/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2015 Intel Corporation. * Copyright(c) 2016-2018, Linaro Limited. */ #include #include #include #include #include "base/i40e_prototype.h" #include "base/i40e_type.h" #include "i40e_ethdev.h" #include "i40e_rxtx.h" #include "i40e_rxtx_vec_common.h" #pragma GCC diagnostic ignored "-Wcast-qual" static inline void i40e_rxq_rearm(struct i40e_rx_queue *rxq) { int i; uint16_t rx_id; volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; uint64x2_t dma_addr0, dma_addr1; uint64x2_t zero = vdupq_n_u64(0); uint64_t paddr; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (unlikely(rte_mempool_get_bulk(rxq->mp, (void *)rxep, RTE_I40E_RXQ_REARM_THRESH) < 0)) { if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) { rxep[i].mbuf = &rxq->fake_mbuf; vst1q_u64((uint64_t *)&rxdp[i].read, zero); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += RTE_I40E_RXQ_REARM_THRESH; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) { mb0 = rxep[0].mbuf; mb1 = rxep[1].mbuf; paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM; dma_addr0 = vdupq_n_u64(paddr); /* flush desc with pa dma_addr */ vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0); paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM; dma_addr1 = vdupq_n_u64(paddr); vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); rte_io_wmb(); /* Update the tail pointer on the NIC */ I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id); } #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC /* NEON version of FDIR mark extraction for 4 32B descriptors at a time */ static inline uint32x4_t descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt) { /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */ uint64x2_t desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23; desc0_qw23 = vld1q_u64((uint64_t *)&(rxdp + 0)->wb.qword2); desc1_qw23 = vld1q_u64((uint64_t *)&(rxdp + 1)->wb.qword2); desc2_qw23 = vld1q_u64((uint64_t *)&(rxdp + 2)->wb.qword2); desc3_qw23 = vld1q_u64((uint64_t *)&(rxdp + 3)->wb.qword2); /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */ uint32x4_t v_unpack_02, v_unpack_13; v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23), vreinterpretq_u32_u64(desc2_qw23)).val[1]; v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23), vreinterpretq_u32_u64(desc3_qw23)).val[1]; uint32x4_t v_fdir_ids = vzipq_u32(v_unpack_02, v_unpack_13).val[1]; /* Extended Status: extract from each lower 32 bits, to u32 lanes */ v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23), vreinterpretq_u32_u64(desc2_qw23)).val[0]; v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23), vreinterpretq_u32_u64(desc3_qw23)).val[0]; uint32x4_t v_flt_status = vzipq_u32(v_unpack_02, v_unpack_13).val[0]; /* Shift u32 left and right to "mask away" bits not required. * Data required is 4:5 (zero based), so left shift by 26 (32-6) * and then right shift by 30 (32 - 2 bits required). */ v_flt_status = vshlq_n_u32(v_flt_status, 26); v_flt_status = vshrq_n_u32(v_flt_status, 30); /* Generate constant 1 in all u32 lanes */ RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1); uint32x4_t v_u32_one = vdupq_n_u32(1); /* Per desc mask, bits set if FDIR ID is valid */ uint32x4_t v_fd_id_mask = vceqq_u32(v_flt_status, v_u32_one); /* Mask ID data to zero if the FD_ID bit not set in desc */ v_fdir_ids = vandq_u32(v_fdir_ids, v_fd_id_mask); /* Store data to fdir.hi in mbuf */ rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0); rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1); rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2); rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3); /* Convert fdir_id_mask into a single bit, then shift as required for * correct location in the mbuf->olflags */ RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13)); v_fd_id_mask = vshrq_n_u32(v_fd_id_mask, 31); v_fd_id_mask = vshlq_n_u32(v_fd_id_mask, 13); /* The returned value must be combined into each mbuf. This is already * being done for RSS and VLAN mbuf olflags, so return bits to OR in. */ return v_fd_id_mask; } #else /* 32 or 16B FDIR ID handling */ /* Handle 16B descriptor FDIR ID flag setting based on FLM(bit11). See scalar driver * for scalar implementation of the same functionality. */ static inline uint32x4_t descs_to_fdir_16b(uint32x4_t fltstat, uint64x2_t descs[4], struct rte_mbuf **rx_pkt) { /* Unpack filter-status data from descriptors */ uint32x4_t v_tmp_02 = vzipq_u32(vreinterpretq_u32_u64(descs[0]), vreinterpretq_u32_u64(descs[2])).val[0]; uint32x4_t v_tmp_13 = vzipq_u32(vreinterpretq_u32_u64(descs[1]), vreinterpretq_u32_u64(descs[3])).val[0]; uint32x4_t v_fdir_ids = vzipq_u32(v_tmp_02, v_tmp_13).val[1]; /* Generate 111 and 11 in each u32 lane */ uint32x4_t v_111_mask = vdupq_n_u32(7); uint32x4_t v_11_mask = vdupq_n_u32(3); /* Compare and mask away FDIR ID data if bit not set */ uint32x4_t v_u32_bits = vandq_u32(v_111_mask, fltstat); uint32x4_t v_fdir_id_mask = vceqq_u32(v_u32_bits, v_11_mask); v_fdir_ids = vandq_u32(v_fdir_id_mask, v_fdir_ids); /* Store data to fdir.hi in mbuf */ rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0); rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1); rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2); rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3); /* Top lane ones mask for FDIR isolation */ uint32x4_t v_desc_fdir_mask = {0, UINT32_MAX, 0, 0}; /* Move fdir_id_mask to correct lane, zero RSS in mbuf if fdir hits */ uint32x4_t v_zeros = {0, 0, 0, 0}; uint32x4_t v_desc3_shift = vextq_u32(v_fdir_id_mask, v_zeros, 2); uint32x4_t v_desc3_mask = vandq_u32(v_desc_fdir_mask, v_desc3_shift); descs[3] = vreinterpretq_u64_u32(vbslq_u32(v_desc3_mask, v_zeros, vreinterpretq_u32_u64(descs[3]))); uint32x4_t v_desc2_shift = vextq_u32(v_fdir_id_mask, v_zeros, 1); uint32x4_t v_desc2_mask = vandq_u32(v_desc_fdir_mask, v_desc2_shift); descs[2] = vreinterpretq_u64_u32(vbslq_u32(v_desc2_mask, v_zeros, vreinterpretq_u32_u64(descs[2]))); uint32x4_t v_desc1_shift = v_fdir_id_mask; uint32x4_t v_desc1_mask = vandq_u32(v_desc_fdir_mask, v_desc1_shift); descs[1] = vreinterpretq_u64_u32(vbslq_u32(v_desc1_mask, v_zeros, vreinterpretq_u32_u64(descs[1]))); uint32x4_t v_desc0_shift = vextq_u32(v_zeros, v_fdir_id_mask, 3); uint32x4_t v_desc0_mask = vandq_u32(v_desc_fdir_mask, v_desc0_shift); descs[0] = vreinterpretq_u64_u32(vbslq_u32(v_desc0_mask, v_zeros, vreinterpretq_u32_u64(descs[0]))); /* Shift to 1 or 0 bit per u32 lane, then to RTE_MBUF_F_RX_FDIR_ID offset */ RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13)); uint32x4_t v_mask_one_bit = vshrq_n_u32(v_fdir_id_mask, 31); return vshlq_n_u32(v_mask_one_bit, 13); } #endif static inline void desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp, uint64x2_t descs[4], struct rte_mbuf **rx_pkts) { uint32x4_t vlan0, vlan1, rss, l3_l4e; const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0}; uint64x2_t rearm0, rearm1, rearm2, rearm3; /* mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. */ const uint32x4_t rss_vlan_msk = { 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804}; const uint32x4_t cksum_mask = { RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD}; /* map rss and vlan type to rss hash and vlan flag */ const uint8x16_t vlan_flags = { 0, 0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8x16_t rss_flags = { 0, RTE_MBUF_F_RX_FDIR, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8x16_t l3_l4e_flags = { (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1, RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, 0, 0, 0, 0, 0, 0, 0, 0}; vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]), vreinterpretq_u32_u64(descs[2])).val[1]; vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]), vreinterpretq_u32_u64(descs[3])).val[1]; vlan0 = vzipq_u32(vlan0, vlan1).val[0]; vlan1 = vandq_u32(vlan0, rss_vlan_msk); vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags, vreinterpretq_u8_u32(vlan1))); const uint32x4_t desc_fltstat = vshrq_n_u32(vlan1, 11); rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags, vreinterpretq_u8_u32(desc_fltstat))); l3_l4e = vshrq_n_u32(vlan1, 22); l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags, vreinterpretq_u8_u32(l3_l4e))); /* then we shift left 1 bit */ l3_l4e = vshlq_n_u32(l3_l4e, 1); /* we need to mask out the redundant bits */ l3_l4e = vandq_u32(l3_l4e, cksum_mask); vlan0 = vorrq_u32(vlan0, rss); vlan0 = vorrq_u32(vlan0, l3_l4e); /* Extract FDIR ID only if FDIR is enabled to avoid useless work */ if (rxq->fdir_enabled) { #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC uint32x4_t v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts); #else (void)rxdp; /* rxdp not required for 16B desc mode */ uint32x4_t v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat, descs, rx_pkts); #endif /* OR in ol_flag bits after descriptor specific extraction */ vlan0 = vorrq_u32(vlan0, v_fdir_ol_flags); } rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1); rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1); rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1); rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1); vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0); vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1); vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2); vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3); } #define PKTLEN_SHIFT 10 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t)) static inline void desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts, uint32_t *__rte_restrict ptype_tbl) { int i; uint8_t ptype; uint8x16_t tmp; for (i = 0; i < 4; i++) { tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30)); ptype = vgetq_lane_u8(tmp, 8); rx_pkts[i]->packet_type = ptype_tbl[ptype]; } } /** * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP) * * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two */ static inline uint16_t _recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq, struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *sw_ring; uint16_t nb_pkts_recd; int pos; uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; /* mask to shuffle from desc. to mbuf */ uint8x16_t shuf_msk = { 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF, /* pkt_type set as unknown */ 14, 15, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 14, 15, /* octet 15~14, 16 bits data_len */ 2, 3, /* octet 2~3, low 16 bits vlan_macip */ 4, 5, 6, 7 /* octet 4~7, 32bits rss */ }; uint8x16_t eop_check = { 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint16x8_t crc_adjust = { 0, 0, /* ignore pkt_type field */ rxq->crc_len, /* sub crc on pkt_len */ 0, /* ignore high-16bits of pkt_len */ rxq->crc_len, /* sub crc on data_len */ 0, 0, 0 /* ignore non-length fields */ }; /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch_non_temporal(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH) i40e_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT))) return 0; /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += RTE_I40E_DESCS_PER_LOOP, rxdp += RTE_I40E_DESCS_PER_LOOP) { uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP]; uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; uint16x8x2_t sterr_tmp1, sterr_tmp2; uint64x2_t mbp1, mbp2; uint16x8_t staterr; uint16x8_t tmp; uint64_t stat; int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT}; /* A.1 load desc[3-0] */ descs[3] = vld1q_u64((uint64_t *)(rxdp + 3)); descs[2] = vld1q_u64((uint64_t *)(rxdp + 2)); descs[1] = vld1q_u64((uint64_t *)(rxdp + 1)); descs[0] = vld1q_u64((uint64_t *)(rxdp)); /* Use acquire fence to order loads of descriptor qwords */ rte_atomic_thread_fence(__ATOMIC_ACQUIRE); /* A.2 reload qword0 to make it ordered after qword1 load */ descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0); descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0); descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0); descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0); /* B.1 load 4 mbuf point */ mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]); mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]); /* B.2 copy 4 mbuf point into rx_pkts */ vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1); vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2); if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* pkts shift the pktlen field to be 16-bit aligned*/ uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]), len_shl); descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16 (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7), vreinterpretq_u16_u64(descs[3]), 7)); uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]), len_shl); descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16 (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7), vreinterpretq_u16_u64(descs[2]), 7)); uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]), len_shl); descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16 (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7), vreinterpretq_u16_u64(descs[1]), 7)); uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]), len_shl); descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16 (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7), vreinterpretq_u16_u64(descs[0]), 7)); desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]); /* D.1 pkts convert format from desc to pktmbuf */ pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk); pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk); pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk); pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk); /* D.2 pkts set in_port/nb_seg and remove crc */ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust); pkt_mb4 = vreinterpretq_u8_u16(tmp); tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust); pkt_mb3 = vreinterpretq_u8_u16(tmp); tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust); pkt_mb2 = vreinterpretq_u8_u16(tmp); tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust); pkt_mb1 = vreinterpretq_u8_u16(tmp); /* D.3 copy final data to rx_pkts */ vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb4); vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb3); vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb2); vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl); if (likely(pos + RTE_I40E_DESCS_PER_LOOP < nb_pkts)) { rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP); } /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]), vreinterpretq_u16_u64(descs[3])); sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]), vreinterpretq_u16_u64(descs[2])); /* C.2 get 4 pkts staterr value */ staterr = vzipq_u16(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0]; /* C* extract and record EOP bit */ if (split_packet) { uint8x16_t eop_shuf_mask = { 0x00, 0x02, 0x04, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8x16_t eop_bits; /* and with mask to extract bits, flipping 1-0 */ eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr)); eop_bits = vandq_u8(eop_bits, eop_check); /* the staterr values are not in order, as the count * of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ vst1q_lane_u32((uint32_t *)split_packet, vreinterpretq_u32_u8(eop_bits), 0); split_packet += RTE_I40E_DESCS_PER_LOOP; /* zero-out next pointers */ rx_pkts[pos]->next = NULL; rx_pkts[pos + 1]->next = NULL; rx_pkts[pos + 2]->next = NULL; rx_pkts[pos + 3]->next = NULL; } staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1); staterr = vreinterpretq_u16_s16( vshrq_n_s16(vreinterpretq_s16_u16(staterr), I40E_UINT16_BIT - 1)); stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0); /* C.4 calc available number of desc */ if (unlikely(stat == 0)) { nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP; } else { nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT; break; } } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST * numbers of DD bits */ uint16_t i40e_recv_pkts_vec(void *__rte_restrict rx_queue, struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet */ static uint16_t i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct i40e_rx_queue *rxq = rx_queue; uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (rxq->pkt_first_seg == NULL && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned i = 0; if (rxq->pkt_first_seg == NULL) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. */ uint16_t i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > RTE_I40E_VPMD_RX_BURST) { uint16_t burst; burst = i40e_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, RTE_I40E_VPMD_RX_BURST); retval += burst; nb_pkts -= burst; if (burst < RTE_I40E_VPMD_RX_BURST) return retval; } return retval + i40e_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, nb_pkts); } static inline void vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA | ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT)); uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw}; vst1q_u64((uint64_t *)txdp, descriptor); } static inline void vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue, struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts) { struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue; volatile struct i40e_tx_desc *txdp; struct i40e_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = I40E_TD_CMD; uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD; int i; if (txq->nb_tx_free < txq->tx_free_thresh) i40e_tx_free_bufs(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << I40E_TXD_QW1_CMD_SHIFT); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; rte_io_wmb(); I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id); return nb_pkts; } void __rte_cold i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq) { _i40e_rx_queue_release_mbufs_vec(rxq); } int __rte_cold i40e_rxq_vec_setup(struct i40e_rx_queue *rxq) { return i40e_rxq_vec_setup_default(rxq); } int __rte_cold i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq) { return 0; } int __rte_cold i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev) { return i40e_rx_vec_dev_conf_condition_check_default(dev); }