/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017-2018 Intel Corporation */ #include #include #include #include #include #include "rte_vhost_crypto.h" #include "vhost.h" #include "vhost_user.h" #include "virtio_crypto.h" #define INHDR_LEN (sizeof(struct virtio_crypto_inhdr)) #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ sizeof(struct rte_crypto_sym_op)) #ifdef RTE_LIBRTE_VHOST_DEBUG #define VC_LOG_ERR(fmt, args...) \ RTE_LOG(ERR, USER1, "[%s] %s() line %u: " fmt "\n", \ "Vhost-Crypto", __func__, __LINE__, ## args) #define VC_LOG_INFO(fmt, args...) \ RTE_LOG(INFO, USER1, "[%s] %s() line %u: " fmt "\n", \ "Vhost-Crypto", __func__, __LINE__, ## args) #define VC_LOG_DBG(fmt, args...) \ RTE_LOG(DEBUG, USER1, "[%s] %s() line %u: " fmt "\n", \ "Vhost-Crypto", __func__, __LINE__, ## args) #else #define VC_LOG_ERR(fmt, args...) \ RTE_LOG(ERR, USER1, "[VHOST-Crypto]: " fmt "\n", ## args) #define VC_LOG_INFO(fmt, args...) \ RTE_LOG(INFO, USER1, "[VHOST-Crypto]: " fmt "\n", ## args) #define VC_LOG_DBG(fmt, args...) #endif #define VIRTIO_CRYPTO_FEATURES ((1ULL << VIRTIO_F_NOTIFY_ON_EMPTY) | \ (1ULL << VIRTIO_RING_F_INDIRECT_DESC) | \ (1ULL << VIRTIO_RING_F_EVENT_IDX) | \ (1ULL << VIRTIO_NET_F_CTRL_VQ) | \ (1ULL << VIRTIO_F_VERSION_1) | \ (1ULL << VHOST_USER_F_PROTOCOL_FEATURES)) #define IOVA_TO_VVA(t, r, a, l, p) \ ((t)(uintptr_t)vhost_iova_to_vva(r->dev, r->vq, a, l, p)) /* * vhost_crypto_desc is used to copy original vring_desc to the local buffer * before processing (except the next index). The copy result will be an * array of vhost_crypto_desc elements that follows the sequence of original * vring_desc.next is arranged. */ #define vhost_crypto_desc vring_desc static int cipher_algo_transform(uint32_t virtio_cipher_algo, enum rte_crypto_cipher_algorithm *algo) { switch (virtio_cipher_algo) { case VIRTIO_CRYPTO_CIPHER_AES_CBC: *algo = RTE_CRYPTO_CIPHER_AES_CBC; break; case VIRTIO_CRYPTO_CIPHER_AES_CTR: *algo = RTE_CRYPTO_CIPHER_AES_CTR; break; case VIRTIO_CRYPTO_CIPHER_DES_ECB: *algo = -VIRTIO_CRYPTO_NOTSUPP; break; case VIRTIO_CRYPTO_CIPHER_DES_CBC: *algo = RTE_CRYPTO_CIPHER_DES_CBC; break; case VIRTIO_CRYPTO_CIPHER_3DES_ECB: *algo = RTE_CRYPTO_CIPHER_3DES_ECB; break; case VIRTIO_CRYPTO_CIPHER_3DES_CBC: *algo = RTE_CRYPTO_CIPHER_3DES_CBC; break; case VIRTIO_CRYPTO_CIPHER_3DES_CTR: *algo = RTE_CRYPTO_CIPHER_3DES_CTR; break; case VIRTIO_CRYPTO_CIPHER_KASUMI_F8: *algo = RTE_CRYPTO_CIPHER_KASUMI_F8; break; case VIRTIO_CRYPTO_CIPHER_SNOW3G_UEA2: *algo = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; break; case VIRTIO_CRYPTO_CIPHER_AES_F8: *algo = RTE_CRYPTO_CIPHER_AES_F8; break; case VIRTIO_CRYPTO_CIPHER_AES_XTS: *algo = RTE_CRYPTO_CIPHER_AES_XTS; break; case VIRTIO_CRYPTO_CIPHER_ZUC_EEA3: *algo = RTE_CRYPTO_CIPHER_ZUC_EEA3; break; default: return -VIRTIO_CRYPTO_BADMSG; break; } return 0; } static int auth_algo_transform(uint32_t virtio_auth_algo, enum rte_crypto_auth_algorithm *algo) { switch (virtio_auth_algo) { case VIRTIO_CRYPTO_NO_MAC: *algo = RTE_CRYPTO_AUTH_NULL; break; case VIRTIO_CRYPTO_MAC_HMAC_MD5: *algo = RTE_CRYPTO_AUTH_MD5_HMAC; break; case VIRTIO_CRYPTO_MAC_HMAC_SHA1: *algo = RTE_CRYPTO_AUTH_SHA1_HMAC; break; case VIRTIO_CRYPTO_MAC_HMAC_SHA_224: *algo = RTE_CRYPTO_AUTH_SHA224_HMAC; break; case VIRTIO_CRYPTO_MAC_HMAC_SHA_256: *algo = RTE_CRYPTO_AUTH_SHA256_HMAC; break; case VIRTIO_CRYPTO_MAC_HMAC_SHA_384: *algo = RTE_CRYPTO_AUTH_SHA384_HMAC; break; case VIRTIO_CRYPTO_MAC_HMAC_SHA_512: *algo = RTE_CRYPTO_AUTH_SHA512_HMAC; break; case VIRTIO_CRYPTO_MAC_CMAC_AES: *algo = RTE_CRYPTO_AUTH_AES_CMAC; break; case VIRTIO_CRYPTO_MAC_KASUMI_F9: *algo = RTE_CRYPTO_AUTH_KASUMI_F9; break; case VIRTIO_CRYPTO_MAC_SNOW3G_UIA2: *algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2; break; case VIRTIO_CRYPTO_MAC_GMAC_AES: *algo = RTE_CRYPTO_AUTH_AES_GMAC; break; case VIRTIO_CRYPTO_MAC_CBCMAC_AES: *algo = RTE_CRYPTO_AUTH_AES_CBC_MAC; break; case VIRTIO_CRYPTO_MAC_XCBC_AES: *algo = RTE_CRYPTO_AUTH_AES_XCBC_MAC; break; case VIRTIO_CRYPTO_MAC_CMAC_3DES: case VIRTIO_CRYPTO_MAC_GMAC_TWOFISH: case VIRTIO_CRYPTO_MAC_CBCMAC_KASUMI_F9: return -VIRTIO_CRYPTO_NOTSUPP; default: return -VIRTIO_CRYPTO_BADMSG; } return 0; } static int get_iv_len(enum rte_crypto_cipher_algorithm algo) { int len; switch (algo) { case RTE_CRYPTO_CIPHER_3DES_CBC: len = 8; break; case RTE_CRYPTO_CIPHER_3DES_CTR: len = 8; break; case RTE_CRYPTO_CIPHER_3DES_ECB: len = 8; break; case RTE_CRYPTO_CIPHER_AES_CBC: len = 16; break; /* TODO: add common algos */ default: len = -1; break; } return len; } /** * vhost_crypto struct is used to maintain a number of virtio_cryptos and * one DPDK crypto device that deals with all crypto workloads. It is declared * here and defined in vhost_crypto.c */ struct vhost_crypto { /** Used to lookup DPDK Cryptodev Session based on VIRTIO crypto * session ID. */ struct rte_hash *session_map; struct rte_mempool *mbuf_pool; struct rte_mempool *sess_pool; struct rte_mempool *sess_priv_pool; struct rte_mempool *wb_pool; /** DPDK cryptodev ID */ uint8_t cid; uint16_t nb_qps; uint64_t last_session_id; uint64_t cache_session_id; struct rte_cryptodev_sym_session *cache_session; /** socket id for the device */ int socket_id; struct virtio_net *dev; uint8_t option; } __rte_cache_aligned; struct vhost_crypto_writeback_data { uint8_t *src; uint8_t *dst; uint64_t len; struct vhost_crypto_writeback_data *next; }; struct vhost_crypto_data_req { struct vring_desc *head; struct virtio_net *dev; struct virtio_crypto_inhdr *inhdr; struct vhost_virtqueue *vq; struct vhost_crypto_writeback_data *wb; struct rte_mempool *wb_pool; uint16_t desc_idx; uint16_t len; uint16_t zero_copy; }; static int transform_cipher_param(struct rte_crypto_sym_xform *xform, VhostUserCryptoSessionParam *param) { int ret; ret = cipher_algo_transform(param->cipher_algo, &xform->cipher.algo); if (unlikely(ret < 0)) return ret; if (param->cipher_key_len > VHOST_USER_CRYPTO_MAX_CIPHER_KEY_LENGTH) { VC_LOG_DBG("Invalid cipher key length\n"); return -VIRTIO_CRYPTO_BADMSG; } xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; xform->cipher.key.length = param->cipher_key_len; if (xform->cipher.key.length > 0) xform->cipher.key.data = param->cipher_key_buf; if (param->dir == VIRTIO_CRYPTO_OP_ENCRYPT) xform->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; else if (param->dir == VIRTIO_CRYPTO_OP_DECRYPT) xform->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; else { VC_LOG_DBG("Bad operation type"); return -VIRTIO_CRYPTO_BADMSG; } ret = get_iv_len(xform->cipher.algo); if (unlikely(ret < 0)) return ret; xform->cipher.iv.length = (uint16_t)ret; xform->cipher.iv.offset = IV_OFFSET; return 0; } static int transform_chain_param(struct rte_crypto_sym_xform *xforms, VhostUserCryptoSessionParam *param) { struct rte_crypto_sym_xform *xform_cipher, *xform_auth; int ret; switch (param->chaining_dir) { case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER: xform_auth = xforms; xform_cipher = xforms->next; xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; break; case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH: xform_cipher = xforms; xform_auth = xforms->next; xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; break; default: return -VIRTIO_CRYPTO_BADMSG; } /* cipher */ ret = cipher_algo_transform(param->cipher_algo, &xform_cipher->cipher.algo); if (unlikely(ret < 0)) return ret; if (param->cipher_key_len > VHOST_USER_CRYPTO_MAX_CIPHER_KEY_LENGTH) { VC_LOG_DBG("Invalid cipher key length\n"); return -VIRTIO_CRYPTO_BADMSG; } xform_cipher->type = RTE_CRYPTO_SYM_XFORM_CIPHER; xform_cipher->cipher.key.length = param->cipher_key_len; xform_cipher->cipher.key.data = param->cipher_key_buf; ret = get_iv_len(xform_cipher->cipher.algo); if (unlikely(ret < 0)) return ret; xform_cipher->cipher.iv.length = (uint16_t)ret; xform_cipher->cipher.iv.offset = IV_OFFSET; /* auth */ xform_auth->type = RTE_CRYPTO_SYM_XFORM_AUTH; ret = auth_algo_transform(param->hash_algo, &xform_auth->auth.algo); if (unlikely(ret < 0)) return ret; if (param->auth_key_len > VHOST_USER_CRYPTO_MAX_HMAC_KEY_LENGTH) { VC_LOG_DBG("Invalid auth key length\n"); return -VIRTIO_CRYPTO_BADMSG; } xform_auth->auth.digest_length = param->digest_len; xform_auth->auth.key.length = param->auth_key_len; xform_auth->auth.key.data = param->auth_key_buf; return 0; } static void vhost_crypto_create_sess(struct vhost_crypto *vcrypto, VhostUserCryptoSessionParam *sess_param) { struct rte_crypto_sym_xform xform1 = {0}, xform2 = {0}; struct rte_cryptodev_sym_session *session; int ret; switch (sess_param->op_type) { case VIRTIO_CRYPTO_SYM_OP_NONE: case VIRTIO_CRYPTO_SYM_OP_CIPHER: ret = transform_cipher_param(&xform1, sess_param); if (unlikely(ret)) { VC_LOG_ERR("Error transform session msg (%i)", ret); sess_param->session_id = ret; return; } break; case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING: if (unlikely(sess_param->hash_mode != VIRTIO_CRYPTO_SYM_HASH_MODE_AUTH)) { sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP; VC_LOG_ERR("Error transform session message (%i)", -VIRTIO_CRYPTO_NOTSUPP); return; } xform1.next = &xform2; ret = transform_chain_param(&xform1, sess_param); if (unlikely(ret)) { VC_LOG_ERR("Error transform session message (%i)", ret); sess_param->session_id = ret; return; } break; default: VC_LOG_ERR("Algorithm not yet supported"); sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP; return; } session = rte_cryptodev_sym_session_create(vcrypto->sess_pool); if (!session) { VC_LOG_ERR("Failed to create session"); sess_param->session_id = -VIRTIO_CRYPTO_ERR; return; } if (rte_cryptodev_sym_session_init(vcrypto->cid, session, &xform1, vcrypto->sess_priv_pool) < 0) { VC_LOG_ERR("Failed to initialize session"); sess_param->session_id = -VIRTIO_CRYPTO_ERR; return; } /* insert hash to map */ if (rte_hash_add_key_data(vcrypto->session_map, &vcrypto->last_session_id, session) < 0) { VC_LOG_ERR("Failed to insert session to hash table"); if (rte_cryptodev_sym_session_clear(vcrypto->cid, session) < 0) VC_LOG_ERR("Failed to clear session"); else { if (rte_cryptodev_sym_session_free(session) < 0) VC_LOG_ERR("Failed to free session"); } sess_param->session_id = -VIRTIO_CRYPTO_ERR; return; } VC_LOG_INFO("Session %"PRIu64" created for vdev %i.", vcrypto->last_session_id, vcrypto->dev->vid); sess_param->session_id = vcrypto->last_session_id; vcrypto->last_session_id++; } static int vhost_crypto_close_sess(struct vhost_crypto *vcrypto, uint64_t session_id) { struct rte_cryptodev_sym_session *session; uint64_t sess_id = session_id; int ret; ret = rte_hash_lookup_data(vcrypto->session_map, &sess_id, (void **)&session); if (unlikely(ret < 0)) { VC_LOG_ERR("Failed to delete session %"PRIu64".", session_id); return -VIRTIO_CRYPTO_INVSESS; } if (rte_cryptodev_sym_session_clear(vcrypto->cid, session) < 0) { VC_LOG_DBG("Failed to clear session"); return -VIRTIO_CRYPTO_ERR; } if (rte_cryptodev_sym_session_free(session) < 0) { VC_LOG_DBG("Failed to free session"); return -VIRTIO_CRYPTO_ERR; } if (rte_hash_del_key(vcrypto->session_map, &sess_id) < 0) { VC_LOG_DBG("Failed to delete session from hash table."); return -VIRTIO_CRYPTO_ERR; } VC_LOG_INFO("Session %"PRIu64" deleted for vdev %i.", sess_id, vcrypto->dev->vid); return 0; } static enum rte_vhost_msg_result vhost_crypto_msg_post_handler(int vid, void *msg) { struct virtio_net *dev = get_device(vid); struct vhost_crypto *vcrypto; VhostUserMsg *vmsg = msg; enum rte_vhost_msg_result ret = RTE_VHOST_MSG_RESULT_OK; if (dev == NULL) { VC_LOG_ERR("Invalid vid %i", vid); return RTE_VHOST_MSG_RESULT_ERR; } vcrypto = dev->extern_data; if (vcrypto == NULL) { VC_LOG_ERR("Cannot find required data, is it initialized?"); return RTE_VHOST_MSG_RESULT_ERR; } switch (vmsg->request.master) { case VHOST_USER_CRYPTO_CREATE_SESS: vhost_crypto_create_sess(vcrypto, &vmsg->payload.crypto_session); vmsg->fd_num = 0; ret = RTE_VHOST_MSG_RESULT_REPLY; break; case VHOST_USER_CRYPTO_CLOSE_SESS: if (vhost_crypto_close_sess(vcrypto, vmsg->payload.u64)) ret = RTE_VHOST_MSG_RESULT_ERR; break; default: ret = RTE_VHOST_MSG_RESULT_NOT_HANDLED; break; } return ret; } static __rte_always_inline struct vhost_crypto_desc * find_write_desc(struct vhost_crypto_desc *head, struct vhost_crypto_desc *desc, uint32_t max_n_descs) { if (desc < head) return NULL; while (desc - head < (int)max_n_descs) { if (desc->flags & VRING_DESC_F_WRITE) return desc; desc++; } return NULL; } static __rte_always_inline struct virtio_crypto_inhdr * reach_inhdr(struct vhost_crypto_data_req *vc_req, struct vhost_crypto_desc *head, uint32_t max_n_descs) { struct virtio_crypto_inhdr *inhdr; struct vhost_crypto_desc *last = head + (max_n_descs - 1); uint64_t dlen = last->len; if (unlikely(dlen != sizeof(*inhdr))) return NULL; inhdr = IOVA_TO_VVA(struct virtio_crypto_inhdr *, vc_req, last->addr, &dlen, VHOST_ACCESS_WO); if (unlikely(!inhdr || dlen != last->len)) return NULL; return inhdr; } static __rte_always_inline int move_desc(struct vhost_crypto_desc *head, struct vhost_crypto_desc **cur_desc, uint32_t size, uint32_t max_n_descs) { struct vhost_crypto_desc *desc = *cur_desc; int left = size - desc->len; while (desc->flags & VRING_DESC_F_NEXT && left > 0 && desc >= head && desc - head < (int)max_n_descs) { desc++; left -= desc->len; } if (unlikely(left > 0)) return -1; if (unlikely(head - desc == (int)max_n_descs)) *cur_desc = NULL; else *cur_desc = desc + 1; return 0; } static __rte_always_inline void * get_data_ptr(struct vhost_crypto_data_req *vc_req, struct vhost_crypto_desc *cur_desc, uint8_t perm) { void *data; uint64_t dlen = cur_desc->len; data = IOVA_TO_VVA(void *, vc_req, cur_desc->addr, &dlen, perm); if (unlikely(!data || dlen != cur_desc->len)) { VC_LOG_ERR("Failed to map object"); return NULL; } return data; } static __rte_always_inline int copy_data(void *dst_data, struct vhost_crypto_data_req *vc_req, struct vhost_crypto_desc *head, struct vhost_crypto_desc **cur_desc, uint32_t size, uint32_t max_n_descs) { struct vhost_crypto_desc *desc = *cur_desc; uint64_t remain, addr, dlen, len; uint32_t to_copy; uint8_t *data = dst_data; uint8_t *src; int left = size; to_copy = RTE_MIN(desc->len, (uint32_t)left); dlen = to_copy; src = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!src || !dlen)) return -1; rte_memcpy((uint8_t *)data, src, dlen); data += dlen; if (unlikely(dlen < to_copy)) { remain = to_copy - dlen; addr = desc->addr + dlen; while (remain) { len = remain; src = IOVA_TO_VVA(uint8_t *, vc_req, addr, &len, VHOST_ACCESS_RO); if (unlikely(!src || !len)) { VC_LOG_ERR("Failed to map descriptor"); return -1; } rte_memcpy(data, src, len); addr += len; remain -= len; data += len; } } left -= to_copy; while (desc >= head && desc - head < (int)max_n_descs && left) { desc++; to_copy = RTE_MIN(desc->len, (uint32_t)left); dlen = to_copy; src = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!src || !dlen)) { VC_LOG_ERR("Failed to map descriptor"); return -1; } rte_memcpy(data, src, dlen); data += dlen; if (unlikely(dlen < to_copy)) { remain = to_copy - dlen; addr = desc->addr + dlen; while (remain) { len = remain; src = IOVA_TO_VVA(uint8_t *, vc_req, addr, &len, VHOST_ACCESS_RO); if (unlikely(!src || !len)) { VC_LOG_ERR("Failed to map descriptor"); return -1; } rte_memcpy(data, src, len); addr += len; remain -= len; data += len; } } left -= to_copy; } if (unlikely(left > 0)) { VC_LOG_ERR("Incorrect virtio descriptor"); return -1; } if (unlikely(desc - head == (int)max_n_descs)) *cur_desc = NULL; else *cur_desc = desc + 1; return 0; } static void write_back_data(struct vhost_crypto_data_req *vc_req) { struct vhost_crypto_writeback_data *wb_data = vc_req->wb, *wb_last; while (wb_data) { rte_memcpy(wb_data->dst, wb_data->src, wb_data->len); memset(wb_data->src, 0, wb_data->len); wb_last = wb_data; wb_data = wb_data->next; rte_mempool_put(vc_req->wb_pool, wb_last); } } static void free_wb_data(struct vhost_crypto_writeback_data *wb_data, struct rte_mempool *mp) { while (wb_data->next != NULL) free_wb_data(wb_data->next, mp); rte_mempool_put(mp, wb_data); } /** * The function will allocate a vhost_crypto_writeback_data linked list * containing the source and destination data pointers for the write back * operation after dequeued from Cryptodev PMD queues. * * @param vc_req * The vhost crypto data request pointer * @param cur_desc * The pointer of the current in use descriptor pointer. The content of * cur_desc is expected to be updated after the function execution. * @param end_wb_data * The last write back data element to be returned. It is used only in cipher * and hash chain operations. * @param src * The source data pointer * @param offset * The offset to both source and destination data. For source data the offset * is the number of bytes between src and start point of cipher operation. For * destination data the offset is the number of bytes from *cur_desc->addr * to the point where the src will be written to. * @param write_back_len * The size of the write back length. * @return * The pointer to the start of the write back data linked list. */ static __rte_always_inline struct vhost_crypto_writeback_data * prepare_write_back_data(struct vhost_crypto_data_req *vc_req, struct vhost_crypto_desc *head_desc, struct vhost_crypto_desc **cur_desc, struct vhost_crypto_writeback_data **end_wb_data, uint8_t *src, uint32_t offset, uint64_t write_back_len, uint32_t max_n_descs) { struct vhost_crypto_writeback_data *wb_data, *head; struct vhost_crypto_desc *desc = *cur_desc; uint64_t dlen; uint8_t *dst; int ret; ret = rte_mempool_get(vc_req->wb_pool, (void **)&head); if (unlikely(ret < 0)) { VC_LOG_ERR("no memory"); goto error_exit; } wb_data = head; if (likely(desc->len > offset)) { wb_data->src = src + offset; dlen = desc->len; dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen, VHOST_ACCESS_RW); if (unlikely(!dst || dlen != desc->len)) { VC_LOG_ERR("Failed to map descriptor"); goto error_exit; } wb_data->dst = dst + offset; wb_data->len = RTE_MIN(dlen - offset, write_back_len); write_back_len -= wb_data->len; src += offset + wb_data->len; offset = 0; if (unlikely(write_back_len)) { ret = rte_mempool_get(vc_req->wb_pool, (void **)&(wb_data->next)); if (unlikely(ret < 0)) { VC_LOG_ERR("no memory"); goto error_exit; } wb_data = wb_data->next; } else wb_data->next = NULL; } else offset -= desc->len; while (write_back_len && desc >= head_desc && desc - head_desc < (int)max_n_descs) { desc++; if (unlikely(!(desc->flags & VRING_DESC_F_WRITE))) { VC_LOG_ERR("incorrect descriptor"); goto error_exit; } if (desc->len <= offset) { offset -= desc->len; continue; } dlen = desc->len; dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen, VHOST_ACCESS_RW) + offset; if (unlikely(dst == NULL || dlen != desc->len)) { VC_LOG_ERR("Failed to map descriptor"); goto error_exit; } wb_data->src = src + offset; wb_data->dst = dst; wb_data->len = RTE_MIN(desc->len - offset, write_back_len); write_back_len -= wb_data->len; src += wb_data->len; offset = 0; if (write_back_len) { ret = rte_mempool_get(vc_req->wb_pool, (void **)&(wb_data->next)); if (unlikely(ret < 0)) { VC_LOG_ERR("no memory"); goto error_exit; } wb_data = wb_data->next; } else wb_data->next = NULL; } if (unlikely(desc - head_desc == (int)max_n_descs)) *cur_desc = NULL; else *cur_desc = desc + 1; *end_wb_data = wb_data; return head; error_exit: if (head) free_wb_data(head, vc_req->wb_pool); return NULL; } static __rte_always_inline uint8_t vhost_crypto_check_cipher_request(struct virtio_crypto_cipher_data_req *req) { if (likely((req->para.iv_len <= VHOST_CRYPTO_MAX_IV_LEN) && (req->para.src_data_len <= RTE_MBUF_DEFAULT_BUF_SIZE) && (req->para.dst_data_len >= req->para.src_data_len) && (req->para.dst_data_len <= RTE_MBUF_DEFAULT_BUF_SIZE))) return VIRTIO_CRYPTO_OK; return VIRTIO_CRYPTO_BADMSG; } static __rte_always_inline uint8_t prepare_sym_cipher_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op, struct vhost_crypto_data_req *vc_req, struct virtio_crypto_cipher_data_req *cipher, struct vhost_crypto_desc *head, uint32_t max_n_descs) { struct vhost_crypto_desc *desc = head; struct vhost_crypto_writeback_data *ewb = NULL; struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst; uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); uint8_t ret = vhost_crypto_check_cipher_request(cipher); if (unlikely(ret != VIRTIO_CRYPTO_OK)) goto error_exit; /* prepare */ /* iv */ if (unlikely(copy_data(iv_data, vc_req, head, &desc, cipher->para.iv_len, max_n_descs))) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } switch (vcrypto->option) { case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: m_src->data_len = cipher->para.src_data_len; m_src->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr, cipher->para.src_data_len); m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO); if (unlikely(m_src->buf_iova == 0 || m_src->buf_addr == NULL)) { VC_LOG_ERR("zero_copy may fail due to cross page data"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(move_desc(head, &desc, cipher->para.src_data_len, max_n_descs) < 0)) { VC_LOG_ERR("Incorrect descriptor"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } break; case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: vc_req->wb_pool = vcrypto->wb_pool; m_src->data_len = cipher->para.src_data_len; if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *), vc_req, head, &desc, cipher->para.src_data_len, max_n_descs) < 0)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } break; default: ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } /* dst */ desc = find_write_desc(head, desc, max_n_descs); if (unlikely(!desc)) { VC_LOG_ERR("Cannot find write location"); ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } switch (vcrypto->option) { case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: m_dst->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr, cipher->para.dst_data_len); m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW); if (unlikely(m_dst->buf_iova == 0 || m_dst->buf_addr == NULL)) { VC_LOG_ERR("zero_copy may fail due to cross page data"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(move_desc(head, &desc, cipher->para.dst_data_len, max_n_descs) < 0)) { VC_LOG_ERR("Incorrect descriptor"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } m_dst->data_len = cipher->para.dst_data_len; break; case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: vc_req->wb = prepare_write_back_data(vc_req, head, &desc, &ewb, rte_pktmbuf_mtod(m_src, uint8_t *), 0, cipher->para.dst_data_len, max_n_descs); if (unlikely(vc_req->wb == NULL)) { ret = VIRTIO_CRYPTO_ERR; goto error_exit; } break; default: ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } /* src data */ op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; op->sym->cipher.data.offset = 0; op->sym->cipher.data.length = cipher->para.src_data_len; vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO); if (unlikely(vc_req->inhdr == NULL)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } vc_req->inhdr->status = VIRTIO_CRYPTO_OK; vc_req->len = cipher->para.dst_data_len + INHDR_LEN; return 0; error_exit: if (vc_req->wb) free_wb_data(vc_req->wb, vc_req->wb_pool); vc_req->len = INHDR_LEN; return ret; } static __rte_always_inline uint8_t vhost_crypto_check_chain_request(struct virtio_crypto_alg_chain_data_req *req) { if (likely((req->para.iv_len <= VHOST_CRYPTO_MAX_IV_LEN) && (req->para.src_data_len <= VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.dst_data_len >= req->para.src_data_len) && (req->para.dst_data_len <= VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.cipher_start_src_offset < VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.len_to_cipher <= VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.hash_start_src_offset < VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.len_to_hash <= VHOST_CRYPTO_MAX_DATA_SIZE) && (req->para.cipher_start_src_offset + req->para.len_to_cipher <= req->para.src_data_len) && (req->para.hash_start_src_offset + req->para.len_to_hash <= req->para.src_data_len) && (req->para.dst_data_len + req->para.hash_result_len <= VHOST_CRYPTO_MAX_DATA_SIZE))) return VIRTIO_CRYPTO_OK; return VIRTIO_CRYPTO_BADMSG; } static __rte_always_inline uint8_t prepare_sym_chain_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op, struct vhost_crypto_data_req *vc_req, struct virtio_crypto_alg_chain_data_req *chain, struct vhost_crypto_desc *head, uint32_t max_n_descs) { struct vhost_crypto_desc *desc = head, *digest_desc; struct vhost_crypto_writeback_data *ewb = NULL, *ewb2 = NULL; struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst; uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); uint32_t digest_offset; void *digest_addr; uint8_t ret = vhost_crypto_check_chain_request(chain); if (unlikely(ret != VIRTIO_CRYPTO_OK)) goto error_exit; /* prepare */ /* iv */ if (unlikely(copy_data(iv_data, vc_req, head, &desc, chain->para.iv_len, max_n_descs) < 0)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } switch (vcrypto->option) { case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: m_src->data_len = chain->para.src_data_len; m_dst->data_len = chain->para.dst_data_len; m_src->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr, chain->para.src_data_len); m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO); if (unlikely(m_src->buf_iova == 0 || m_src->buf_addr == NULL)) { VC_LOG_ERR("zero_copy may fail due to cross page data"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(move_desc(head, &desc, chain->para.src_data_len, max_n_descs) < 0)) { VC_LOG_ERR("Incorrect descriptor"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } break; case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: vc_req->wb_pool = vcrypto->wb_pool; m_src->data_len = chain->para.src_data_len; if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *), vc_req, head, &desc, chain->para.src_data_len, max_n_descs) < 0)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } break; default: ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } /* dst */ desc = find_write_desc(head, desc, max_n_descs); if (unlikely(!desc)) { VC_LOG_ERR("Cannot find write location"); ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } switch (vcrypto->option) { case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: m_dst->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr, chain->para.dst_data_len); m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW); if (unlikely(m_dst->buf_iova == 0 || m_dst->buf_addr == NULL)) { VC_LOG_ERR("zero_copy may fail due to cross page data"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(move_desc(vc_req->head, &desc, chain->para.dst_data_len, max_n_descs) < 0)) { VC_LOG_ERR("Incorrect descriptor"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } op->sym->auth.digest.phys_addr = gpa_to_hpa(vcrypto->dev, desc->addr, chain->para.hash_result_len); op->sym->auth.digest.data = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW); if (unlikely(op->sym->auth.digest.phys_addr == 0)) { VC_LOG_ERR("zero_copy may fail due to cross page data"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(move_desc(head, &desc, chain->para.hash_result_len, max_n_descs) < 0)) { VC_LOG_ERR("Incorrect descriptor"); ret = VIRTIO_CRYPTO_ERR; goto error_exit; } break; case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: vc_req->wb = prepare_write_back_data(vc_req, head, &desc, &ewb, rte_pktmbuf_mtod(m_src, uint8_t *), chain->para.cipher_start_src_offset, chain->para.dst_data_len - chain->para.cipher_start_src_offset, max_n_descs); if (unlikely(vc_req->wb == NULL)) { ret = VIRTIO_CRYPTO_ERR; goto error_exit; } digest_desc = desc; digest_offset = m_src->data_len; digest_addr = rte_pktmbuf_mtod_offset(m_src, void *, digest_offset); /** create a wb_data for digest */ ewb->next = prepare_write_back_data(vc_req, head, &desc, &ewb2, digest_addr, 0, chain->para.hash_result_len, max_n_descs); if (unlikely(ewb->next == NULL)) { ret = VIRTIO_CRYPTO_ERR; goto error_exit; } if (unlikely(copy_data(digest_addr, vc_req, head, &digest_desc, chain->para.hash_result_len, max_n_descs) < 0)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } op->sym->auth.digest.data = digest_addr; op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m_src, digest_offset); break; default: ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } /* record inhdr */ vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO); if (unlikely(vc_req->inhdr == NULL)) { ret = VIRTIO_CRYPTO_BADMSG; goto error_exit; } vc_req->inhdr->status = VIRTIO_CRYPTO_OK; op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; op->sym->cipher.data.offset = chain->para.cipher_start_src_offset; op->sym->cipher.data.length = chain->para.src_data_len - chain->para.cipher_start_src_offset; op->sym->auth.data.offset = chain->para.hash_start_src_offset; op->sym->auth.data.length = chain->para.len_to_hash; vc_req->len = chain->para.dst_data_len + chain->para.hash_result_len + INHDR_LEN; return 0; error_exit: if (vc_req->wb) free_wb_data(vc_req->wb, vc_req->wb_pool); vc_req->len = INHDR_LEN; return ret; } /** * Process on descriptor */ static __rte_always_inline int vhost_crypto_process_one_req(struct vhost_crypto *vcrypto, struct vhost_virtqueue *vq, struct rte_crypto_op *op, struct vring_desc *head, struct vhost_crypto_desc *descs, uint16_t desc_idx) { struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(op->sym->m_src); struct rte_cryptodev_sym_session *session; struct virtio_crypto_op_data_req req; struct virtio_crypto_inhdr *inhdr; struct vhost_crypto_desc *desc = descs; struct vring_desc *src_desc; uint64_t session_id; uint64_t dlen; uint32_t nb_descs = 0, max_n_descs, i; int err; vc_req->desc_idx = desc_idx; vc_req->dev = vcrypto->dev; vc_req->vq = vq; if (unlikely((head->flags & VRING_DESC_F_INDIRECT) == 0)) { VC_LOG_ERR("Invalid descriptor"); return -1; } dlen = head->len; src_desc = IOVA_TO_VVA(struct vring_desc *, vc_req, head->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!src_desc || dlen != head->len)) { VC_LOG_ERR("Invalid descriptor"); return -1; } head = src_desc; nb_descs = max_n_descs = dlen / sizeof(struct vring_desc); if (unlikely(nb_descs > VHOST_CRYPTO_MAX_N_DESC || nb_descs == 0)) { err = VIRTIO_CRYPTO_ERR; VC_LOG_ERR("Cannot process num of descriptors %u", nb_descs); if (nb_descs > 0) { struct vring_desc *inhdr_desc = head; while (inhdr_desc->flags & VRING_DESC_F_NEXT) { if (inhdr_desc->next >= max_n_descs) return -1; inhdr_desc = &head[inhdr_desc->next]; } if (inhdr_desc->len != sizeof(*inhdr)) return -1; inhdr = IOVA_TO_VVA(struct virtio_crypto_inhdr *, vc_req, inhdr_desc->addr, &dlen, VHOST_ACCESS_WO); if (unlikely(!inhdr || dlen != inhdr_desc->len)) return -1; inhdr->status = VIRTIO_CRYPTO_ERR; return -1; } } /* copy descriptors to local variable */ for (i = 0; i < max_n_descs; i++) { desc->addr = src_desc->addr; desc->len = src_desc->len; desc->flags = src_desc->flags; desc++; if (unlikely((src_desc->flags & VRING_DESC_F_NEXT) == 0)) break; if (unlikely(src_desc->next >= max_n_descs)) { err = VIRTIO_CRYPTO_BADMSG; VC_LOG_ERR("Invalid descriptor"); goto error_exit; } src_desc = &head[src_desc->next]; } vc_req->head = head; vc_req->zero_copy = vcrypto->option; nb_descs = desc - descs; desc = descs; if (unlikely(desc->len < sizeof(req))) { err = VIRTIO_CRYPTO_BADMSG; VC_LOG_ERR("Invalid descriptor"); goto error_exit; } if (unlikely(copy_data(&req, vc_req, descs, &desc, sizeof(req), max_n_descs) < 0)) { err = VIRTIO_CRYPTO_BADMSG; VC_LOG_ERR("Invalid descriptor"); goto error_exit; } /* desc is advanced by 1 now */ max_n_descs -= 1; switch (req.header.opcode) { case VIRTIO_CRYPTO_CIPHER_ENCRYPT: case VIRTIO_CRYPTO_CIPHER_DECRYPT: session_id = req.header.session_id; /* one branch to avoid unnecessary table lookup */ if (vcrypto->cache_session_id != session_id) { err = rte_hash_lookup_data(vcrypto->session_map, &session_id, (void **)&session); if (unlikely(err < 0)) { err = VIRTIO_CRYPTO_ERR; VC_LOG_ERR("Failed to find session %"PRIu64, session_id); goto error_exit; } vcrypto->cache_session = session; vcrypto->cache_session_id = session_id; } session = vcrypto->cache_session; err = rte_crypto_op_attach_sym_session(op, session); if (unlikely(err < 0)) { err = VIRTIO_CRYPTO_ERR; VC_LOG_ERR("Failed to attach session to op"); goto error_exit; } switch (req.u.sym_req.op_type) { case VIRTIO_CRYPTO_SYM_OP_NONE: err = VIRTIO_CRYPTO_NOTSUPP; break; case VIRTIO_CRYPTO_SYM_OP_CIPHER: err = prepare_sym_cipher_op(vcrypto, op, vc_req, &req.u.sym_req.u.cipher, desc, max_n_descs); break; case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING: err = prepare_sym_chain_op(vcrypto, op, vc_req, &req.u.sym_req.u.chain, desc, max_n_descs); break; } if (unlikely(err != 0)) { VC_LOG_ERR("Failed to process sym request"); goto error_exit; } break; default: err = VIRTIO_CRYPTO_ERR; VC_LOG_ERR("Unsupported symmetric crypto request type %u", req.header.opcode); goto error_exit; } return 0; error_exit: inhdr = reach_inhdr(vc_req, descs, max_n_descs); if (likely(inhdr != NULL)) inhdr->status = (uint8_t)err; return -1; } static __rte_always_inline struct vhost_virtqueue * vhost_crypto_finalize_one_request(struct rte_crypto_op *op, struct vhost_virtqueue *old_vq) { struct rte_mbuf *m_src = op->sym->m_src; struct rte_mbuf *m_dst = op->sym->m_dst; struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(m_src); struct vhost_virtqueue *vq; uint16_t used_idx, desc_idx; if (unlikely(!vc_req)) { VC_LOG_ERR("Failed to retrieve vc_req"); return NULL; } vq = vc_req->vq; used_idx = vc_req->desc_idx; if (old_vq && (vq != old_vq)) return vq; if (unlikely(op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)) vc_req->inhdr->status = VIRTIO_CRYPTO_ERR; else { if (vc_req->zero_copy == 0) write_back_data(vc_req); } desc_idx = vq->avail->ring[used_idx]; vq->used->ring[desc_idx].id = vq->avail->ring[desc_idx]; vq->used->ring[desc_idx].len = vc_req->len; rte_mempool_put(m_src->pool, (void *)m_src); if (m_dst) rte_mempool_put(m_dst->pool, (void *)m_dst); return vc_req->vq; } static __rte_always_inline uint16_t vhost_crypto_complete_one_vm_requests(struct rte_crypto_op **ops, uint16_t nb_ops, int *callfd) { uint16_t processed = 1; struct vhost_virtqueue *vq, *tmp_vq; if (unlikely(nb_ops == 0)) return 0; vq = vhost_crypto_finalize_one_request(ops[0], NULL); if (unlikely(vq == NULL)) return 0; tmp_vq = vq; while ((processed < nb_ops)) { tmp_vq = vhost_crypto_finalize_one_request(ops[processed], tmp_vq); if (unlikely(vq != tmp_vq)) break; processed++; } *callfd = vq->callfd; *(volatile uint16_t *)&vq->used->idx += processed; return processed; } int rte_vhost_crypto_driver_start(const char *path) { uint64_t protocol_features; int ret; ret = rte_vhost_driver_set_features(path, VIRTIO_CRYPTO_FEATURES); if (ret) return -1; ret = rte_vhost_driver_get_protocol_features(path, &protocol_features); if (ret) return -1; protocol_features |= (1ULL << VHOST_USER_PROTOCOL_F_CONFIG); ret = rte_vhost_driver_set_protocol_features(path, protocol_features); if (ret) return -1; return rte_vhost_driver_start(path); } int rte_vhost_crypto_create(int vid, uint8_t cryptodev_id, struct rte_mempool *sess_pool, struct rte_mempool *sess_priv_pool, int socket_id) { struct virtio_net *dev = get_device(vid); struct rte_hash_parameters params = {0}; struct vhost_crypto *vcrypto; char name[128]; int ret; if (!dev) { VC_LOG_ERR("Invalid vid %i", vid); return -EINVAL; } vcrypto = rte_zmalloc_socket(NULL, sizeof(*vcrypto), RTE_CACHE_LINE_SIZE, socket_id); if (!vcrypto) { VC_LOG_ERR("Insufficient memory"); return -ENOMEM; } vcrypto->sess_pool = sess_pool; vcrypto->sess_priv_pool = sess_priv_pool; vcrypto->cid = cryptodev_id; vcrypto->cache_session_id = UINT64_MAX; vcrypto->last_session_id = 1; vcrypto->dev = dev; vcrypto->option = RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE; snprintf(name, 127, "HASH_VHOST_CRYPT_%u", (uint32_t)vid); params.name = name; params.entries = VHOST_CRYPTO_SESSION_MAP_ENTRIES; params.hash_func = rte_jhash; params.key_len = sizeof(uint64_t); params.socket_id = socket_id; vcrypto->session_map = rte_hash_create(¶ms); if (!vcrypto->session_map) { VC_LOG_ERR("Failed to creath session map"); ret = -ENOMEM; goto error_exit; } snprintf(name, 127, "MBUF_POOL_VM_%u", (uint32_t)vid); vcrypto->mbuf_pool = rte_pktmbuf_pool_create(name, VHOST_CRYPTO_MBUF_POOL_SIZE, 512, sizeof(struct vhost_crypto_data_req), VHOST_CRYPTO_MAX_DATA_SIZE + RTE_PKTMBUF_HEADROOM, rte_socket_id()); if (!vcrypto->mbuf_pool) { VC_LOG_ERR("Failed to creath mbuf pool"); ret = -ENOMEM; goto error_exit; } snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid); vcrypto->wb_pool = rte_mempool_create(name, VHOST_CRYPTO_MBUF_POOL_SIZE, sizeof(struct vhost_crypto_writeback_data), 128, 0, NULL, NULL, NULL, NULL, rte_socket_id(), 0); if (!vcrypto->wb_pool) { VC_LOG_ERR("Failed to creath mempool"); ret = -ENOMEM; goto error_exit; } dev->extern_data = vcrypto; dev->extern_ops.pre_msg_handle = NULL; dev->extern_ops.post_msg_handle = vhost_crypto_msg_post_handler; return 0; error_exit: if (vcrypto->session_map) rte_hash_free(vcrypto->session_map); if (vcrypto->mbuf_pool) rte_mempool_free(vcrypto->mbuf_pool); rte_free(vcrypto); return ret; } int rte_vhost_crypto_free(int vid) { struct virtio_net *dev = get_device(vid); struct vhost_crypto *vcrypto; if (unlikely(dev == NULL)) { VC_LOG_ERR("Invalid vid %i", vid); return -EINVAL; } vcrypto = dev->extern_data; if (unlikely(vcrypto == NULL)) { VC_LOG_ERR("Cannot find required data, is it initialized?"); return -ENOENT; } rte_hash_free(vcrypto->session_map); rte_mempool_free(vcrypto->mbuf_pool); rte_mempool_free(vcrypto->wb_pool); rte_free(vcrypto); dev->extern_data = NULL; dev->extern_ops.pre_msg_handle = NULL; dev->extern_ops.post_msg_handle = NULL; return 0; } int rte_vhost_crypto_set_zero_copy(int vid, enum rte_vhost_crypto_zero_copy option) { struct virtio_net *dev = get_device(vid); struct vhost_crypto *vcrypto; if (unlikely(dev == NULL)) { VC_LOG_ERR("Invalid vid %i", vid); return -EINVAL; } if (unlikely((uint32_t)option >= RTE_VHOST_CRYPTO_MAX_ZERO_COPY_OPTIONS)) { VC_LOG_ERR("Invalid option %i", option); return -EINVAL; } vcrypto = (struct vhost_crypto *)dev->extern_data; if (unlikely(vcrypto == NULL)) { VC_LOG_ERR("Cannot find required data, is it initialized?"); return -ENOENT; } if (vcrypto->option == (uint8_t)option) return 0; if (!(rte_mempool_full(vcrypto->mbuf_pool)) || !(rte_mempool_full(vcrypto->wb_pool))) { VC_LOG_ERR("Cannot update zero copy as mempool is not full"); return -EINVAL; } if (option == RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE) { char name[128]; snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid); vcrypto->wb_pool = rte_mempool_create(name, VHOST_CRYPTO_MBUF_POOL_SIZE, sizeof(struct vhost_crypto_writeback_data), 128, 0, NULL, NULL, NULL, NULL, rte_socket_id(), 0); if (!vcrypto->wb_pool) { VC_LOG_ERR("Failed to creath mbuf pool"); return -ENOMEM; } } else { rte_mempool_free(vcrypto->wb_pool); vcrypto->wb_pool = NULL; } vcrypto->option = (uint8_t)option; return 0; } uint16_t rte_vhost_crypto_fetch_requests(int vid, uint32_t qid, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_mbuf *mbufs[VHOST_CRYPTO_MAX_BURST_SIZE * 2]; struct vhost_crypto_desc descs[VHOST_CRYPTO_MAX_N_DESC]; struct virtio_net *dev = get_device(vid); struct vhost_crypto *vcrypto; struct vhost_virtqueue *vq; uint16_t avail_idx; uint16_t start_idx; uint16_t count; uint16_t i = 0; if (unlikely(dev == NULL)) { VC_LOG_ERR("Invalid vid %i", vid); return 0; } if (unlikely(qid >= VHOST_MAX_QUEUE_PAIRS)) { VC_LOG_ERR("Invalid qid %u", qid); return 0; } vcrypto = (struct vhost_crypto *)dev->extern_data; if (unlikely(vcrypto == NULL)) { VC_LOG_ERR("Cannot find required data, is it initialized?"); return 0; } vq = dev->virtqueue[qid]; avail_idx = *((volatile uint16_t *)&vq->avail->idx); start_idx = vq->last_used_idx; count = avail_idx - start_idx; count = RTE_MIN(count, VHOST_CRYPTO_MAX_BURST_SIZE); count = RTE_MIN(count, nb_ops); if (unlikely(count == 0)) return 0; /* for zero copy, we need 2 empty mbufs for src and dst, otherwise * we need only 1 mbuf as src and dst */ switch (vcrypto->option) { case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool, (void **)mbufs, count * 2) < 0)) { VC_LOG_ERR("Insufficient memory"); return 0; } for (i = 0; i < count; i++) { uint16_t used_idx = (start_idx + i) & (vq->size - 1); uint16_t desc_idx = vq->avail->ring[used_idx]; struct vring_desc *head = &vq->desc[desc_idx]; struct rte_crypto_op *op = ops[i]; op->sym->m_src = mbufs[i * 2]; op->sym->m_dst = mbufs[i * 2 + 1]; op->sym->m_src->data_off = 0; op->sym->m_dst->data_off = 0; if (unlikely(vhost_crypto_process_one_req(vcrypto, vq, op, head, descs, used_idx) < 0)) break; } if (unlikely(i < count)) rte_mempool_put_bulk(vcrypto->mbuf_pool, (void **)&mbufs[i * 2], (count - i) * 2); break; case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool, (void **)mbufs, count) < 0)) { VC_LOG_ERR("Insufficient memory"); return 0; } for (i = 0; i < count; i++) { uint16_t used_idx = (start_idx + i) & (vq->size - 1); uint16_t desc_idx = vq->avail->ring[used_idx]; struct vring_desc *head = &vq->desc[desc_idx]; struct rte_crypto_op *op = ops[i]; op->sym->m_src = mbufs[i]; op->sym->m_dst = NULL; op->sym->m_src->data_off = 0; if (unlikely(vhost_crypto_process_one_req(vcrypto, vq, op, head, descs, desc_idx) < 0)) break; } if (unlikely(i < count)) rte_mempool_put_bulk(vcrypto->mbuf_pool, (void **)&mbufs[i], count - i); break; } vq->last_used_idx += i; return i; } uint16_t rte_vhost_crypto_finalize_requests(struct rte_crypto_op **ops, uint16_t nb_ops, int *callfds, uint16_t *nb_callfds) { struct rte_crypto_op **tmp_ops = ops; uint16_t count = 0, left = nb_ops; int callfd; uint16_t idx = 0; while (left) { count = vhost_crypto_complete_one_vm_requests(tmp_ops, left, &callfd); if (unlikely(count == 0)) break; tmp_ops = &tmp_ops[count]; left -= count; callfds[idx++] = callfd; if (unlikely(idx >= VIRTIO_CRYPTO_MAX_NUM_BURST_VQS)) { VC_LOG_ERR("Too many vqs"); break; } } *nb_callfds = idx; return nb_ops - left; }