/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/e1000_defines.h" #include "base/e1000_regs.h" #include "base/e1000_hw.h" #include "e1000_ethdev.h" static inline uint16_t dev_num_vf(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); return pci_dev->max_vfs; } static inline int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num) { unsigned char vf_mac_addr[RTE_ETHER_ADDR_LEN]; struct e1000_vf_info *vfinfo = *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private); uint16_t vfn; for (vfn = 0; vfn < vf_num; vfn++) { rte_eth_random_addr(vf_mac_addr); /* keep the random address as default */ memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr, RTE_ETHER_ADDR_LEN); } return 0; } static inline int igb_mb_intr_setup(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); intr->mask |= E1000_ICR_VMMB; return 0; } void igb_pf_host_init(struct rte_eth_dev *eth_dev) { struct e1000_vf_info **vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); uint16_t vf_num; uint8_t nb_queue; RTE_ETH_DEV_SRIOV(eth_dev).active = 0; if (0 == (vf_num = dev_num_vf(eth_dev))) return; if (hw->mac.type == e1000_i350) nb_queue = 1; else if(hw->mac.type == e1000_82576) /* per datasheet, it should be 2, but 1 seems correct */ nb_queue = 1; else return; *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0); if (*vfinfo == NULL) rte_panic("Cannot allocate memory for private VF data\n"); RTE_ETH_DEV_SRIOV(eth_dev).active = RTE_ETH_8_POOLS; RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue; RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num; RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue); igb_vf_perm_addr_gen(eth_dev, vf_num); /* set mb interrupt mask */ igb_mb_intr_setup(eth_dev); return; } void igb_pf_host_uninit(struct rte_eth_dev *dev) { struct e1000_vf_info **vfinfo; uint16_t vf_num; PMD_INIT_FUNC_TRACE(); vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private); RTE_ETH_DEV_SRIOV(dev).active = 0; RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 0; RTE_ETH_DEV_SRIOV(dev).def_vmdq_idx = 0; RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx = 0; vf_num = dev_num_vf(dev); if (vf_num == 0) return; rte_free(*vfinfo); *vfinfo = NULL; } #define E1000_RAH_POOLSEL_SHIFT (18) int igb_pf_host_configure(struct rte_eth_dev *eth_dev) { uint32_t vtctl; uint16_t vf_num; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); uint32_t vlanctrl; int i; uint32_t rah; if (0 == (vf_num = dev_num_vf(eth_dev))) return -1; /* enable VMDq and set the default pool for PF */ vtctl = E1000_READ_REG(hw, E1000_VT_CTL); vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK; vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx << E1000_VT_CTL_DEFAULT_POOL_SHIFT; vtctl |= E1000_VT_CTL_VM_REPL_EN; E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl); /* Enable pools reserved to PF only */ E1000_WRITE_REG(hw, E1000_VFRE, (~0U) << vf_num); E1000_WRITE_REG(hw, E1000_VFTE, (~0U) << vf_num); /* PFDMA Tx General Switch Control Enables VMDQ loopback */ if (hw->mac.type == e1000_i350) E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); else E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); /* clear VMDq map to permanent rar 0 */ rah = E1000_READ_REG(hw, E1000_RAH(0)); rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); E1000_WRITE_REG(hw, E1000_RAH(0), rah); /* clear VMDq map to scan rar 32 */ rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count)); rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah); /* set VMDq map to default PF pool */ rah = E1000_READ_REG(hw, E1000_RAH(0)); rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx + E1000_RAH_POOLSEL_SHIFT)); E1000_WRITE_REG(hw, E1000_RAH(0), rah); /* * enable vlan filtering and allow all vlan tags through */ vlanctrl = E1000_READ_REG(hw, E1000_RCTL); vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */ E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl); /* VFTA - enable all vlan filters */ for (i = 0; i < IGB_VFTA_SIZE; i++) { E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF); } /* Enable/Disable MAC Anti-Spoofing */ e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num); return 0; } static void set_rx_mode(struct rte_eth_dev *dev) { struct rte_eth_dev_data *dev_data = dev->data; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE; uint16_t vfn = dev_num_vf(dev); /* Check for Promiscuous and All Multicast modes */ fctrl = E1000_READ_REG(hw, E1000_RCTL); /* set all bits that we expect to always be set */ fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */ fctrl |= E1000_RCTL_BAM; /* clear the bits we are changing the status of */ fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); if (dev_data->promiscuous) { fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); } else { if (dev_data->all_multicast) { fctrl |= E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; } else { vmolr |= E1000_VMOLR_ROMPE; } } if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_i350)) { vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) & ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE | E1000_VMOLR_ROPE); E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); } E1000_WRITE_REG(hw, E1000_RCTL, fctrl); } static inline void igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_info *vfinfo = *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_BAM | E1000_VMOLR_AUPE); E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0); /* reset multicast table array for vf */ vfinfo[vf].num_vf_mc_hashes = 0; /* reset rx mode */ set_rx_mode(dev); } static inline void igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* enable transmit and receive for vf */ reg = E1000_READ_REG(hw, E1000_VFTE); reg |= (reg | (1 << vf)); E1000_WRITE_REG(hw, E1000_VFTE, reg); reg = E1000_READ_REG(hw, E1000_VFRE); reg |= (reg | (1 << vf)); E1000_WRITE_REG(hw, E1000_VFRE, reg); igb_vf_reset_event(dev, vf); } static int igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_info *vfinfo = *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses; int rar_entry = hw->mac.rar_entry_count - (vf + 1); uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); uint32_t rah; igb_vf_reset_msg(dev, vf); hw->mac.ops.rar_set(hw, vf_mac, rar_entry); rah = E1000_READ_REG(hw, E1000_RAH(rar_entry)); rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT)); E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah); /* reply to reset with ack and vf mac address */ msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; rte_memcpy(new_mac, vf_mac, RTE_ETHER_ADDR_LEN); e1000_write_mbx(hw, msgbuf, 3, vf); return 0; } static int igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_info *vfinfo = *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); int rar_entry = hw->mac.rar_entry_count - (vf + 1); uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); int rah; if (rte_is_unicast_ether_addr((struct rte_ether_addr *)new_mac)) { if (!rte_is_zero_ether_addr((struct rte_ether_addr *)new_mac)) rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, sizeof(vfinfo[vf].vf_mac_addresses)); hw->mac.ops.rar_set(hw, new_mac, rar_entry); rah = E1000_READ_REG(hw, E1000_RAH(rar_entry)); rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + vf)); E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah); return 0; } return -1; } static int igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf) { int i; uint32_t vector_bit; uint32_t vector_reg; uint32_t mta_reg; int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; uint16_t *hash_list = (uint16_t *)&msgbuf[1]; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_info *vfinfo = *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); /* only so many hash values supported */ entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES); /* * salt away the number of multi cast addresses assigned * to this VF for later use to restore when the PF multi cast * list changes */ vfinfo->num_vf_mc_hashes = (uint16_t)entries; /* * VFs are limited to using the MTA hash table for their multicast * addresses */ for (i = 0; i < entries; i++) { vfinfo->vf_mc_hashes[i] = hash_list[i]; } for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) { vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F; vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F; mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg); mta_reg |= (1 << vector_bit); E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg); } return 0; } static int igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) { int add, vid; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_info *vfinfo = *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); uint32_t vid_idx, vid_bit, vfta; add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); if (add) vfinfo[vf].vlan_count++; else if (vfinfo[vf].vlan_count) vfinfo[vf].vlan_count--; vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK); vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); if (add) vfta |= vid_bit; else vfta &= ~vid_bit; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); E1000_WRITE_FLUSH(hw); return 0; } static int igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK; uint32_t max_frame = rlpml + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; uint32_t vmolr; if (max_frame < RTE_ETHER_MIN_LEN || max_frame > RTE_ETHER_MAX_JUMBO_FRAME_LEN) return -1; vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); vmolr &= ~E1000_VMOLR_RLPML_MASK; vmolr |= rlpml; /* Enable Long Packet support */ vmolr |= E1000_VMOLR_LPE; E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); E1000_WRITE_FLUSH(hw); return 0; } static int igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf) { uint16_t mbx_size = E1000_VFMAILBOX_SIZE; uint32_t msgbuf[E1000_VFMAILBOX_SIZE]; int32_t retval; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf); if (retval) { PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf); return retval; } /* do nothing with the message already processed */ if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) return retval; /* flush the ack before we write any messages back */ E1000_WRITE_FLUSH(hw); /* perform VF reset */ if (msgbuf[0] == E1000_VF_RESET) { return igb_vf_reset(dev, vf, msgbuf); } /* check & process VF to PF mailbox message */ switch ((msgbuf[0] & 0xFFFF)) { case E1000_VF_SET_MAC_ADDR: retval = igb_vf_set_mac_addr(dev, vf, msgbuf); break; case E1000_VF_SET_MULTICAST: retval = igb_vf_set_multicast(dev, vf, msgbuf); break; case E1000_VF_SET_LPE: retval = igb_vf_set_rlpml(dev, vf, msgbuf); break; case E1000_VF_SET_VLAN: retval = igb_vf_set_vlan(dev, vf, msgbuf); break; default: PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x", (unsigned) msgbuf[0]); retval = E1000_ERR_MBX; break; } /* response the VF according to the message process result */ if (retval) msgbuf[0] |= E1000_VT_MSGTYPE_NACK; else msgbuf[0] |= E1000_VT_MSGTYPE_ACK; msgbuf[0] |= E1000_VT_MSGTYPE_CTS; e1000_write_mbx(hw, msgbuf, 1, vf); return retval; } static inline void igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf) { uint32_t msg = E1000_VT_MSGTYPE_NACK; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); e1000_write_mbx(hw, &msg, 1, vf); } void igb_pf_mbx_process(struct rte_eth_dev *eth_dev) { uint16_t vf; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); for (vf = 0; vf < dev_num_vf(eth_dev); vf++) { /* check & process vf function level reset */ if (!e1000_check_for_rst(hw, vf)) igb_vf_reset_event(eth_dev, vf); /* check & process vf mailbox messages */ if (!e1000_check_for_msg(hw, vf)) igb_rcv_msg_from_vf(eth_dev, vf); /* check & process acks from vf */ if (!e1000_check_for_ack(hw, vf)) igb_rcv_ack_from_vf(eth_dev, vf); } }