Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Anatoly Burakov <anatoly.burakov@intel.com>
Adjust the init sequence: put mp channel init before bus scan
so that we can init the vdev bus through mp channel in the
secondary process before the bus scan.
Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
Reviewed-by: Qi Zhang <qi.z.zhang@intel.com>
In original implementation, timeout event for an async request
will be ignored. As a result, an async request will never
trigger the action if it cannot receive any reply any more.
We fix this by counting timeout as a processed reply.
Fixes: f05e26051c15 ("eal: add IPC asynchronous request")
Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
Following below commit, we change some internal function and variable
names:
commit ce3a7312357b ("eal: rename IPC request as synchronous one")
Also use calloc to supersede malloc + memset for code clean up.
Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
gettimeofday() returning a negative value is highly unlikely,
but if it ever happens, we will exit without unlocking the mutex.
Arguably at that point we'll have bigger problems, but fix this
issue anyway.
Coverity issue: 272595
Fixes: f05e26051c15 ("eal: add IPC asynchronous request")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
This also silences (or should silence) a few Coverity false
positives where we used strcpy before (Coverity complained
about not checking buffer size, but source buffers were
always known to be sized correctly).
Coverity issue: 260407, 272565, 272582
Fixes: bacaa2754017 ("eal: add channel for multi-process communication")
Fixes: f05e26051c15 ("eal: add IPC asynchronous request")
Fixes: 783b6e54971d ("eal: add synchronous multi-process communication")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
We get pointer to mask before we check if fbarray is NULL. Fix
by moving getting mask pointer to until after NULL check.
Coverity issue: 272579
Fixes: c44d09811b40 ("eal: add shared indexed file-backed array")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
fbarray stores its data in a shared file, which is not hidden.
This leads to polluting user's HOME directory with visible
files when running DPDK as non-root. Change fbarray to always
create hidden files by default.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
A previously mapped region is skipped during the search, leading to
DMA unmap fails.
This patch fixes it and rewords the comment.
Fixes: 73a639085938 ("vfio: allow to map other memory regions")
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
Support of strlcpy has recently been added to DPDK.
This replacement has been generated by the coccinelle script:
devtools/cocci.sh devtools/cocci/strlcpy.cocci
Fixes: 0d0f478d0483 ("eal/linux: add uevent parse and process")
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
The hugedir returned by get_hugepage_dir is allocated by strdup
but not released. Replace snprintf with a more suitable strlcpy.
Coverity issue: 272585
Fixes: cb97d93e9d3b ("mem: share hugepage info primary and secondary")
Signed-off-by: Yangchao Zhou <zhouyates@gmail.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
Sometimes gcc does not inline the function despite keyword *inline*,
we observe rte_movX is not inline when doing performance profiling,
so use *always_inline* keyword to force gcc to inline the function.
Signed-off-by: Junjie Chen <junjie.j.chen@intel.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Previously, vfio uses its own private channel for the secondary
process to get container fd and group fd from the primary process.
This patch changes to use the generic mp channel.
Test:
1. Bind two NICs to vfio-pci.
2. Start the primary and secondary process.
$ (symmetric_mp) -c 2 -- -p 3 --num-procs=2 --proc-id=0
$ (symmetric_mp) -c 4 --proc-type=auto -- -p 3 \
--num-procs=2 --proc-id=1
Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
While debugging startup issues encountered with Clang (see "eal: fix
undefined behavior in fbarray"), I noticed that fbarray stores indices,
sizes and masks on signed integers involved in bitwise operations.
Such operations almost invariably cause undefined behavior with values that
cannot be represented by the result type, as is often the case with
bit-masks and left-shifts.
This patch replaces them with unsigned integers as a safety measure and
promotes a few internal variables to larger types for consistency.
Coverity issue: 272598, 272599
Fixes: c44d09811b40 ("eal: add shared indexed file-backed array")
Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
According to GCC documentation [1], the __builtin_clz() family of functions
yield undefined behavior when fed a zero value. There is one instance in
the fbarray code where this can occur.
Clang (at least version 3.8.0-2ubuntu4) seems much more sensitive to this
than GCC and yields random results when compiling optimized code, as shown
below:
#include <stdio.h>
int main(void)
{
volatile unsigned long long moo;
int x;
moo = 0;
x = __builtin_clzll(moo);
printf("%d\n", x);
return 0;
}
$ gcc -O3 -o test test.c && ./test
63
$ clang -O3 -o test test.c && ./test
1742715559
$ clang -O0 -o test test.c && ./test
63
Even 63 can be considered an unexpected result given the number of leading
zeroes should be the full width of the underlying type, i.e. 64.
In practice it causes find_next_n() to sometimes return negative values
interpreted as errors by caller functions, which prevents DPDK applications
from starting due to inability to find free memory segments:
# testpmd [...]
EAL: Detected 32 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: No free hugepages reported in hugepages-1048576kB
EAL: Multi-process socket /var/run/.rte_unix
EAL: eal_memalloc_alloc_seg_bulk(): couldn't find suitable memseg_list
EAL: FATAL: Cannot init memory
EAL: Cannot init memory
PANIC in main():
Cannot init EAL
4: [./build/app/testpmd(_start+0x29) [0x462289]]
3: [/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)
[0x7f19d54fc830]]
2: [./build/app/testpmd(main+0x8a3) [0x466193]]
1: [./build/app/testpmd(__rte_panic+0xd6) [0x4efaa6]]
Aborted
This problem appears with commit 66cc45e293ed ("mem: replace memseg with
memseg lists") however the root cause is introduced by a prior patch.
[1] https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
Fixes: c44d09811b40 ("eal: add shared indexed file-backed array")
Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
We lock the hotplug during init, but do not unlock it if we couldn't
register multiprocess callbacks. Add the missing unlock.
Fixes: 07dcbfe0101f ("malloc: support multiprocess memory hotplug")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Earlier fix for race condition introduced a bug where mutex
wasn't unlocked if message failed to be sent. Fix all of this
by moving locking out of mp_request_sync() altogether.
Fixes: da5957821bdd ("eal: fix race condition in IPC request")
Cc: stable@dpdk.org
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
We are trying to notify sender that response from current process
should be ignored, but we didn't specify which request this response
was for. Fix by copying request name from the original message.
Fixes: 579a4ccc345c ("eal: ignore IPC messages until init is complete")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
Previously, we were removing request from the list only if we
have succeeded to send it. This resulted in leaving an invalid
pointer in the request list.
Fix this by only adding new requests to the request list if we
have succeeded in sending them.
Fixes: f05e26051c15 ("eal: add IPC asynchronous request")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
Previously, we were adding synchronous requests to request list, we
were doing it after checking if request existed. However, we only
removed the request from the request list if we have succeeded in
sending the request. In case of failed request send, we left an
invalid pointer in the request list.
Fix this by only adding request to the list once we succeed in
sending it.
Fixes: 783b6e54971d ("eal: add synchronous multi-process communication")
Cc: stable@dpdk.org
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
EAL did not stop processing further asynchronous requests on
encountering a request that should trigger the callback. This
resulted in erasing valid requests but not triggering them.
Fix this by stopping the loop once we have a request that
can trigger the callback. Once triggered, we go back to scanning
the request queue until there are no more callbacks to trigger.
Fixes: f05e26051c15 ("eal: add IPC asynchronous request")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Jianfeng Tan <jianfeng.tan@intel.com>
Previously, VFIO functions were not compiled in and exported if
VFIO compilation was disabled. Fix this by actually compiling
all of the functions unconditionally, and provide missing
prototypes on Linux.
Fixes: 279b581c897d ("vfio: expose functions")
Fixes: 73a639085938 ("vfio: allow to map other memory regions")
Fixes: 964b2f3bfb07 ("vfio: export some internal functions")
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
In order to handle the uevent which has been detected from the kernel
side, add uevent parse and process function to translate the uevent into
device event, which user has subscribed to monitor.
Signed-off-by: Jeff Guo <jia.guo@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
This patch aims to add a general device event monitor framework at
EAL device layer, for device hotplug awareness and actions adopted
accordingly. It could also expand for all other types of device event
monitor, but not in this scope at the stage.
To get started, users firstly call below new added APIs to enable/disable
the device event monitor mechanism:
- rte_dev_event_monitor_start
- rte_dev_event_monitor_stop
Then users shell register or unregister callbacks through the new added
APIs. Callbacks can be some device specific, or for all devices.
-rte_dev_event_callback_register
-rte_dev_event_callback_unregister
Use hotplug case for example, when device hotplug insertion or hotplug
removal, we will get notified from kernel, then call user's callbacks
accordingly to handle it, such as detach or attach the device from the
bus, and could benefit further fail-safe or live-migration.
Signed-off-by: Jeff Guo <jia.guo@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
Add new interrupt handle type of RTE_INTR_HANDLE_DEV_EVENT, for
device event interrupt monitor.
Signed-off-by: Jeff Guo <jia.guo@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
We only need to perform DMA mapping for first device in first group.
At the time of mapping, we haven't yet added the device into the group,
so the count is expected to be zero.
Fixes: 810bfa64c673 ("vfio: fix index for tracking devices in a group")
Fixes: a9c349e3a100 ("vfio: fix device unplug when several devices per group")
Fixes: 94c0776b1bad ("vfio: support hotplug")
Cc: stable@dpdk.org
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
This patch moves some of the internal vfio functions from
eal_vfio.h to rte_vfio.h for common uses with "rte_" prefix.
This patch also change the FSLMC bus usages from the internal
VFIO functions to external ones with "rte_" prefix
Signed-off-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
https://dpdk.org/tracker/show_bug.cgi?id=18
Indicated that several mmap call sites in the [linux|bsd]app eal code
set fd that was not -1 in their calls while using MAP_ANONYMOUS. While
probably not a huge deal, the man page does say the fd should be -1 for
portability, as some implementations don't ignore fd as they should for
MAP_ANONYMOUS.
Suggested-by: Solal Pirelli <solal.pirelli@gmail.com>
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
Use __atomic_exchange_n instead of __atomic_exchange_(2/4/8).
The error was:
include/generic/rte_atomic.h:215:9: error:
implicit declaration of function '__atomic_exchange_2'
is invalid in C99
include/generic/rte_atomic.h:494:9: error:
implicit declaration of function '__atomic_exchange_4'
is invalid in C99
include/generic/rte_atomic.h:772:9: error:
implicit declaration of function '__atomic_exchange_8'
is invalid in C99
Fixes: ff2863570fcc ("eal: introduce atomic exchange operation")
Signed-off-by: Pavan Nikhilesh <pbhagavatula@caviumnetworks.com>
It is common sense to expect for DPDK process to not deallocate any
pages that were preallocated by "-m" or "--socket-mem" flags - yet,
currently, DPDK memory subsystem will do exactly that once it finds
that the pages are unused.
Fix this by marking pages as unfreebale, and preventing malloc from
ever trying to free them.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Before allocating a new page, give a chance to the user to
allow or deny allocation via callbacks.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
This API will enable application to register for notifications
on page allocations that are about to happen, giving the application
a chance to allow or deny the allocation when total memory utilization
as a result would be above specified limit on specified socket.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Now that every other piece of the puzzle is in place, enable non-legacy
init mode.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Enable callbacks on first device attach, disable callbacks
on last device attach.
PPC64 IOMMU does memseg walk, which will cause a deadlock on
trying to do it inside a callback, so provide a local,
thread-unsafe copy of memseg walk.
PPC64 IOMMU also may remap the entire memory map for DMA while
adding new elements to it, so change user map list lock to a
recursive lock. That way, we can safely enter rte_vfio_dma_map(),
lock the user map list, enter DMA mapping function and lock the
list again (for reading previously existing maps).
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Callbacks will be triggered just after allocation and just
before deallocation, to ensure that memory address space
referenced in the callback is always valid by the time
callback is called.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Each process will have its own callbacks. Callbacks will indicate
whether it's allocation and deallocation that's happened, and will
also provide start VA address and length of allocated block.
Since memory hotplug isn't supported on FreeBSD and in legacy mem
mode, it will not be possible to register them in either.
Callbacks are called whenever something happens to the memory map of
current process, therefore at those times memory hotplug subsystem
is write-locked, which leads to deadlocks on attempt to use these
functions. Document the limitation.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
This enables multiprocess synchronization for memory hotplug
requests at runtime (as opposed to initialization).
Basic workflow is the following. Primary process always does initial
mapping and unmapping, and secondary processes always follow primary
page map. Only one allocation request can be active at any one time.
When primary allocates memory, it ensures that all other processes
have allocated the same set of hugepages successfully, otherwise
any allocations made are being rolled back, and heap is freed back.
Heap is locked throughout the process, and there is also a global
memory hotplug lock, so no race conditions can happen.
When primary frees memory, it frees the heap, deallocates affected
pages, and notifies other processes of deallocations. Since heap is
freed from that memory chunk, the area basically becomes invisible
to other processes even if they happen to fail to unmap that
specific set of pages, so it's completely safe to ignore results of
sync requests.
When secondary allocates memory, it does not do so by itself.
Instead, it sends a request to primary process to try and allocate
pages of specified size and on specified socket, such that a
specified heap allocation request could complete. Primary process
then sends all secondaries (including the requestor) a separate
notification of allocated pages, and expects all secondary
processes to report success before considering pages as "allocated".
Only after primary process ensures that all memory has been
successfully allocated in all secondary process, it will respond
positively to the initial request, and let secondary proceed with
the allocation. Since the heap now has memory that can satisfy
allocation request, and it was locked all this time (so no other
allocations could take place), secondary process will be able to
allocate memory from the heap.
When secondary frees memory, it hides pages to be deallocated from
the heap. Then, it sends a deallocation request to primary process,
so that it deallocates pages itself, and then sends a separate sync
request to all other processes (including the requestor) to unmap
the same pages. This way, even if secondary fails to notify other
processes of this deallocation, that memory will become invisible
to other processes, and will not be allocated from again.
So, to summarize: address space will only become part of the heap
if primary process can ensure that all other processes have
allocated this memory successfully. If anything goes wrong, the
worst thing that could happen is that a page will "leak" and will
not be available to neither DPDK nor the system, as some process
will still hold onto it. It's not an actual leak, as we can account
for the page - it's just that none of the processes will be able
to use this page for anything useful, until it gets allocated from
by the primary.
Due to underlying DPDK IPC implementation being single-threaded,
some asynchronous magic had to be done, as we need to complete
several requests before we can definitively allow secondary process
to use allocated memory (namely, it has to be present in all other
secondary processes before it can be used). Additionally, only
one allocation request is allowed to be submitted at once.
Memory allocation requests are only allowed when there are no
secondary processes currently initializing. To enforce that,
a shared rwlock is used, that is set to read lock on init (so that
several secondaries could initialize concurrently), and write lock
on making allocation requests (so that either secondary init will
have to wait, or allocation request will have to wait until all
processes have initialized).
Any other function that wishes to iterate over memory or prevent
allocations should be using memory hotplug lock.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
This set of changes enables rte_malloc to allocate and free memory
as needed. Currently, it is disabled because legacy mem mode is
enabled unconditionally.
The way it works is, first malloc checks if there is enough memory
already allocated to satisfy user's request. If there isn't, we try
and allocate more memory. The reverse happens with free - we free
an element, check its size (including free element merging due to
adjacency) and see if it's bigger than hugepage size and that its
start and end span a hugepage or more. Then we remove the area from
malloc heap (adjusting element lengths where appropriate), and
deallocate the page.
For legacy mode, runtime alloc/free of pages is disabled.
It is worth noting that memseg lists are being sorted by page size,
and that we try our best to satisfy user's request. That is, if
the user requests an element from a 2MB page memory, we will check
if we can satisfy that request from existing memory, if not we try
and allocate more 2MB pages. If that fails and user also specified
a "size is hint" flag, we then check other page sizes and try to
allocate from there. If that fails too, then, depending on flags,
we may try allocating from other sockets. In other words, we try
our best to give the user what they asked for, but going to other
sockets is last resort - first we try to allocate more memory on
the same socket.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Since we are going to need to map hugepages in both primary and
secondary processes, we need to know where we should look for
hugetlbfs mountpoints. So, share those with secondary processes,
and map them on init.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Add a new (non-legacy) memory init path for EAL. It uses the
new memory hotplug facilities.
If no -m or --socket-mem switches were specified, the new init
will not allocate anything, whereas if those switches were passed,
appropriate amounts of pages would be requested, just like for
legacy init.
Allocated pages will be physically discontiguous (or rather, they're
not guaranteed to be physically contiguous - they may still be so by
accident) unless RTE_IOVA_VA mode is used.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
For non-legacy memory init mode, instead of looking at generic
sysfs path, look at sysfs paths pertaining to each NUMA node
for hugepage counts. Note that per-NUMA node path does not
provide information regarding reserved pages, so we might not
get the best info from these paths, but this saves us from the
whole mapping/remapping business before we're actually able to
tell which page is on which socket, because we no longer require
our memory to be physically contiguous.
Legacy memory init will not use this.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
In preparation for implementing multiprocess support, we are adding
a version number to memseg lists. We will not need any locks, because
memory hotplug will have a global lock (so any time memory map and
thus version number might change, we will already be holding a lock).
There are two ways of implementing multiprocess support for memory
hotplug: either all information about mapped memory is shared
between processes, and secondary processes simply attempt to
map/unmap memory based on requests from the primary, or secondary
processes store their own maps and only check if they are in sync
with the primary process' maps.
This implementation will opt for the latter option: primary process
shared mappings will be authoritative, and each secondary process
will use its own interal view of mapped memory, and will attempt
to synchronize on these mappings using versioning.
Under this model, only primary process will decide which pages get
mapped, and secondary processes will only copy primary's page
maps and get notified of the changes via IPC mechanism (coming
in later commits).
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
For now, memory is always contiguous because legacy mem mode is
enabled unconditionally, but this function will be helpful down
the line when we implement support for allocating physically
non-contiguous memory. We can no longer guarantee physically
contiguous memory unless we're in legacy or IOVA_AS_VA mode, but
we can certainly try and see if we succeed.
In addition, this would be useful for e.g. PMD's who may allocate
chunks that are smaller than the pagesize, but they must not cross
the page boundary, in which case we will be able to accommodate
that request. This function will also support non-hugepage memory.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
Currently, DPDK stores all pages as separate files in hugetlbfs.
This option will allow storing all pages in one file (one file
per memseg list).
We do this by using fallocate() calls on FreeBSD, however this is
only supported on fairly recent (4.3+) kernels, so ftruncate()
fallback is provided to grow (but not shrink) hugepage files.
Naming scheme is deterministic, so both primary and secondary
processes will be able to easily map needed files and offsets.
For multi-file segments, we can close fd's right away. For
single-file segments, we can reuse the same fd and reduce the
amount of fd's needed to map/use hugepages. However, we need to
store the fd's somewhere, so we add a tailq.
Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>