/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2018-2019 NXP */ #include #include #include #include "rte_ethdev.h" #include "rte_malloc.h" #include "rte_memzone.h" #include "base/enetc_hw.h" #include "enetc.h" #include "enetc_logs.h" #define ENETC_RXBD_BUNDLE 8 /* Number of BDs to update at once */ static int enetc_clean_tx_ring(struct enetc_bdr *tx_ring) { int tx_frm_cnt = 0; struct enetc_swbd *tx_swbd; int i; i = tx_ring->next_to_clean; tx_swbd = &tx_ring->q_swbd[i]; while ((int)(enetc_rd_reg(tx_ring->tcisr) & ENETC_TBCISR_IDX_MASK) != i) { rte_pktmbuf_free(tx_swbd->buffer_addr); tx_swbd->buffer_addr = NULL; tx_swbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = &tx_ring->q_swbd[0]; } tx_frm_cnt++; } tx_ring->next_to_clean = i; return tx_frm_cnt++; } uint16_t enetc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct enetc_swbd *tx_swbd; int i, start, bds_to_use; struct enetc_tx_bd *txbd; struct enetc_bdr *tx_ring = (struct enetc_bdr *)tx_queue; i = tx_ring->next_to_use; bds_to_use = enetc_bd_unused(tx_ring); if (bds_to_use < nb_pkts) nb_pkts = bds_to_use; start = 0; while (nb_pkts--) { enetc_clean_tx_ring(tx_ring); tx_ring->q_swbd[i].buffer_addr = tx_pkts[start]; txbd = ENETC_TXBD(*tx_ring, i); tx_swbd = &tx_ring->q_swbd[i]; txbd->frm_len = tx_pkts[start]->pkt_len; txbd->buf_len = txbd->frm_len; txbd->flags = rte_cpu_to_le_16(ENETC_TXBD_FLAGS_F); txbd->addr = (uint64_t)(uintptr_t) rte_cpu_to_le_64((size_t)tx_swbd->buffer_addr->buf_iova + tx_swbd->buffer_addr->data_off); i++; start++; if (unlikely(i == tx_ring->bd_count)) i = 0; } tx_ring->next_to_use = i; enetc_wr_reg(tx_ring->tcir, i); return start; } int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt) { struct enetc_swbd *rx_swbd; union enetc_rx_bd *rxbd; int i, j; i = rx_ring->next_to_use; rx_swbd = &rx_ring->q_swbd[i]; rxbd = ENETC_RXBD(*rx_ring, i); for (j = 0; j < buff_cnt; j++) { rx_swbd->buffer_addr = (void *)(uintptr_t) rte_cpu_to_le_64((uint64_t)(uintptr_t) rte_pktmbuf_alloc(rx_ring->mb_pool)); rxbd->w.addr = (uint64_t)(uintptr_t) rx_swbd->buffer_addr->buf_iova + rx_swbd->buffer_addr->data_off; /* clear 'R" as well */ rxbd->r.lstatus = 0; rx_swbd++; rxbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rxbd = ENETC_RXBD(*rx_ring, 0); rx_swbd = &rx_ring->q_swbd[i]; } } if (likely(j)) { rx_ring->next_to_alloc = i; rx_ring->next_to_use = i; enetc_wr_reg(rx_ring->rcir, i); } return j; } static inline void enetc_slow_parsing(struct rte_mbuf *m, uint64_t parse_results) { m->ol_flags &= ~(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD); switch (parse_results) { case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; m->ol_flags |= PKT_RX_IP_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; m->ol_flags |= PKT_RX_IP_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_ICMP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_ICMP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_ICMP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_ICMP; m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD; return; /* More switch cases can be added */ default: m->packet_type = RTE_PTYPE_UNKNOWN; m->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN | PKT_RX_L4_CKSUM_UNKNOWN; } } static inline void __attribute__((hot)) enetc_dev_rx_parse(struct rte_mbuf *m, uint16_t parse_results) { ENETC_PMD_DP_DEBUG("parse summary = 0x%x ", parse_results); m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD; switch (parse_results) { case ENETC_PKT_TYPE_ETHER: m->packet_type = RTE_PTYPE_L2_ETHER; return; case ENETC_PKT_TYPE_IPV4: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; return; case ENETC_PKT_TYPE_IPV6: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; return; case ENETC_PKT_TYPE_IPV4_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP; return; case ENETC_PKT_TYPE_IPV6_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP; return; case ENETC_PKT_TYPE_IPV4_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP; return; case ENETC_PKT_TYPE_IPV6_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP; return; case ENETC_PKT_TYPE_IPV4_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP; return; case ENETC_PKT_TYPE_IPV6_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP; return; case ENETC_PKT_TYPE_IPV4_ICMP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_ICMP; return; case ENETC_PKT_TYPE_IPV6_ICMP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_ICMP; return; /* More switch cases can be added */ default: enetc_slow_parsing(m, parse_results); } } static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, struct rte_mbuf **rx_pkts, int work_limit) { int rx_frm_cnt = 0; int cleaned_cnt, i; struct enetc_swbd *rx_swbd; cleaned_cnt = enetc_bd_unused(rx_ring); /* next descriptor to process */ i = rx_ring->next_to_clean; rx_swbd = &rx_ring->q_swbd[i]; while (likely(rx_frm_cnt < work_limit)) { union enetc_rx_bd *rxbd; uint32_t bd_status; if (cleaned_cnt >= ENETC_RXBD_BUNDLE) { int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt); cleaned_cnt -= count; } rxbd = ENETC_RXBD(*rx_ring, i); bd_status = rte_le_to_cpu_32(rxbd->r.lstatus); if (!bd_status) break; rx_swbd->buffer_addr->pkt_len = rxbd->r.buf_len - rx_ring->crc_len; rx_swbd->buffer_addr->data_len = rxbd->r.buf_len - rx_ring->crc_len; rx_swbd->buffer_addr->hash.rss = rxbd->r.rss_hash; rx_swbd->buffer_addr->ol_flags = 0; enetc_dev_rx_parse(rx_swbd->buffer_addr, rxbd->r.parse_summary); rx_pkts[rx_frm_cnt] = rx_swbd->buffer_addr; cleaned_cnt++; rx_swbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rx_swbd = &rx_ring->q_swbd[i]; } rx_ring->next_to_clean = i; rx_frm_cnt++; } return rx_frm_cnt; } uint16_t enetc_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct enetc_bdr *rx_ring = (struct enetc_bdr *)rxq; return enetc_clean_rx_ring(rx_ring, rx_pkts, nb_pkts); }