/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 #define MAX_PORTS 16 #define MCAST_CLONE_PORTS 2 #define MCAST_CLONE_SEGS 2 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE #define NB_PKT_MBUF 8192 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) /* allow max jumbo frame 9.5 KB */ #define JUMBO_FRAME_MAX_SIZE 0x2600 #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 /* * Construct Ethernet multicast address from IPv4 multicast address. * Citing RFC 1112, section 6.4: * "An IP host group address is mapped to an Ethernet multicast address * by placing the low-order 23-bits of the IP address into the low-order * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." */ #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr ports_eth_addr[MAX_PORTS]; /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; static uint16_t nb_ports; static int rx_queue_per_lcore = 1; struct mbuf_table { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 struct lcore_queue_conf { uint64_t tx_tsc; uint16_t n_rx_queue; uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[MAX_PORTS]; struct mbuf_table tx_mbufs[MAX_PORTS]; } __rte_cache_aligned; static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, .split_hdr_size = 0, .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, }, }; static struct rte_mempool *packet_pool, *header_pool, *clone_pool; /* Multicast */ static struct rte_fbk_hash_params mcast_hash_params = { .name = "MCAST_HASH", .entries = 1024, .entries_per_bucket = 4, .socket_id = 0, .hash_func = NULL, .init_val = 0, }; struct rte_fbk_hash_table *mcast_hash = NULL; struct mcast_group_params { uint32_t ip; uint16_t port_mask; }; static struct mcast_group_params mcast_group_table[] = { {IPv4(224,0,0,101), 0x1}, {IPv4(224,0,0,102), 0x2}, {IPv4(224,0,0,103), 0x3}, {IPv4(224,0,0,104), 0x4}, {IPv4(224,0,0,105), 0x5}, {IPv4(224,0,0,106), 0x6}, {IPv4(224,0,0,107), 0x7}, {IPv4(224,0,0,108), 0x8}, {IPv4(224,0,0,109), 0x9}, {IPv4(224,0,0,110), 0xA}, {IPv4(224,0,0,111), 0xB}, {IPv4(224,0,0,112), 0xC}, {IPv4(224,0,0,113), 0xD}, {IPv4(224,0,0,114), 0xE}, {IPv4(224,0,0,115), 0xF}, }; #define N_MCAST_GROUPS \ (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) /* Send burst of packets on an output interface */ static void send_burst(struct lcore_queue_conf *qconf, uint16_t port) { struct rte_mbuf **m_table; uint16_t n, queueid; int ret; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; n = qconf->tx_mbufs[port].len; ret = rte_eth_tx_burst(port, queueid, m_table, n); while (unlikely (ret < n)) { rte_pktmbuf_free(m_table[ret]); ret++; } qconf->tx_mbufs[port].len = 0; } /* Get number of bits set. */ static inline uint32_t bitcnt(uint32_t v) { uint32_t n; for (n = 0; v != 0; v &= v - 1, n++) ; return n; } /** * Create the output multicast packet based on the given input packet. * There are two approaches for creating outgoing packet, though both * are based on data zero-copy idea, they differ in few details: * First one creates a clone of the input packet, e.g - walk though all * segments of the input packet, and for each of them create a new packet * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() * for more details). Then new mbuf is allocated for the packet header * and is prepended to the 'clone' mbuf. * Second approach doesn't make a clone, it just increment refcnt for all * input packet segments. Then it allocates new mbuf for the packet header * and prepends it to the input packet. * Basically first approach reuses only input packet's data, but creates * it's own copy of packet's metadata. Second approach reuses both input's * packet data and metadata. * The advantage of first approach - is that each outgoing packet has it's * own copy of metadata, so we can safely modify data pointer of the * input packet. That allows us to skip creation if the output packet for * the last destination port, but instead modify input packet's header inplace, * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. * The advantage of second approach - less work for each outgoing packet, * e.g: we skip "clone" operation completely. Though it comes with a price - * input packet's metadata has to be intact. So for N destination ports we * need to invoke mcast_out_pkt N times. * So for small number of outgoing ports (and segments in the input packet) * first approach will be faster. * As number of outgoing ports (and/or input segments) will grow, * second way will become more preferable. * * @param pkt * Input packet mbuf. * @param use_clone * Control which of the two approaches described above should be used: * - 0 - use second approach: * Don't "clone" input packet. * Prepend new header directly to the input packet * - 1 - use first approach: * Make a "clone" of input packet first. * Prepend new header to the clone of the input packet * @return * - The pointer to the new outgoing packet. * - NULL if operation failed. */ static inline struct rte_mbuf * mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) { struct rte_mbuf *hdr; /* Create new mbuf for the header. */ if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) return NULL; /* If requested, then make a new clone packet. */ if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { rte_pktmbuf_free(hdr); return NULL; } /* prepend new header */ hdr->next = pkt; /* update header's fields */ hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); hdr->nb_segs = pkt->nb_segs + 1; /* copy metadata from source packet*/ hdr->port = pkt->port; hdr->vlan_tci = pkt->vlan_tci; hdr->vlan_tci_outer = pkt->vlan_tci_outer; hdr->tx_offload = pkt->tx_offload; hdr->hash = pkt->hash; hdr->ol_flags = pkt->ol_flags; __rte_mbuf_sanity_check(hdr, 1); return hdr; } /* * Write new Ethernet header to the outgoing packet, * and put it into the outgoing queue for the given port. */ static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint16_t port) { struct ether_hdr *ethdr; uint16_t len; /* Construct Ethernet header. */ ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); RTE_ASSERT(ethdr != NULL); ether_addr_copy(dest_addr, ðdr->d_addr); ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); /* Put new packet into the output queue */ len = qconf->tx_mbufs[port].len; qconf->tx_mbufs[port].m_table[len] = pkt; qconf->tx_mbufs[port].len = ++len; /* Transmit packets */ if (unlikely(MAX_PKT_BURST == len)) send_burst(qconf, port); } /* Multicast forward of the input packet */ static inline void mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) { struct rte_mbuf *mc; struct ipv4_hdr *iphdr; uint32_t dest_addr, port_mask, port_num, use_clone; int32_t hash; uint16_t port; union { uint64_t as_int; struct ether_addr as_addr; } dst_eth_addr; /* Remove the Ethernet header from the input packet */ iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); RTE_ASSERT(iphdr != NULL); dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); /* * Check that it is a valid multicast address and * we have some active ports assigned to it. */ if(!IS_IPV4_MCAST(dest_addr) || (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || (port_mask = hash & enabled_port_mask) == 0) { rte_pktmbuf_free(m); return; } /* Calculate number of destination ports. */ port_num = bitcnt(port_mask); /* Should we use rte_pktmbuf_clone() or not. */ use_clone = (port_num <= MCAST_CLONE_PORTS && m->nb_segs <= MCAST_CLONE_SEGS); /* Mark all packet's segments as referenced port_num times */ if (use_clone == 0) rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); /* construct destination ethernet address */ dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { /* Prepare output packet and send it out. */ if ((port_mask & 1) != 0) { if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port); else if (use_clone == 0) rte_pktmbuf_free(m); } } /* * If we making clone packets, then, for the last destination port, * we can overwrite input packet's metadata. */ if (use_clone != 0) mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); else rte_pktmbuf_free(m); } /* Send burst of outgoing packet, if timeout expires. */ static inline void send_timeout_burst(struct lcore_queue_conf *qconf) { uint64_t cur_tsc; uint16_t portid; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; cur_tsc = rte_rdtsc(); if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) return; for (portid = 0; portid < MAX_PORTS; portid++) { if (qconf->tx_mbufs[portid].len != 0) send_burst(qconf, portid); } qconf->tx_tsc = cur_tsc; } /* main processing loop */ static int main_loop(__rte_unused void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; unsigned lcore_id; int i, j, nb_rx; uint16_t portid; struct lcore_queue_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; if (qconf->n_rx_queue == 0) { RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i]; RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", lcore_id, portid); } while (1) { /* * Read packet from RX queues */ for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i]; nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, MAX_PKT_BURST); /* Prefetch first packets */ for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { rte_prefetch0(rte_pktmbuf_mtod( pkts_burst[j], void *)); } /* Prefetch and forward already prefetched packets */ for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ j + PREFETCH_OFFSET], void *)); mcast_forward(pkts_burst[j], qconf); } /* Forward remaining prefetched packets */ for (; j < nb_rx; j++) { mcast_forward(pkts_burst[j], qconf); } } /* Send out packets from TX queues */ send_timeout_burst(qconf); } } /* display usage */ static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of queue (=ports) per lcore (default is 1)\n", prgname); } static uint32_t parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return 0; return (uint32_t)pm; } static int parse_nqueue(const char *q_arg) { char *end = NULL; unsigned long n; /* parse numerical string */ errno = 0; n = strtoul(q_arg, &end, 0); if (errno != 0 || end == NULL || *end != '\0' || n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) return -1; return n; } /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:q:", lgopts, &option_index)) != EOF) { switch (opt) { /* portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; /* nqueue */ case 'q': rx_queue_per_lcore = parse_nqueue(optarg); if (rx_queue_per_lcore < 0) { printf("invalid queue number\n"); print_usage(prgname); return -1; } break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } static int init_mcast_hash(void) { uint32_t i; mcast_hash_params.socket_id = rte_socket_id(); mcast_hash = rte_fbk_hash_create(&mcast_hash_params); if (mcast_hash == NULL){ return -1; } for (i = 0; i < N_MCAST_GROUPS; i ++){ if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) { return -1; } } return 0; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up. Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; int ret; uint16_t queueid; unsigned lcore_id = 0, rx_lcore_id = 0; uint32_t n_tx_queue, nb_lcores; uint16_t portid; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); /* create the mbuf pools */ packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); if (packet_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); if (header_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 0, 0, rte_socket_id()); if (clone_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); nb_ports = rte_eth_dev_count_avail(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No physical ports!\n"); if (nb_ports > MAX_PORTS) nb_ports = MAX_PORTS; nb_lcores = rte_lcore_count(); /* initialize all ports */ RTE_ETH_FOREACH_DEV(portid) { struct rte_eth_rxconf rxq_conf; struct rte_eth_conf local_port_conf = port_conf; /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { printf("Skipping disabled port %d\n", portid); continue; } qconf = &lcore_queue_conf[rx_lcore_id]; /* limit the frame size to the maximum supported by NIC */ rte_eth_dev_info_get(portid, &dev_info); local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( dev_info.max_rx_pktlen, local_port_conf.rxmode.max_rx_pkt_len); /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { rx_lcore_id ++; qconf = &lcore_queue_conf[rx_lcore_id]; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } qconf->rx_queue_list[qconf->n_rx_queue] = portid; qconf->n_rx_queue++; /* init port */ printf("Initializing port %d on lcore %u... ", portid, rx_lcore_id); fflush(stdout); n_tx_queue = nb_lcores; if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) n_tx_queue = MAX_TX_QUEUE_PER_PORT; ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, &local_port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", ret, portid); ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: err=%d, port=%d\n", ret, portid); rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); print_ethaddr(" Address:", &ports_eth_addr[portid]); printf(", "); /* init one RX queue */ queueid = 0; printf("rxq=%hu ", queueid); fflush(stdout); rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, rte_eth_dev_socket_id(portid), &rxq_conf, packet_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", ret, portid); /* init one TX queue per couple (lcore,port) */ queueid = 0; RTE_LCORE_FOREACH(lcore_id) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; printf("txq=%u,%hu ", lcore_id, queueid); fflush(stdout); txconf = &dev_info.default_txconf; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, rte_lcore_to_socket_id(lcore_id), txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " "port=%d\n", ret, portid); qconf = &lcore_queue_conf[lcore_id]; qconf->tx_queue_id[portid] = queueid; queueid++; } /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", ret, portid); printf("done:\n"); } check_all_ports_link_status(enabled_port_mask); /* initialize the multicast hash */ int retval = init_mcast_hash(); if (retval != 0) rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }