/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2020 Xilinx, Inc. * Copyright(c) 2016-2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include #include "efx.h" #include "efx_mcdi.h" #include "efx_regs_mcdi.h" #include "sfc.h" #include "sfc_log.h" #include "sfc_ev.h" #define SFC_MCDI_POLL_INTERVAL_MIN_US 10 /* 10us in 1us units */ #define SFC_MCDI_POLL_INTERVAL_MAX_US (US_PER_S / 10) /* 100ms in 1us units */ #define SFC_MCDI_WATCHDOG_INTERVAL_US (10 * US_PER_S) /* 10s in 1us units */ static void sfc_mcdi_timeout(struct sfc_adapter *sa) { sfc_warn(sa, "MC TIMEOUT"); sfc_panic(sa, "MCDI timeout handling is not implemented\n"); } static inline boolean_t sfc_mcdi_proxy_event_available(struct sfc_adapter *sa) { struct sfc_mcdi *mcdi = &sa->mcdi; mcdi->proxy_handle = 0; mcdi->proxy_result = ETIMEDOUT; sfc_ev_mgmt_qpoll(sa); if (mcdi->proxy_result != ETIMEDOUT) return B_TRUE; return B_FALSE; } static void sfc_mcdi_poll(struct sfc_adapter *sa, boolean_t proxy) { efx_nic_t *enp; unsigned int delay_total; unsigned int delay_us; boolean_t aborted __rte_unused; delay_total = 0; delay_us = SFC_MCDI_POLL_INTERVAL_MIN_US; enp = sa->nic; do { boolean_t poll_completed; poll_completed = (proxy) ? sfc_mcdi_proxy_event_available(sa) : efx_mcdi_request_poll(enp); if (poll_completed) return; if (delay_total > SFC_MCDI_WATCHDOG_INTERVAL_US) { if (!proxy) { aborted = efx_mcdi_request_abort(enp); SFC_ASSERT(aborted); sfc_mcdi_timeout(sa); } return; } rte_delay_us(delay_us); delay_total += delay_us; /* Exponentially back off the poll frequency */ RTE_BUILD_BUG_ON(SFC_MCDI_POLL_INTERVAL_MAX_US > UINT_MAX / 2); delay_us *= 2; if (delay_us > SFC_MCDI_POLL_INTERVAL_MAX_US) delay_us = SFC_MCDI_POLL_INTERVAL_MAX_US; } while (1); } static void sfc_mcdi_execute(void *arg, efx_mcdi_req_t *emrp) { struct sfc_adapter *sa = (struct sfc_adapter *)arg; struct sfc_mcdi *mcdi = &sa->mcdi; uint32_t proxy_handle; rte_spinlock_lock(&mcdi->lock); SFC_ASSERT(mcdi->state == SFC_MCDI_INITIALIZED); efx_mcdi_request_start(sa->nic, emrp, B_FALSE); sfc_mcdi_poll(sa, B_FALSE); if (efx_mcdi_get_proxy_handle(sa->nic, emrp, &proxy_handle) == 0) { /* * Authorization is required for the MCDI request; * wait for an MCDI proxy response event to bring * a non-zero proxy handle (should be the same as * the value obtained above) and operation status */ sfc_mcdi_poll(sa, B_TRUE); if ((mcdi->proxy_handle != 0) && (mcdi->proxy_handle != proxy_handle)) { sfc_err(sa, "Unexpected MCDI proxy event"); emrp->emr_rc = EFAULT; } else if (mcdi->proxy_result == 0) { /* * Authorization succeeded; re-issue the original * request and poll for an ordinary MCDI response */ efx_mcdi_request_start(sa->nic, emrp, B_FALSE); sfc_mcdi_poll(sa, B_FALSE); } else { emrp->emr_rc = mcdi->proxy_result; sfc_err(sa, "MCDI proxy authorization failed " "(handle=%08x, result=%d)", proxy_handle, mcdi->proxy_result); } } rte_spinlock_unlock(&mcdi->lock); } static void sfc_mcdi_ev_cpl(void *arg) { struct sfc_adapter *sa = (struct sfc_adapter *)arg; struct sfc_mcdi *mcdi __rte_unused; mcdi = &sa->mcdi; SFC_ASSERT(mcdi->state == SFC_MCDI_INITIALIZED); /* MCDI is polled, completions are not expected */ SFC_ASSERT(0); } static void sfc_mcdi_exception(void *arg, efx_mcdi_exception_t eme) { struct sfc_adapter *sa = (struct sfc_adapter *)arg; sfc_warn(sa, "MC %s", (eme == EFX_MCDI_EXCEPTION_MC_REBOOT) ? "REBOOT" : (eme == EFX_MCDI_EXCEPTION_MC_BADASSERT) ? "BADASSERT" : "UNKNOWN"); sfc_schedule_restart(sa); } #define SFC_MCDI_LOG_BUF_SIZE 128 static size_t sfc_mcdi_do_log(const struct sfc_adapter *sa, char *buffer, void *data, size_t data_size, size_t pfxsize, size_t position) { uint32_t *words = data; /* Space separator plus 2 characters per byte */ const size_t word_str_space = 1 + 2 * sizeof(*words); size_t i; for (i = 0; i < data_size; i += sizeof(*words)) { if (position + word_str_space >= SFC_MCDI_LOG_BUF_SIZE) { /* Flush at SFC_MCDI_LOG_BUF_SIZE with backslash * at the end which is required by netlogdecode. */ buffer[position] = '\0'; sfc_log_mcdi(sa, "%s \\", buffer); /* Preserve prefix for the next log message */ position = pfxsize; } position += snprintf(buffer + position, SFC_MCDI_LOG_BUF_SIZE - position, " %08x", *words); words++; } return position; } static void sfc_mcdi_logger(void *arg, efx_log_msg_t type, void *header, size_t header_size, void *data, size_t data_size) { struct sfc_adapter *sa = (struct sfc_adapter *)arg; char buffer[SFC_MCDI_LOG_BUF_SIZE]; size_t pfxsize; size_t start; /* * Unlike the other cases, MCDI logging implies more onerous work * needed to produce a message. If the dynamic log level prevents * the end result from being printed, the CPU time will be wasted. * * To avoid wasting time, the actual level is examined in advance. */ if (rte_log_get_level(sa->mcdi.logtype) < (int)SFC_LOG_LEVEL_MCDI) return; /* The format including prefix added by sfc_log_mcdi() is the format * consumed by the Solarflare netlogdecode tool. */ pfxsize = snprintf(buffer, sizeof(buffer), "MCDI RPC %s:", type == EFX_LOG_MCDI_REQUEST ? "REQ" : type == EFX_LOG_MCDI_RESPONSE ? "RESP" : "???"); start = sfc_mcdi_do_log(sa, buffer, header, header_size, pfxsize, pfxsize); start = sfc_mcdi_do_log(sa, buffer, data, data_size, pfxsize, start); if (start != pfxsize) { buffer[start] = '\0'; sfc_log_mcdi(sa, "%s", buffer); } } static void sfc_mcdi_ev_proxy_response(void *arg, uint32_t handle, efx_rc_t result) { struct sfc_adapter *sa = (struct sfc_adapter *)arg; struct sfc_mcdi *mcdi = &sa->mcdi; mcdi->proxy_handle = handle; mcdi->proxy_result = result; } int sfc_mcdi_init(struct sfc_adapter *sa) { struct sfc_mcdi *mcdi; size_t max_msg_size; efx_mcdi_transport_t *emtp; int rc; sfc_log_init(sa, "entry"); mcdi = &sa->mcdi; SFC_ASSERT(mcdi->state == SFC_MCDI_UNINITIALIZED); rte_spinlock_init(&mcdi->lock); mcdi->state = SFC_MCDI_INITIALIZED; max_msg_size = sizeof(uint32_t) + MCDI_CTL_SDU_LEN_MAX_V2; rc = sfc_dma_alloc(sa, "mcdi", 0, max_msg_size, sa->socket_id, &mcdi->mem); if (rc != 0) goto fail_dma_alloc; mcdi->logtype = sfc_register_logtype(&sa->priv.shared->pci_addr, SFC_LOGTYPE_MCDI_STR, RTE_LOG_NOTICE); emtp = &mcdi->transport; emtp->emt_context = sa; emtp->emt_dma_mem = &mcdi->mem; emtp->emt_execute = sfc_mcdi_execute; emtp->emt_ev_cpl = sfc_mcdi_ev_cpl; emtp->emt_exception = sfc_mcdi_exception; emtp->emt_logger = sfc_mcdi_logger; emtp->emt_ev_proxy_response = sfc_mcdi_ev_proxy_response; sfc_log_init(sa, "init MCDI"); rc = efx_mcdi_init(sa->nic, emtp); if (rc != 0) goto fail_mcdi_init; return 0; fail_mcdi_init: memset(emtp, 0, sizeof(*emtp)); sfc_dma_free(sa, &mcdi->mem); fail_dma_alloc: mcdi->state = SFC_MCDI_UNINITIALIZED; return rc; } void sfc_mcdi_fini(struct sfc_adapter *sa) { struct sfc_mcdi *mcdi; efx_mcdi_transport_t *emtp; sfc_log_init(sa, "entry"); mcdi = &sa->mcdi; emtp = &mcdi->transport; rte_spinlock_lock(&mcdi->lock); SFC_ASSERT(mcdi->state == SFC_MCDI_INITIALIZED); mcdi->state = SFC_MCDI_UNINITIALIZED; sfc_log_init(sa, "fini MCDI"); efx_mcdi_fini(sa->nic); memset(emtp, 0, sizeof(*emtp)); rte_spinlock_unlock(&mcdi->lock); sfc_dma_free(sa, &mcdi->mem); }