/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2022 Intel Corporation * Implements SFF-8024 Rev 4.0 of pluggable I/O configuration and some * common utilities for SFF-8436/8636 and SFF-8472/8079 */ #include #include "sff_common.h" double sff_convert_mw_to_dbm(double mw) { return (10. * log10(mw / 1000.)) + 30.; } void sff_show_value_with_unit(const uint8_t *data, unsigned int reg, const char *name, unsigned int mult, const char *unit, struct rte_tel_data *d) { unsigned int val = data[reg]; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "%u%s", val * mult, unit); ssf_add_dict_string(d, name, val_string); } void sff_show_ascii(const uint8_t *data, unsigned int first_reg, unsigned int last_reg, const char *name, struct rte_tel_data *d) { unsigned int reg, val; char tmp[3]; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; memset(val_string, 0, sizeof(val_string)); while (first_reg <= last_reg && data[last_reg] == ' ') last_reg--; for (reg = first_reg; reg <= last_reg; reg++) { val = data[reg]; if ((val >= 32) && (val <= 126)) { snprintf(tmp, sizeof(tmp), "%c", val); strlcat(val_string, tmp, sizeof(val_string)); } else { strlcat(val_string, "_", sizeof(val_string)); } } ssf_add_dict_string(d, name, val_string); } void sff_8024_show_oui(const uint8_t *data, int id_offset, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "%02x:%02x:%02x", data[id_offset], data[(id_offset) + 1], data[(id_offset) + 2]); ssf_add_dict_string(d, "Vendor OUI", val_string); } void sff_8024_show_identifier(const uint8_t *data, int id_offset, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x", data[id_offset]); switch (data[id_offset]) { case SFF_8024_ID_UNKNOWN: strlcat(val_string, " (no module present, unknown, or unspecified)", sizeof(val_string)); break; case SFF_8024_ID_GBIC: strlcat(val_string, " (GBIC)", sizeof(val_string)); break; case SFF_8024_ID_SOLDERED_MODULE: strlcat(val_string, " (module soldered to motherboard)", sizeof(val_string)); break; case SFF_8024_ID_SFP: strlcat(val_string, " (SFP)", sizeof(val_string)); break; case SFF_8024_ID_300_PIN_XBI: strlcat(val_string, " (300 pin XBI)", sizeof(val_string)); break; case SFF_8024_ID_XENPAK: strlcat(val_string, " (XENPAK)", sizeof(val_string)); break; case SFF_8024_ID_XFP: strlcat(val_string, " (XFP)", sizeof(val_string)); break; case SFF_8024_ID_XFF: strlcat(val_string, " (XFF)", sizeof(val_string)); break; case SFF_8024_ID_XFP_E: strlcat(val_string, " (XFP-E)", sizeof(val_string)); break; case SFF_8024_ID_XPAK: strlcat(val_string, " (XPAK)", sizeof(val_string)); break; case SFF_8024_ID_X2: strlcat(val_string, " (X2)", sizeof(val_string)); break; case SFF_8024_ID_DWDM_SFP: strlcat(val_string, " (DWDM-SFP)", sizeof(val_string)); break; case SFF_8024_ID_QSFP: strlcat(val_string, " (QSFP)", sizeof(val_string)); break; case SFF_8024_ID_QSFP_PLUS: strlcat(val_string, " (QSFP+)", sizeof(val_string)); break; case SFF_8024_ID_CXP: strlcat(val_string, " (CXP)", sizeof(val_string)); break; case SFF_8024_ID_HD4X: strlcat(val_string, " (Shielded Mini Multilane HD 4X)", sizeof(val_string)); break; case SFF_8024_ID_HD8X: strlcat(val_string, " (Shielded Mini Multilane HD 8X)", sizeof(val_string)); break; case SFF_8024_ID_QSFP28: strlcat(val_string, " (QSFP28)", sizeof(val_string)); break; case SFF_8024_ID_CXP2: strlcat(val_string, " (CXP2/CXP28)", sizeof(val_string)); break; case SFF_8024_ID_CDFP: strlcat(val_string, " (CDFP Style 1/Style 2)", sizeof(val_string)); break; case SFF_8024_ID_HD4X_FANOUT: strlcat(val_string, " (Shielded Mini Multilane HD 4X Fanout Cable)", sizeof(val_string)); break; case SFF_8024_ID_HD8X_FANOUT: strlcat(val_string, " (Shielded Mini Multilane HD 8X Fanout Cable)", sizeof(val_string)); break; case SFF_8024_ID_CDFP_S3: strlcat(val_string, " (CDFP Style 3)", sizeof(val_string)); break; case SFF_8024_ID_MICRO_QSFP: strlcat(val_string, " (microQSFP)", sizeof(val_string)); break; default: strlcat(val_string, " (reserved or unknown)", sizeof(val_string)); break; } ssf_add_dict_string(d, "Identifier", val_string); } void sff_8024_show_connector(const uint8_t *data, int ctor_offset, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x", data[ctor_offset]); switch (data[ctor_offset]) { case SFF_8024_CTOR_UNKNOWN: strlcat(val_string, " (unknown or unspecified)", sizeof(val_string)); break; case SFF_8024_CTOR_SC: strlcat(val_string, " (SC)", sizeof(val_string)); break; case SFF_8024_CTOR_FC_STYLE_1: strlcat(val_string, " (Fibre Channel Style 1 copper)", sizeof(val_string)); break; case SFF_8024_CTOR_FC_STYLE_2: strlcat(val_string, " (Fibre Channel Style 2 copper)", sizeof(val_string)); break; case SFF_8024_CTOR_BNC_TNC: strlcat(val_string, " (BNC/TNC)", sizeof(val_string)); break; case SFF_8024_CTOR_FC_COAX: strlcat(val_string, " (Fibre Channel coaxial headers)", sizeof(val_string)); break; case SFF_8024_CTOR_FIBER_JACK: strlcat(val_string, " (FibreJack)", sizeof(val_string)); break; case SFF_8024_CTOR_LC: strlcat(val_string, " (LC)", sizeof(val_string)); break; case SFF_8024_CTOR_MT_RJ: strlcat(val_string, " (MT-RJ)", sizeof(val_string)); break; case SFF_8024_CTOR_MU: strlcat(val_string, " (MU)", sizeof(val_string)); break; case SFF_8024_CTOR_SG: strlcat(val_string, " (SG)", sizeof(val_string)); break; case SFF_8024_CTOR_OPT_PT: strlcat(val_string, " (Optical pigtail)", sizeof(val_string)); break; case SFF_8024_CTOR_MPO: strlcat(val_string, " (MPO Parallel Optic)", sizeof(val_string)); break; case SFF_8024_CTOR_MPO_2: strlcat(val_string, " (MPO Parallel Optic - 2x16)", sizeof(val_string)); break; case SFF_8024_CTOR_HSDC_II: strlcat(val_string, " (HSSDC II)", sizeof(val_string)); break; case SFF_8024_CTOR_COPPER_PT: strlcat(val_string, " (Copper pigtail)", sizeof(val_string)); break; case SFF_8024_CTOR_RJ45: strlcat(val_string, " (RJ45)", sizeof(val_string)); break; case SFF_8024_CTOR_NO_SEPARABLE: strlcat(val_string, " (No separable connector)", sizeof(val_string)); break; case SFF_8024_CTOR_MXC_2x16: strlcat(val_string, " (MXC 2x16)", sizeof(val_string)); break; default: strlcat(val_string, " (reserved or unknown)", sizeof(val_string)); break; } ssf_add_dict_string(d, "Connector", val_string); } void sff_8024_show_encoding(const uint8_t *data, int encoding_offset, int sff_type, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x", data[encoding_offset]); switch (data[encoding_offset]) { case SFF_8024_ENCODING_UNSPEC: strlcat(val_string, " (unspecified)", sizeof(val_string)); break; case SFF_8024_ENCODING_8B10B: strlcat(val_string, " (8B/10B)", sizeof(val_string)); break; case SFF_8024_ENCODING_4B5B: strlcat(val_string, " (4B/5B)", sizeof(val_string)); break; case SFF_8024_ENCODING_NRZ: strlcat(val_string, " (NRZ)", sizeof(val_string)); break; case SFF_8024_ENCODING_4h: if (sff_type == RTE_ETH_MODULE_SFF_8472) strlcat(val_string, " (Manchester)", sizeof(val_string)); else if (sff_type == RTE_ETH_MODULE_SFF_8636) strlcat(val_string, " (SONET Scrambled)", sizeof(val_string)); break; case SFF_8024_ENCODING_5h: if (sff_type == RTE_ETH_MODULE_SFF_8472) strlcat(val_string, " (SONET Scrambled)", sizeof(val_string)); else if (sff_type == RTE_ETH_MODULE_SFF_8636) strlcat(val_string, " (64B/66B)", sizeof(val_string)); break; case SFF_8024_ENCODING_6h: if (sff_type == RTE_ETH_MODULE_SFF_8472) strlcat(val_string, " (64B/66B)", sizeof(val_string)); else if (sff_type == RTE_ETH_MODULE_SFF_8636) strlcat(val_string, " (Manchester)", sizeof(val_string)); break; case SFF_8024_ENCODING_256B: strlcat(val_string, " ((256B/257B (transcoded FEC-enabled data))", sizeof(val_string)); break; case SFF_8024_ENCODING_PAM4: strlcat(val_string, " (PAM4)", sizeof(val_string)); break; default: strlcat(val_string, " (reserved or unknown)", sizeof(val_string)); break; } ssf_add_dict_string(d, "Encoding", val_string); } void sff_show_thresholds(struct sff_diags sd, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_HALRM]); ssf_add_dict_string(d, "Laser bias current high alarm threshold", val_string); SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_LALRM]); ssf_add_dict_string(d, "Laser bias current low alarm threshold", val_string); SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_HWARN]); ssf_add_dict_string(d, "Laser bias current high warning threshold", val_string); SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_LWARN]); ssf_add_dict_string(d, "Laser bias current low warning threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_HALRM]); ssf_add_dict_string(d, "Laser output power high alarm threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_LALRM]); ssf_add_dict_string(d, "Laser output power low alarm threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_HWARN]); ssf_add_dict_string(d, "Laser output power high warning threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_LWARN]); ssf_add_dict_string(d, "Laser output power low warning threshold", val_string); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_HALRM]); ssf_add_dict_string(d, "Module temperature high alarm threshold", val_string); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_LALRM]); ssf_add_dict_string(d, "Module temperature low alarm threshold", val_string); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_HWARN]); ssf_add_dict_string(d, "Module temperature high warning threshold", val_string); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_LWARN]); ssf_add_dict_string(d, "Module temperature low warning threshold", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_HALRM]); ssf_add_dict_string(d, "Module voltage high alarm threshold", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_LALRM]); ssf_add_dict_string(d, "Module voltage low alarm threshold", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_HWARN]); ssf_add_dict_string(d, "Module voltage high warning threshold", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_LWARN]); ssf_add_dict_string(d, "Module voltage low alarm threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_HALRM]); ssf_add_dict_string(d, "Laser rx power high alarm threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_LALRM]); ssf_add_dict_string(d, "Laser rx power low alarm threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_HWARN]); ssf_add_dict_string(d, "Laser rx power high warning threshold", val_string); SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_LWARN]); ssf_add_dict_string(d, "Laser rx power low warning threshold", val_string); }