/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RTE_NET_IXGBE #include #endif #ifdef RTE_LIB_PDUMP #include #endif #include #include #ifdef RTE_LIB_BITRATESTATS #include #endif #ifdef RTE_LIB_LATENCYSTATS #include #endif #include "testpmd.h" #ifndef MAP_HUGETLB /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ #define HUGE_FLAG (0x40000) #else #define HUGE_FLAG MAP_HUGETLB #endif #ifndef MAP_HUGE_SHIFT /* older kernels (or FreeBSD) will not have this define */ #define HUGE_SHIFT (26) #else #define HUGE_SHIFT MAP_HUGE_SHIFT #endif #define EXTMEM_HEAP_NAME "extmem" #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M uint16_t verbose_level = 0; /**< Silent by default. */ int testpmd_logtype; /**< Log type for testpmd logs */ /* use main core for command line ? */ uint8_t interactive = 0; uint8_t auto_start = 0; uint8_t tx_first; char cmdline_filename[PATH_MAX] = {0}; /* * NUMA support configuration. * When set, the NUMA support attempts to dispatch the allocation of the * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the * probed ports among the CPU sockets 0 and 1. * Otherwise, all memory is allocated from CPU socket 0. */ uint8_t numa_support = 1; /**< numa enabled by default */ /* * In UMA mode,all memory is allocated from socket 0 if --socket-num is * not configured. */ uint8_t socket_num = UMA_NO_CONFIG; /* * Select mempool allocation type: * - native: use regular DPDK memory * - anon: use regular DPDK memory to create mempool, but populate using * anonymous memory (may not be IOVA-contiguous) * - xmem: use externally allocated hugepage memory */ uint8_t mp_alloc_type = MP_ALLOC_NATIVE; /* * Store specified sockets on which memory pool to be used by ports * is allocated. */ uint8_t port_numa[RTE_MAX_ETHPORTS]; /* * Store specified sockets on which RX ring to be used by ports * is allocated. */ uint8_t rxring_numa[RTE_MAX_ETHPORTS]; /* * Store specified sockets on which TX ring to be used by ports * is allocated. */ uint8_t txring_numa[RTE_MAX_ETHPORTS]; /* * Record the Ethernet address of peer target ports to which packets are * forwarded. * Must be instantiated with the ethernet addresses of peer traffic generator * ports. */ struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; portid_t nb_peer_eth_addrs = 0; /* * Probed Target Environment. */ struct rte_port *ports; /**< For all probed ethernet ports. */ portid_t nb_ports; /**< Number of probed ethernet ports. */ struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ lcoreid_t nb_lcores; /**< Number of probed logical cores. */ portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ /* * Test Forwarding Configuration. * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores * nb_fwd_ports <= nb_cfg_ports <= nb_ports */ lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ portid_t nb_cfg_ports; /**< Number of configured ports. */ portid_t nb_fwd_ports; /**< Number of forwarding ports. */ unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ /* * Forwarding engines. */ struct fwd_engine * fwd_engines[] = { &io_fwd_engine, &mac_fwd_engine, &mac_swap_engine, &flow_gen_engine, &rx_only_engine, &tx_only_engine, &csum_fwd_engine, &icmp_echo_engine, &noisy_vnf_engine, &five_tuple_swap_fwd_engine, #ifdef RTE_LIBRTE_IEEE1588 &ieee1588_fwd_engine, #endif NULL, }; struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; uint16_t mempool_flags; struct fwd_config cur_fwd_config; struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ uint32_t retry_enabled; uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; uint32_t burst_tx_retry_num = BURST_TX_RETRIES; uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { DEFAULT_MBUF_DATA_SIZE }; /**< Mbuf data space size. */ uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if * specified on command-line. */ uint16_t stats_period; /**< Period to show statistics (disabled by default) */ /* * In container, it cannot terminate the process which running with 'stats-period' * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. */ uint8_t f_quit; /* * Configuration of packet segments used to scatter received packets * if some of split features is configured. */ uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ /* * Configuration of packet segments used by the "txonly" processing engine. */ uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { TXONLY_DEF_PACKET_LEN, }; uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; /**< Split policy for packets to TX. */ uint8_t txonly_multi_flow; /**< Whether multiple flows are generated in TXONLY mode. */ uint32_t tx_pkt_times_inter; /**< Timings for send scheduling in TXONLY mode, time between bursts. */ uint32_t tx_pkt_times_intra; /**< Timings for send scheduling in TXONLY mode, time between packets. */ uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ /* current configuration is in DCB or not,0 means it is not in DCB mode */ uint8_t dcb_config = 0; /* Whether the dcb is in testing status */ uint8_t dcb_test = 0; /* * Configurable number of RX/TX queues. */ queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ queueid_t nb_txq = 1; /**< Number of TX queues per port. */ /* * Configurable number of RX/TX ring descriptors. * Defaults are supplied by drivers via ethdev. */ #define RTE_TEST_RX_DESC_DEFAULT 0 #define RTE_TEST_TX_DESC_DEFAULT 0 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ #define RTE_PMD_PARAM_UNSET -1 /* * Configurable values of RX and TX ring threshold registers. */ int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; /* * Configurable value of RX free threshold. */ int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; /* * Configurable value of RX drop enable. */ int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; /* * Configurable value of TX free threshold. */ int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; /* * Configurable value of TX RS bit threshold. */ int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; /* * Configurable value of buffered packets before sending. */ uint16_t noisy_tx_sw_bufsz; /* * Configurable value of packet buffer timeout. */ uint16_t noisy_tx_sw_buf_flush_time; /* * Configurable value for size of VNF internal memory area * used for simulating noisy neighbour behaviour */ uint64_t noisy_lkup_mem_sz; /* * Configurable value of number of random writes done in * VNF simulation memory area. */ uint64_t noisy_lkup_num_writes; /* * Configurable value of number of random reads done in * VNF simulation memory area. */ uint64_t noisy_lkup_num_reads; /* * Configurable value of number of random reads/writes done in * VNF simulation memory area. */ uint64_t noisy_lkup_num_reads_writes; /* * Receive Side Scaling (RSS) configuration. */ uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ /* * Port topology configuration */ uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ /* * Avoids to flush all the RX streams before starts forwarding. */ uint8_t no_flush_rx = 0; /* flush by default */ /* * Flow API isolated mode. */ uint8_t flow_isolate_all; /* * Avoids to check link status when starting/stopping a port. */ uint8_t no_link_check = 0; /* check by default */ /* * Don't automatically start all ports in interactive mode. */ uint8_t no_device_start = 0; /* * Enable link status change notification */ uint8_t lsc_interrupt = 1; /* enabled by default */ /* * Enable device removal notification. */ uint8_t rmv_interrupt = 1; /* enabled by default */ uint8_t hot_plug = 0; /**< hotplug disabled by default. */ /* After attach, port setup is called on event or by iterator */ bool setup_on_probe_event = true; /* Clear ptypes on port initialization. */ uint8_t clear_ptypes = true; /* Hairpin ports configuration mode. */ uint16_t hairpin_mode; /* Pretty printing of ethdev events */ static const char * const eth_event_desc[] = { [RTE_ETH_EVENT_UNKNOWN] = "unknown", [RTE_ETH_EVENT_INTR_LSC] = "link state change", [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", [RTE_ETH_EVENT_INTR_RESET] = "reset", [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", [RTE_ETH_EVENT_IPSEC] = "IPsec", [RTE_ETH_EVENT_MACSEC] = "MACsec", [RTE_ETH_EVENT_INTR_RMV] = "device removal", [RTE_ETH_EVENT_NEW] = "device probed", [RTE_ETH_EVENT_DESTROY] = "device released", [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", [RTE_ETH_EVENT_MAX] = NULL, }; /* * Display or mask ether events * Default to all events except VF_MBOX */ uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); /* * Decide if all memory are locked for performance. */ int do_mlockall = 0; /* * NIC bypass mode configuration options. */ #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS /* The NIC bypass watchdog timeout. */ uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; #endif #ifdef RTE_LIB_LATENCYSTATS /* * Set when latency stats is enabled in the commandline */ uint8_t latencystats_enabled; /* * Lcore ID to serive latency statistics. */ lcoreid_t latencystats_lcore_id = -1; #endif /* * Ethernet device configuration. */ struct rte_eth_rxmode rx_mode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN, /**< Default maximum frame length. */ }; struct rte_eth_txmode tx_mode = { .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, }; struct rte_fdir_conf fdir_conf = { .mode = RTE_FDIR_MODE_NONE, .pballoc = RTE_FDIR_PBALLOC_64K, .status = RTE_FDIR_REPORT_STATUS, .mask = { .vlan_tci_mask = 0xFFEF, .ipv4_mask = { .src_ip = 0xFFFFFFFF, .dst_ip = 0xFFFFFFFF, }, .ipv6_mask = { .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, }, .src_port_mask = 0xFFFF, .dst_port_mask = 0xFFFF, .mac_addr_byte_mask = 0xFF, .tunnel_type_mask = 1, .tunnel_id_mask = 0xFFFFFFFF, }, .drop_queue = 127, }; volatile int test_done = 1; /* stop packet forwarding when set to 1. */ struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS]; struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS]; struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array; struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array; uint16_t nb_tx_queue_stats_mappings = 0; uint16_t nb_rx_queue_stats_mappings = 0; /* * Display zero values by default for xstats */ uint8_t xstats_hide_zero; /* * Measure of CPU cycles disabled by default */ uint8_t record_core_cycles; /* * Display of RX and TX bursts disabled by default */ uint8_t record_burst_stats; unsigned int num_sockets = 0; unsigned int socket_ids[RTE_MAX_NUMA_NODES]; #ifdef RTE_LIB_BITRATESTATS /* Bitrate statistics */ struct rte_stats_bitrates *bitrate_data; lcoreid_t bitrate_lcore_id; uint8_t bitrate_enabled; #endif struct gro_status gro_ports[RTE_MAX_ETHPORTS]; uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; /* * hexadecimal bitmask of RX mq mode can be enabled. */ enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; /* Forward function declarations */ static void setup_attached_port(portid_t pi); static void map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port); static void check_all_ports_link_status(uint32_t port_mask); static int eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, void *ret_param); static void dev_event_callback(const char *device_name, enum rte_dev_event_type type, void *param); /* * Check if all the ports are started. * If yes, return positive value. If not, return zero. */ static int all_ports_started(void); struct gso_status gso_ports[RTE_MAX_ETHPORTS]; uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; /* Holds the registered mbuf dynamic flags names. */ char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; /* * Helper function to check if socket is already discovered. * If yes, return positive value. If not, return zero. */ int new_socket_id(unsigned int socket_id) { unsigned int i; for (i = 0; i < num_sockets; i++) { if (socket_ids[i] == socket_id) return 0; } return 1; } /* * Setup default configuration. */ static void set_default_fwd_lcores_config(void) { unsigned int i; unsigned int nb_lc; unsigned int sock_num; nb_lc = 0; for (i = 0; i < RTE_MAX_LCORE; i++) { if (!rte_lcore_is_enabled(i)) continue; sock_num = rte_lcore_to_socket_id(i); if (new_socket_id(sock_num)) { if (num_sockets >= RTE_MAX_NUMA_NODES) { rte_exit(EXIT_FAILURE, "Total sockets greater than %u\n", RTE_MAX_NUMA_NODES); } socket_ids[num_sockets++] = sock_num; } if (i == rte_get_main_lcore()) continue; fwd_lcores_cpuids[nb_lc++] = i; } nb_lcores = (lcoreid_t) nb_lc; nb_cfg_lcores = nb_lcores; nb_fwd_lcores = 1; } static void set_def_peer_eth_addrs(void) { portid_t i; for (i = 0; i < RTE_MAX_ETHPORTS; i++) { peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; peer_eth_addrs[i].addr_bytes[5] = i; } } static void set_default_fwd_ports_config(void) { portid_t pt_id; int i = 0; RTE_ETH_FOREACH_DEV(pt_id) { fwd_ports_ids[i++] = pt_id; /* Update sockets info according to the attached device */ int socket_id = rte_eth_dev_socket_id(pt_id); if (socket_id >= 0 && new_socket_id(socket_id)) { if (num_sockets >= RTE_MAX_NUMA_NODES) { rte_exit(EXIT_FAILURE, "Total sockets greater than %u\n", RTE_MAX_NUMA_NODES); } socket_ids[num_sockets++] = socket_id; } } nb_cfg_ports = nb_ports; nb_fwd_ports = nb_ports; } void set_def_fwd_config(void) { set_default_fwd_lcores_config(); set_def_peer_eth_addrs(); set_default_fwd_ports_config(); } /* extremely pessimistic estimation of memory required to create a mempool */ static int calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) { unsigned int n_pages, mbuf_per_pg, leftover; uint64_t total_mem, mbuf_mem, obj_sz; /* there is no good way to predict how much space the mempool will * occupy because it will allocate chunks on the fly, and some of those * will come from default DPDK memory while some will come from our * external memory, so just assume 128MB will be enough for everyone. */ uint64_t hdr_mem = 128 << 20; /* account for possible non-contiguousness */ obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); if (obj_sz > pgsz) { TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); return -1; } mbuf_per_pg = pgsz / obj_sz; leftover = (nb_mbufs % mbuf_per_pg) > 0; n_pages = (nb_mbufs / mbuf_per_pg) + leftover; mbuf_mem = n_pages * pgsz; total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); if (total_mem > SIZE_MAX) { TESTPMD_LOG(ERR, "Memory size too big\n"); return -1; } *out = (size_t)total_mem; return 0; } static int pagesz_flags(uint64_t page_sz) { /* as per mmap() manpage, all page sizes are log2 of page size * shifted by MAP_HUGE_SHIFT */ int log2 = rte_log2_u64(page_sz); return (log2 << HUGE_SHIFT); } static void * alloc_mem(size_t memsz, size_t pgsz, bool huge) { void *addr; int flags; /* allocate anonymous hugepages */ flags = MAP_ANONYMOUS | MAP_PRIVATE; if (huge) flags |= HUGE_FLAG | pagesz_flags(pgsz); addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); if (addr == MAP_FAILED) return NULL; return addr; } struct extmem_param { void *addr; size_t len; size_t pgsz; rte_iova_t *iova_table; unsigned int iova_table_len; }; static int create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, bool huge) { uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ unsigned int cur_page, n_pages, pgsz_idx; size_t mem_sz, cur_pgsz; rte_iova_t *iovas = NULL; void *addr; int ret; for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { /* skip anything that is too big */ if (pgsizes[pgsz_idx] > SIZE_MAX) continue; cur_pgsz = pgsizes[pgsz_idx]; /* if we were told not to allocate hugepages, override */ if (!huge) cur_pgsz = sysconf(_SC_PAGESIZE); ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); if (ret < 0) { TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); return -1; } /* allocate our memory */ addr = alloc_mem(mem_sz, cur_pgsz, huge); /* if we couldn't allocate memory with a specified page size, * that doesn't mean we can't do it with other page sizes, so * try another one. */ if (addr == NULL) continue; /* store IOVA addresses for every page in this memory area */ n_pages = mem_sz / cur_pgsz; iovas = malloc(sizeof(*iovas) * n_pages); if (iovas == NULL) { TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); goto fail; } /* lock memory if it's not huge pages */ if (!huge) mlock(addr, mem_sz); /* populate IOVA addresses */ for (cur_page = 0; cur_page < n_pages; cur_page++) { rte_iova_t iova; size_t offset; void *cur; offset = cur_pgsz * cur_page; cur = RTE_PTR_ADD(addr, offset); /* touch the page before getting its IOVA */ *(volatile char *)cur = 0; iova = rte_mem_virt2iova(cur); iovas[cur_page] = iova; } break; } /* if we couldn't allocate anything */ if (iovas == NULL) return -1; param->addr = addr; param->len = mem_sz; param->pgsz = cur_pgsz; param->iova_table = iovas; param->iova_table_len = n_pages; return 0; fail: if (iovas) free(iovas); if (addr) munmap(addr, mem_sz); return -1; } static int setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) { struct extmem_param param; int socket_id, ret; memset(¶m, 0, sizeof(param)); /* check if our heap exists */ socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); if (socket_id < 0) { /* create our heap */ ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); if (ret < 0) { TESTPMD_LOG(ERR, "Cannot create heap\n"); return -1; } } ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); if (ret < 0) { TESTPMD_LOG(ERR, "Cannot create memory area\n"); return -1; } /* we now have a valid memory area, so add it to heap */ ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, param.addr, param.len, param.iova_table, param.iova_table_len, param.pgsz); /* when using VFIO, memory is automatically mapped for DMA by EAL */ /* not needed any more */ free(param.iova_table); if (ret < 0) { TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); munmap(param.addr, param.len); return -1; } /* success */ TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", param.len >> 20); return 0; } static void dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) { uint16_t pid = 0; int ret; RTE_ETH_FOREACH_DEV(pid) { struct rte_eth_dev *dev = &rte_eth_devices[pid]; ret = rte_dev_dma_unmap(dev->device, memhdr->addr, 0, memhdr->len); if (ret) { TESTPMD_LOG(DEBUG, "unable to DMA unmap addr 0x%p " "for device %s\n", memhdr->addr, dev->data->name); } } ret = rte_extmem_unregister(memhdr->addr, memhdr->len); if (ret) { TESTPMD_LOG(DEBUG, "unable to un-register addr 0x%p\n", memhdr->addr); } } static void dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) { uint16_t pid = 0; size_t page_size = sysconf(_SC_PAGESIZE); int ret; ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, page_size); if (ret) { TESTPMD_LOG(DEBUG, "unable to register addr 0x%p\n", memhdr->addr); return; } RTE_ETH_FOREACH_DEV(pid) { struct rte_eth_dev *dev = &rte_eth_devices[pid]; ret = rte_dev_dma_map(dev->device, memhdr->addr, 0, memhdr->len); if (ret) { TESTPMD_LOG(DEBUG, "unable to DMA map addr 0x%p " "for device %s\n", memhdr->addr, dev->data->name); } } } static unsigned int setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, char *pool_name, struct rte_pktmbuf_extmem **ext_mem) { struct rte_pktmbuf_extmem *xmem; unsigned int ext_num, zone_num, elt_num; uint16_t elt_size; elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); elt_num = EXTBUF_ZONE_SIZE / elt_size; zone_num = (nb_mbufs + elt_num - 1) / elt_num; xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); if (xmem == NULL) { TESTPMD_LOG(ERR, "Cannot allocate memory for " "external buffer descriptors\n"); *ext_mem = NULL; return 0; } for (ext_num = 0; ext_num < zone_num; ext_num++) { struct rte_pktmbuf_extmem *xseg = xmem + ext_num; const struct rte_memzone *mz; char mz_name[RTE_MEMZONE_NAMESIZE]; int ret; ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); if (ret < 0 || ret >= (int)sizeof(mz_name)) { errno = ENAMETOOLONG; ext_num = 0; break; } mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, socket_id, RTE_MEMZONE_IOVA_CONTIG | RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY, EXTBUF_ZONE_SIZE); if (mz == NULL) { /* * The caller exits on external buffer creation * error, so there is no need to free memzones. */ errno = ENOMEM; ext_num = 0; break; } xseg->buf_ptr = mz->addr; xseg->buf_iova = mz->iova; xseg->buf_len = EXTBUF_ZONE_SIZE; xseg->elt_size = elt_size; } if (ext_num == 0 && xmem != NULL) { free(xmem); xmem = NULL; } *ext_mem = xmem; return ext_num; } /* * Configuration initialisation done once at init time. */ static struct rte_mempool * mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, unsigned int socket_id, uint16_t size_idx) { char pool_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *rte_mp = NULL; uint32_t mb_size; mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); TESTPMD_LOG(INFO, "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", pool_name, nb_mbuf, mbuf_seg_size, socket_id); switch (mp_alloc_type) { case MP_ALLOC_NATIVE: { /* wrapper to rte_mempool_create() */ TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", rte_mbuf_best_mempool_ops()); rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, mb_mempool_cache, 0, mbuf_seg_size, socket_id); break; } case MP_ALLOC_ANON: { rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, mb_size, (unsigned int) mb_mempool_cache, sizeof(struct rte_pktmbuf_pool_private), socket_id, mempool_flags); if (rte_mp == NULL) goto err; if (rte_mempool_populate_anon(rte_mp) == 0) { rte_mempool_free(rte_mp); rte_mp = NULL; goto err; } rte_pktmbuf_pool_init(rte_mp, NULL); rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); break; } case MP_ALLOC_XMEM: case MP_ALLOC_XMEM_HUGE: { int heap_socket; bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) rte_exit(EXIT_FAILURE, "Could not create external memory\n"); heap_socket = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); if (heap_socket < 0) rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", rte_mbuf_best_mempool_ops()); rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, mb_mempool_cache, 0, mbuf_seg_size, heap_socket); break; } case MP_ALLOC_XBUF: { struct rte_pktmbuf_extmem *ext_mem; unsigned int ext_num; ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, socket_id, pool_name, &ext_mem); if (ext_num == 0) rte_exit(EXIT_FAILURE, "Can't create pinned data buffers\n"); TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", rte_mbuf_best_mempool_ops()); rte_mp = rte_pktmbuf_pool_create_extbuf (pool_name, nb_mbuf, mb_mempool_cache, 0, mbuf_seg_size, socket_id, ext_mem, ext_num); free(ext_mem); break; } default: { rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); } } err: if (rte_mp == NULL) { rte_exit(EXIT_FAILURE, "Creation of mbuf pool for socket %u failed: %s\n", socket_id, rte_strerror(rte_errno)); } else if (verbose_level > 0) { rte_mempool_dump(stdout, rte_mp); } return rte_mp; } /* * Check given socket id is valid or not with NUMA mode, * if valid, return 0, else return -1 */ static int check_socket_id(const unsigned int socket_id) { static int warning_once = 0; if (new_socket_id(socket_id)) { if (!warning_once && numa_support) printf("Warning: NUMA should be configured manually by" " using --port-numa-config and" " --ring-numa-config parameters along with" " --numa.\n"); warning_once = 1; return -1; } return 0; } /* * Get the allowed maximum number of RX queues. * *pid return the port id which has minimal value of * max_rx_queues in all ports. */ queueid_t get_allowed_max_nb_rxq(portid_t *pid) { queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; bool max_rxq_valid = false; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; max_rxq_valid = true; if (dev_info.max_rx_queues < allowed_max_rxq) { allowed_max_rxq = dev_info.max_rx_queues; *pid = pi; } } return max_rxq_valid ? allowed_max_rxq : 0; } /* * Check input rxq is valid or not. * If input rxq is not greater than any of maximum number * of RX queues of all ports, it is valid. * if valid, return 0, else return -1 */ int check_nb_rxq(queueid_t rxq) { queueid_t allowed_max_rxq; portid_t pid = 0; allowed_max_rxq = get_allowed_max_nb_rxq(&pid); if (rxq > allowed_max_rxq) { printf("Fail: input rxq (%u) can't be greater " "than max_rx_queues (%u) of port %u\n", rxq, allowed_max_rxq, pid); return -1; } return 0; } /* * Get the allowed maximum number of TX queues. * *pid return the port id which has minimal value of * max_tx_queues in all ports. */ queueid_t get_allowed_max_nb_txq(portid_t *pid) { queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; bool max_txq_valid = false; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; max_txq_valid = true; if (dev_info.max_tx_queues < allowed_max_txq) { allowed_max_txq = dev_info.max_tx_queues; *pid = pi; } } return max_txq_valid ? allowed_max_txq : 0; } /* * Check input txq is valid or not. * If input txq is not greater than any of maximum number * of TX queues of all ports, it is valid. * if valid, return 0, else return -1 */ int check_nb_txq(queueid_t txq) { queueid_t allowed_max_txq; portid_t pid = 0; allowed_max_txq = get_allowed_max_nb_txq(&pid); if (txq > allowed_max_txq) { printf("Fail: input txq (%u) can't be greater " "than max_tx_queues (%u) of port %u\n", txq, allowed_max_txq, pid); return -1; } return 0; } /* * Get the allowed maximum number of RXDs of every rx queue. * *pid return the port id which has minimal value of * max_rxd in all queues of all ports. */ static uint16_t get_allowed_max_nb_rxd(portid_t *pid) { uint16_t allowed_max_rxd = UINT16_MAX; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { allowed_max_rxd = dev_info.rx_desc_lim.nb_max; *pid = pi; } } return allowed_max_rxd; } /* * Get the allowed minimal number of RXDs of every rx queue. * *pid return the port id which has minimal value of * min_rxd in all queues of all ports. */ static uint16_t get_allowed_min_nb_rxd(portid_t *pid) { uint16_t allowed_min_rxd = 0; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { allowed_min_rxd = dev_info.rx_desc_lim.nb_min; *pid = pi; } } return allowed_min_rxd; } /* * Check input rxd is valid or not. * If input rxd is not greater than any of maximum number * of RXDs of every Rx queues and is not less than any of * minimal number of RXDs of every Rx queues, it is valid. * if valid, return 0, else return -1 */ int check_nb_rxd(queueid_t rxd) { uint16_t allowed_max_rxd; uint16_t allowed_min_rxd; portid_t pid = 0; allowed_max_rxd = get_allowed_max_nb_rxd(&pid); if (rxd > allowed_max_rxd) { printf("Fail: input rxd (%u) can't be greater " "than max_rxds (%u) of port %u\n", rxd, allowed_max_rxd, pid); return -1; } allowed_min_rxd = get_allowed_min_nb_rxd(&pid); if (rxd < allowed_min_rxd) { printf("Fail: input rxd (%u) can't be less " "than min_rxds (%u) of port %u\n", rxd, allowed_min_rxd, pid); return -1; } return 0; } /* * Get the allowed maximum number of TXDs of every rx queues. * *pid return the port id which has minimal value of * max_txd in every tx queue. */ static uint16_t get_allowed_max_nb_txd(portid_t *pid) { uint16_t allowed_max_txd = UINT16_MAX; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { allowed_max_txd = dev_info.tx_desc_lim.nb_max; *pid = pi; } } return allowed_max_txd; } /* * Get the allowed maximum number of TXDs of every tx queues. * *pid return the port id which has minimal value of * min_txd in every tx queue. */ static uint16_t get_allowed_min_nb_txd(portid_t *pid) { uint16_t allowed_min_txd = 0; portid_t pi; struct rte_eth_dev_info dev_info; RTE_ETH_FOREACH_DEV(pi) { if (eth_dev_info_get_print_err(pi, &dev_info) != 0) continue; if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { allowed_min_txd = dev_info.tx_desc_lim.nb_min; *pid = pi; } } return allowed_min_txd; } /* * Check input txd is valid or not. * If input txd is not greater than any of maximum number * of TXDs of every Rx queues, it is valid. * if valid, return 0, else return -1 */ int check_nb_txd(queueid_t txd) { uint16_t allowed_max_txd; uint16_t allowed_min_txd; portid_t pid = 0; allowed_max_txd = get_allowed_max_nb_txd(&pid); if (txd > allowed_max_txd) { printf("Fail: input txd (%u) can't be greater " "than max_txds (%u) of port %u\n", txd, allowed_max_txd, pid); return -1; } allowed_min_txd = get_allowed_min_nb_txd(&pid); if (txd < allowed_min_txd) { printf("Fail: input txd (%u) can't be less " "than min_txds (%u) of port %u\n", txd, allowed_min_txd, pid); return -1; } return 0; } /* * Get the allowed maximum number of hairpin queues. * *pid return the port id which has minimal value of * max_hairpin_queues in all ports. */ queueid_t get_allowed_max_nb_hairpinq(portid_t *pid) { queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; portid_t pi; struct rte_eth_hairpin_cap cap; RTE_ETH_FOREACH_DEV(pi) { if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { *pid = pi; return 0; } if (cap.max_nb_queues < allowed_max_hairpinq) { allowed_max_hairpinq = cap.max_nb_queues; *pid = pi; } } return allowed_max_hairpinq; } /* * Check input hairpin is valid or not. * If input hairpin is not greater than any of maximum number * of hairpin queues of all ports, it is valid. * if valid, return 0, else return -1 */ int check_nb_hairpinq(queueid_t hairpinq) { queueid_t allowed_max_hairpinq; portid_t pid = 0; allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); if (hairpinq > allowed_max_hairpinq) { printf("Fail: input hairpin (%u) can't be greater " "than max_hairpin_queues (%u) of port %u\n", hairpinq, allowed_max_hairpinq, pid); return -1; } return 0; } static void init_config(void) { portid_t pid; struct rte_port *port; struct rte_mempool *mbp; unsigned int nb_mbuf_per_pool; lcoreid_t lc_id; uint8_t port_per_socket[RTE_MAX_NUMA_NODES]; struct rte_gro_param gro_param; uint32_t gso_types; uint16_t data_size; bool warning = 0; int k; int ret; memset(port_per_socket,0,RTE_MAX_NUMA_NODES); /* Configuration of logical cores. */ fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", sizeof(struct fwd_lcore *) * nb_lcores, RTE_CACHE_LINE_SIZE); if (fwd_lcores == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " "failed\n", nb_lcores); } for (lc_id = 0; lc_id < nb_lcores; lc_id++) { fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", sizeof(struct fwd_lcore), RTE_CACHE_LINE_SIZE); if (fwd_lcores[lc_id] == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " "failed\n"); } fwd_lcores[lc_id]->cpuid_idx = lc_id; } RTE_ETH_FOREACH_DEV(pid) { port = &ports[pid]; /* Apply default TxRx configuration for all ports */ port->dev_conf.txmode = tx_mode; port->dev_conf.rxmode = rx_mode; ret = eth_dev_info_get_print_err(pid, &port->dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_info_get() failed\n"); if (!(port->dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) port->dev_conf.txmode.offloads &= ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; if (numa_support) { if (port_numa[pid] != NUMA_NO_CONFIG) port_per_socket[port_numa[pid]]++; else { uint32_t socket_id = rte_eth_dev_socket_id(pid); /* * if socket_id is invalid, * set to the first available socket. */ if (check_socket_id(socket_id) < 0) socket_id = socket_ids[0]; port_per_socket[socket_id]++; } } /* Apply Rx offloads configuration */ for (k = 0; k < port->dev_info.max_rx_queues; k++) port->rx_conf[k].offloads = port->dev_conf.rxmode.offloads; /* Apply Tx offloads configuration */ for (k = 0; k < port->dev_info.max_tx_queues; k++) port->tx_conf[k].offloads = port->dev_conf.txmode.offloads; /* set flag to initialize port/queue */ port->need_reconfig = 1; port->need_reconfig_queues = 1; port->tx_metadata = 0; /* Check for maximum number of segments per MTU. Accordingly * update the mbuf data size. */ if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { data_size = rx_mode.max_rx_pkt_len / port->dev_info.rx_desc_lim.nb_mtu_seg_max; if ((data_size + RTE_PKTMBUF_HEADROOM) > mbuf_data_size[0]) { mbuf_data_size[0] = data_size + RTE_PKTMBUF_HEADROOM; warning = 1; } } } if (warning) TESTPMD_LOG(WARNING, "Configured mbuf size of the first segment %hu\n", mbuf_data_size[0]); /* * Create pools of mbuf. * If NUMA support is disabled, create a single pool of mbuf in * socket 0 memory by default. * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. * * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and * nb_txd can be configured at run time. */ if (param_total_num_mbufs) nb_mbuf_per_pool = param_total_num_mbufs; else { nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + (nb_lcores * mb_mempool_cache) + RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; } if (numa_support) { uint8_t i, j; for (i = 0; i < num_sockets; i++) for (j = 0; j < mbuf_data_size_n; j++) mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = mbuf_pool_create(mbuf_data_size[j], nb_mbuf_per_pool, socket_ids[i], j); } else { uint8_t i; for (i = 0; i < mbuf_data_size_n; i++) mempools[i] = mbuf_pool_create (mbuf_data_size[i], nb_mbuf_per_pool, socket_num == UMA_NO_CONFIG ? 0 : socket_num, i); } init_port_config(); gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; /* * Records which Mbuf pool to use by each logical core, if needed. */ for (lc_id = 0; lc_id < nb_lcores; lc_id++) { mbp = mbuf_pool_find( rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); if (mbp == NULL) mbp = mbuf_pool_find(0, 0); fwd_lcores[lc_id]->mbp = mbp; /* initialize GSO context */ fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; fwd_lcores[lc_id]->gso_ctx.flag = 0; } /* Configuration of packet forwarding streams. */ if (init_fwd_streams() < 0) rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n"); fwd_config_setup(); /* create a gro context for each lcore */ gro_param.gro_types = RTE_GRO_TCP_IPV4; gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; gro_param.max_item_per_flow = MAX_PKT_BURST; for (lc_id = 0; lc_id < nb_lcores; lc_id++) { gro_param.socket_id = rte_lcore_to_socket_id( fwd_lcores_cpuids[lc_id]); fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); if (fwd_lcores[lc_id]->gro_ctx == NULL) { rte_exit(EXIT_FAILURE, "rte_gro_ctx_create() failed\n"); } } } void reconfig(portid_t new_port_id, unsigned socket_id) { struct rte_port *port; int ret; /* Reconfiguration of Ethernet ports. */ port = &ports[new_port_id]; ret = eth_dev_info_get_print_err(new_port_id, &port->dev_info); if (ret != 0) return; /* set flag to initialize port/queue */ port->need_reconfig = 1; port->need_reconfig_queues = 1; port->socket_id = socket_id; init_port_config(); } int init_fwd_streams(void) { portid_t pid; struct rte_port *port; streamid_t sm_id, nb_fwd_streams_new; queueid_t q; /* set socket id according to numa or not */ RTE_ETH_FOREACH_DEV(pid) { port = &ports[pid]; if (nb_rxq > port->dev_info.max_rx_queues) { printf("Fail: nb_rxq(%d) is greater than " "max_rx_queues(%d)\n", nb_rxq, port->dev_info.max_rx_queues); return -1; } if (nb_txq > port->dev_info.max_tx_queues) { printf("Fail: nb_txq(%d) is greater than " "max_tx_queues(%d)\n", nb_txq, port->dev_info.max_tx_queues); return -1; } if (numa_support) { if (port_numa[pid] != NUMA_NO_CONFIG) port->socket_id = port_numa[pid]; else { port->socket_id = rte_eth_dev_socket_id(pid); /* * if socket_id is invalid, * set to the first available socket. */ if (check_socket_id(port->socket_id) < 0) port->socket_id = socket_ids[0]; } } else { if (socket_num == UMA_NO_CONFIG) port->socket_id = 0; else port->socket_id = socket_num; } } q = RTE_MAX(nb_rxq, nb_txq); if (q == 0) { printf("Fail: Cannot allocate fwd streams as number of queues is 0\n"); return -1; } nb_fwd_streams_new = (streamid_t)(nb_ports * q); if (nb_fwd_streams_new == nb_fwd_streams) return 0; /* clear the old */ if (fwd_streams != NULL) { for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { if (fwd_streams[sm_id] == NULL) continue; rte_free(fwd_streams[sm_id]); fwd_streams[sm_id] = NULL; } rte_free(fwd_streams); fwd_streams = NULL; } /* init new */ nb_fwd_streams = nb_fwd_streams_new; if (nb_fwd_streams) { fwd_streams = rte_zmalloc("testpmd: fwd_streams", sizeof(struct fwd_stream *) * nb_fwd_streams, RTE_CACHE_LINE_SIZE); if (fwd_streams == NULL) rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" " (struct fwd_stream *)) failed\n", nb_fwd_streams); for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { fwd_streams[sm_id] = rte_zmalloc("testpmd:" " struct fwd_stream", sizeof(struct fwd_stream), RTE_CACHE_LINE_SIZE); if (fwd_streams[sm_id] == NULL) rte_exit(EXIT_FAILURE, "rte_zmalloc" "(struct fwd_stream) failed\n"); } } return 0; } static void pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) { uint64_t total_burst, sburst; uint64_t nb_burst; uint64_t burst_stats[4]; uint16_t pktnb_stats[4]; uint16_t nb_pkt; int burst_percent[4], sburstp; int i; /* * First compute the total number of packet bursts and the * two highest numbers of bursts of the same number of packets. */ memset(&burst_stats, 0x0, sizeof(burst_stats)); memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); /* Show stats for 0 burst size always */ total_burst = pbs->pkt_burst_spread[0]; burst_stats[0] = pbs->pkt_burst_spread[0]; pktnb_stats[0] = 0; /* Find the next 2 burst sizes with highest occurrences. */ for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { nb_burst = pbs->pkt_burst_spread[nb_pkt]; if (nb_burst == 0) continue; total_burst += nb_burst; if (nb_burst > burst_stats[1]) { burst_stats[2] = burst_stats[1]; pktnb_stats[2] = pktnb_stats[1]; burst_stats[1] = nb_burst; pktnb_stats[1] = nb_pkt; } else if (nb_burst > burst_stats[2]) { burst_stats[2] = nb_burst; pktnb_stats[2] = nb_pkt; } } if (total_burst == 0) return; printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { if (i == 3) { printf("%d%% of other]\n", 100 - sburstp); return; } sburst += burst_stats[i]; if (sburst == total_burst) { printf("%d%% of %d pkts]\n", 100 - sburstp, (int) pktnb_stats[i]); return; } burst_percent[i] = (double)burst_stats[i] / total_burst * 100; printf("%d%% of %d pkts + ", burst_percent[i], (int) pktnb_stats[i]); sburstp += burst_percent[i]; } } static void fwd_stream_stats_display(streamid_t stream_id) { struct fwd_stream *fs; static const char *fwd_top_stats_border = "-------"; fs = fwd_streams[stream_id]; if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && (fs->fwd_dropped == 0)) return; printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " "TX Port=%2d/Queue=%2d %s\n", fwd_top_stats_border, fs->rx_port, fs->rx_queue, fs->tx_port, fs->tx_queue, fwd_top_stats_border); printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 " TX-dropped: %-14"PRIu64, fs->rx_packets, fs->tx_packets, fs->fwd_dropped); /* if checksum mode */ if (cur_fwd_eng == &csum_fwd_engine) { printf(" RX- bad IP checksum: %-14"PRIu64 " Rx- bad L4 checksum: %-14"PRIu64 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, fs->rx_bad_outer_l4_csum); } else { printf("\n"); } if (record_burst_stats) { pkt_burst_stats_display("RX", &fs->rx_burst_stats); pkt_burst_stats_display("TX", &fs->tx_burst_stats); } } void fwd_stats_display(void) { static const char *fwd_stats_border = "----------------------"; static const char *acc_stats_border = "+++++++++++++++"; struct { struct fwd_stream *rx_stream; struct fwd_stream *tx_stream; uint64_t tx_dropped; uint64_t rx_bad_ip_csum; uint64_t rx_bad_l4_csum; uint64_t rx_bad_outer_l4_csum; } ports_stats[RTE_MAX_ETHPORTS]; uint64_t total_rx_dropped = 0; uint64_t total_tx_dropped = 0; uint64_t total_rx_nombuf = 0; struct rte_eth_stats stats; uint64_t fwd_cycles = 0; uint64_t total_recv = 0; uint64_t total_xmit = 0; struct rte_port *port; streamid_t sm_id; portid_t pt_id; int i; memset(ports_stats, 0, sizeof(ports_stats)); for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { struct fwd_stream *fs = fwd_streams[sm_id]; if (cur_fwd_config.nb_fwd_streams > cur_fwd_config.nb_fwd_ports) { fwd_stream_stats_display(sm_id); } else { ports_stats[fs->tx_port].tx_stream = fs; ports_stats[fs->rx_port].rx_stream = fs; } ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; ports_stats[fs->rx_port].rx_bad_outer_l4_csum += fs->rx_bad_outer_l4_csum; if (record_core_cycles) fwd_cycles += fs->core_cycles; } for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { uint8_t j; pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; rte_eth_stats_get(pt_id, &stats); stats.ipackets -= port->stats.ipackets; stats.opackets -= port->stats.opackets; stats.ibytes -= port->stats.ibytes; stats.obytes -= port->stats.obytes; stats.imissed -= port->stats.imissed; stats.oerrors -= port->stats.oerrors; stats.rx_nombuf -= port->stats.rx_nombuf; total_recv += stats.ipackets; total_xmit += stats.opackets; total_rx_dropped += stats.imissed; total_tx_dropped += ports_stats[pt_id].tx_dropped; total_tx_dropped += stats.oerrors; total_rx_nombuf += stats.rx_nombuf; printf("\n %s Forward statistics for port %-2d %s\n", fwd_stats_border, pt_id, fwd_stats_border); if (!port->rx_queue_stats_mapping_enabled && !port->tx_queue_stats_mapping_enabled) { printf(" RX-packets: %-14"PRIu64 " RX-dropped: %-14"PRIu64 "RX-total: %-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ipackets + stats.imissed); if (cur_fwd_eng == &csum_fwd_engine) printf(" Bad-ipcsum: %-14"PRIu64 " Bad-l4csum: %-14"PRIu64 "Bad-outer-l4csum: %-14"PRIu64"\n", ports_stats[pt_id].rx_bad_ip_csum, ports_stats[pt_id].rx_bad_l4_csum, ports_stats[pt_id].rx_bad_outer_l4_csum); if (stats.ierrors + stats.rx_nombuf > 0) { printf(" RX-error: %-"PRIu64"\n", stats.ierrors); printf(" RX-nombufs: %-14"PRIu64"\n", stats.rx_nombuf); } printf(" TX-packets: %-14"PRIu64 " TX-dropped: %-14"PRIu64 "TX-total: %-"PRIu64"\n", stats.opackets, ports_stats[pt_id].tx_dropped, stats.opackets + ports_stats[pt_id].tx_dropped); } else { printf(" RX-packets: %14"PRIu64 " RX-dropped:%14"PRIu64 " RX-total:%14"PRIu64"\n", stats.ipackets, stats.imissed, stats.ipackets + stats.imissed); if (cur_fwd_eng == &csum_fwd_engine) printf(" Bad-ipcsum:%14"PRIu64 " Bad-l4csum:%14"PRIu64 " Bad-outer-l4csum: %-14"PRIu64"\n", ports_stats[pt_id].rx_bad_ip_csum, ports_stats[pt_id].rx_bad_l4_csum, ports_stats[pt_id].rx_bad_outer_l4_csum); if ((stats.ierrors + stats.rx_nombuf) > 0) { printf(" RX-error:%"PRIu64"\n", stats.ierrors); printf(" RX-nombufs: %14"PRIu64"\n", stats.rx_nombuf); } printf(" TX-packets: %14"PRIu64 " TX-dropped:%14"PRIu64 " TX-total:%14"PRIu64"\n", stats.opackets, ports_stats[pt_id].tx_dropped, stats.opackets + ports_stats[pt_id].tx_dropped); } if (record_burst_stats) { if (ports_stats[pt_id].rx_stream) pkt_burst_stats_display("RX", &ports_stats[pt_id].rx_stream->rx_burst_stats); if (ports_stats[pt_id].tx_stream) pkt_burst_stats_display("TX", &ports_stats[pt_id].tx_stream->tx_burst_stats); } if (port->rx_queue_stats_mapping_enabled) { printf("\n"); for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { printf(" Stats reg %2d RX-packets:%14"PRIu64 " RX-errors:%14"PRIu64 " RX-bytes:%14"PRIu64"\n", j, stats.q_ipackets[j], stats.q_errors[j], stats.q_ibytes[j]); } printf("\n"); } if (port->tx_queue_stats_mapping_enabled) { for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { printf(" Stats reg %2d TX-packets:%14"PRIu64 " TX-bytes:%14" PRIu64"\n", j, stats.q_opackets[j], stats.q_obytes[j]); } } printf(" %s--------------------------------%s\n", fwd_stats_border, fwd_stats_border); } printf("\n %s Accumulated forward statistics for all ports" "%s\n", acc_stats_border, acc_stats_border); printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " "%-"PRIu64"\n" " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " "%-"PRIu64"\n", total_recv, total_rx_dropped, total_recv + total_rx_dropped, total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); if (total_rx_nombuf > 0) printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" "%s\n", acc_stats_border, acc_stats_border); if (record_core_cycles) { #define CYC_PER_MHZ 1E6 if (total_recv > 0 || total_xmit > 0) { uint64_t total_pkts = 0; if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) total_pkts = total_xmit; else total_pkts = total_recv; printf("\n CPU cycles/packet=%.2F (total cycles=" "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 " MHz Clock\n", (double) fwd_cycles / total_pkts, fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); } } } void fwd_stats_reset(void) { streamid_t sm_id; portid_t pt_id; int i; for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; rte_eth_stats_get(pt_id, &ports[pt_id].stats); } for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { struct fwd_stream *fs = fwd_streams[sm_id]; fs->rx_packets = 0; fs->tx_packets = 0; fs->fwd_dropped = 0; fs->rx_bad_ip_csum = 0; fs->rx_bad_l4_csum = 0; fs->rx_bad_outer_l4_csum = 0; memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); fs->core_cycles = 0; } } static void flush_fwd_rx_queues(void) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; portid_t rxp; portid_t port_id; queueid_t rxq; uint16_t nb_rx; uint16_t i; uint8_t j; uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; uint64_t timer_period; /* convert to number of cycles */ timer_period = rte_get_timer_hz(); /* 1 second timeout */ for (j = 0; j < 2; j++) { for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { for (rxq = 0; rxq < nb_rxq; rxq++) { port_id = fwd_ports_ids[rxp]; /** * testpmd can stuck in the below do while loop * if rte_eth_rx_burst() always returns nonzero * packets. So timer is added to exit this loop * after 1sec timer expiry. */ prev_tsc = rte_rdtsc(); do { nb_rx = rte_eth_rx_burst(port_id, rxq, pkts_burst, MAX_PKT_BURST); for (i = 0; i < nb_rx; i++) rte_pktmbuf_free(pkts_burst[i]); cur_tsc = rte_rdtsc(); diff_tsc = cur_tsc - prev_tsc; timer_tsc += diff_tsc; } while ((nb_rx > 0) && (timer_tsc < timer_period)); timer_tsc = 0; } } rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ } } static void run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) { struct fwd_stream **fsm; streamid_t nb_fs; streamid_t sm_id; #ifdef RTE_LIB_BITRATESTATS uint64_t tics_per_1sec; uint64_t tics_datum; uint64_t tics_current; uint16_t i, cnt_ports; cnt_ports = nb_ports; tics_datum = rte_rdtsc(); tics_per_1sec = rte_get_timer_hz(); #endif fsm = &fwd_streams[fc->stream_idx]; nb_fs = fc->stream_nb; do { for (sm_id = 0; sm_id < nb_fs; sm_id++) (*pkt_fwd)(fsm[sm_id]); #ifdef RTE_LIB_BITRATESTATS if (bitrate_enabled != 0 && bitrate_lcore_id == rte_lcore_id()) { tics_current = rte_rdtsc(); if (tics_current - tics_datum >= tics_per_1sec) { /* Periodic bitrate calculation */ for (i = 0; i < cnt_ports; i++) rte_stats_bitrate_calc(bitrate_data, ports_ids[i]); tics_datum = tics_current; } } #endif #ifdef RTE_LIB_LATENCYSTATS if (latencystats_enabled != 0 && latencystats_lcore_id == rte_lcore_id()) rte_latencystats_update(); #endif } while (! fc->stopped); } static int start_pkt_forward_on_core(void *fwd_arg) { run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, cur_fwd_config.fwd_eng->packet_fwd); return 0; } /* * Run the TXONLY packet forwarding engine to send a single burst of packets. * Used to start communication flows in network loopback test configurations. */ static int run_one_txonly_burst_on_core(void *fwd_arg) { struct fwd_lcore *fwd_lc; struct fwd_lcore tmp_lcore; fwd_lc = (struct fwd_lcore *) fwd_arg; tmp_lcore = *fwd_lc; tmp_lcore.stopped = 1; run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); return 0; } /* * Launch packet forwarding: * - Setup per-port forwarding context. * - launch logical cores with their forwarding configuration. */ static void launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) { port_fwd_begin_t port_fwd_begin; unsigned int i; unsigned int lc_id; int diag; port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; if (port_fwd_begin != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_begin)(fwd_ports_ids[i]); } for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { lc_id = fwd_lcores_cpuids[i]; if ((interactive == 0) || (lc_id != rte_lcore_id())) { fwd_lcores[i]->stopped = 0; diag = rte_eal_remote_launch(pkt_fwd_on_lcore, fwd_lcores[i], lc_id); if (diag != 0) printf("launch lcore %u failed - diag=%d\n", lc_id, diag); } } } /* * Launch packet forwarding configuration. */ void start_packet_forwarding(int with_tx_first) { port_fwd_begin_t port_fwd_begin; port_fwd_end_t port_fwd_end; struct rte_port *port; unsigned int i; portid_t pt_id; if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && (!nb_rxq || !nb_txq)) rte_exit(EXIT_FAILURE, "Either rxq or txq are 0, cannot use %s fwd mode\n", cur_fwd_eng->fwd_mode_name); if (all_ports_started() == 0) { printf("Not all ports were started\n"); return; } if (test_done == 0) { printf("Packet forwarding already started\n"); return; } if(dcb_test) { for (i = 0; i < nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; if (!port->dcb_flag) { printf("In DCB mode, all forwarding ports must " "be configured in this mode.\n"); return; } } if (nb_fwd_lcores == 1) { printf("In DCB mode,the nb forwarding cores " "should be larger than 1.\n"); return; } } test_done = 0; fwd_config_setup(); if(!no_flush_rx) flush_fwd_rx_queues(); pkt_fwd_config_display(&cur_fwd_config); rxtx_config_display(); fwd_stats_reset(); for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; map_port_queue_stats_mapping_registers(pt_id, port); } if (with_tx_first) { port_fwd_begin = tx_only_engine.port_fwd_begin; if (port_fwd_begin != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_begin)(fwd_ports_ids[i]); } while (with_tx_first--) { launch_packet_forwarding( run_one_txonly_burst_on_core); rte_eal_mp_wait_lcore(); } port_fwd_end = tx_only_engine.port_fwd_end; if (port_fwd_end != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_end)(fwd_ports_ids[i]); } } launch_packet_forwarding(start_pkt_forward_on_core); } void stop_packet_forwarding(void) { port_fwd_end_t port_fwd_end; lcoreid_t lc_id; portid_t pt_id; int i; if (test_done) { printf("Packet forwarding not started\n"); return; } printf("Telling cores to stop..."); for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) fwd_lcores[lc_id]->stopped = 1; printf("\nWaiting for lcores to finish...\n"); rte_eal_mp_wait_lcore(); port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; if (port_fwd_end != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; (*port_fwd_end)(pt_id); } } fwd_stats_display(); printf("\nDone.\n"); test_done = 1; } void dev_set_link_up(portid_t pid) { if (rte_eth_dev_set_link_up(pid) < 0) printf("\nSet link up fail.\n"); } void dev_set_link_down(portid_t pid) { if (rte_eth_dev_set_link_down(pid) < 0) printf("\nSet link down fail.\n"); } static int all_ports_started(void) { portid_t pi; struct rte_port *port; RTE_ETH_FOREACH_DEV(pi) { port = &ports[pi]; /* Check if there is a port which is not started */ if ((port->port_status != RTE_PORT_STARTED) && (port->slave_flag == 0)) return 0; } /* No port is not started */ return 1; } int port_is_stopped(portid_t port_id) { struct rte_port *port = &ports[port_id]; if ((port->port_status != RTE_PORT_STOPPED) && (port->slave_flag == 0)) return 0; return 1; } int all_ports_stopped(void) { portid_t pi; RTE_ETH_FOREACH_DEV(pi) { if (!port_is_stopped(pi)) return 0; } return 1; } int port_is_started(portid_t port_id) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return 0; if (ports[port_id].port_status != RTE_PORT_STARTED) return 0; return 1; } /* Configure the Rx and Tx hairpin queues for the selected port. */ static int setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) { queueid_t qi; struct rte_eth_hairpin_conf hairpin_conf = { .peer_count = 1, }; int i; int diag; struct rte_port *port = &ports[pi]; uint16_t peer_rx_port = pi; uint16_t peer_tx_port = pi; uint32_t manual = 1; uint32_t tx_exp = hairpin_mode & 0x10; if (!(hairpin_mode & 0xf)) { peer_rx_port = pi; peer_tx_port = pi; manual = 0; } else if (hairpin_mode & 0x1) { peer_tx_port = rte_eth_find_next_owned_by(pi + 1, RTE_ETH_DEV_NO_OWNER); if (peer_tx_port >= RTE_MAX_ETHPORTS) peer_tx_port = rte_eth_find_next_owned_by(0, RTE_ETH_DEV_NO_OWNER); if (p_pi != RTE_MAX_ETHPORTS) { peer_rx_port = p_pi; } else { uint16_t next_pi; /* Last port will be the peer RX port of the first. */ RTE_ETH_FOREACH_DEV(next_pi) peer_rx_port = next_pi; } manual = 1; } else if (hairpin_mode & 0x2) { if (cnt_pi & 0x1) { peer_rx_port = p_pi; } else { peer_rx_port = rte_eth_find_next_owned_by(pi + 1, RTE_ETH_DEV_NO_OWNER); if (peer_rx_port >= RTE_MAX_ETHPORTS) peer_rx_port = pi; } peer_tx_port = peer_rx_port; manual = 1; } for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { hairpin_conf.peers[0].port = peer_rx_port; hairpin_conf.peers[0].queue = i + nb_rxq; hairpin_conf.manual_bind = !!manual; hairpin_conf.tx_explicit = !!tx_exp; diag = rte_eth_tx_hairpin_queue_setup (pi, qi, nb_txd, &hairpin_conf); i++; if (diag == 0) continue; /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d hairpin " "queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { hairpin_conf.peers[0].port = peer_tx_port; hairpin_conf.peers[0].queue = i + nb_txq; hairpin_conf.manual_bind = !!manual; hairpin_conf.tx_explicit = !!tx_exp; diag = rte_eth_rx_hairpin_queue_setup (pi, qi, nb_rxd, &hairpin_conf); i++; if (diag == 0) continue; /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d hairpin " "queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } return 0; } /* Configure the Rx with optional split. */ int rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {}; unsigned int i, mp_n; int ret; if (rx_pkt_nb_segs <= 1 || (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) { rx_conf->rx_seg = NULL; rx_conf->rx_nseg = 0; ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, socket_id, rx_conf, mp); return ret; } for (i = 0; i < rx_pkt_nb_segs; i++) { struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split; struct rte_mempool *mpx; /* * Use last valid pool for the segments with number * exceeding the pool index. */ mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i; mpx = mbuf_pool_find(socket_id, mp_n); /* Handle zero as mbuf data buffer size. */ rx_seg->length = rx_pkt_seg_lengths[i] ? rx_pkt_seg_lengths[i] : mbuf_data_size[mp_n]; rx_seg->offset = i < rx_pkt_nb_offs ? rx_pkt_seg_offsets[i] : 0; rx_seg->mp = mpx ? mpx : mp; } rx_conf->rx_nseg = rx_pkt_nb_segs; rx_conf->rx_seg = rx_useg; ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, socket_id, rx_conf, NULL); rx_conf->rx_seg = NULL; rx_conf->rx_nseg = 0; return ret; } int start_port(portid_t pid) { int diag, need_check_link_status = -1; portid_t pi; portid_t p_pi = RTE_MAX_ETHPORTS; portid_t pl[RTE_MAX_ETHPORTS]; portid_t peer_pl[RTE_MAX_ETHPORTS]; uint16_t cnt_pi = 0; uint16_t cfg_pi = 0; int peer_pi; queueid_t qi; struct rte_port *port; struct rte_ether_addr mac_addr; struct rte_eth_hairpin_cap cap; if (port_id_is_invalid(pid, ENABLED_WARN)) return 0; if(dcb_config) dcb_test = 1; RTE_ETH_FOREACH_DEV(pi) { if (pid != pi && pid != (portid_t)RTE_PORT_ALL) continue; need_check_link_status = 0; port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, RTE_PORT_HANDLING) == 0) { printf("Port %d is now not stopped\n", pi); continue; } if (port->need_reconfig > 0) { uint16_t mtu = RTE_ETHER_MTU; port->need_reconfig = 0; if (flow_isolate_all) { int ret = port_flow_isolate(pi, 1); if (ret) { printf("Failed to apply isolated" " mode on port %d\n", pi); return -1; } } configure_rxtx_dump_callbacks(0); printf("Configuring Port %d (socket %u)\n", pi, port->socket_id); if (nb_hairpinq > 0 && rte_eth_dev_hairpin_capability_get(pi, &cap)) { printf("Port %d doesn't support hairpin " "queues\n", pi); return -1; } /* configure port */ diag = rte_eth_dev_configure(pi, nb_rxq + nb_hairpinq, nb_txq + nb_hairpinq, &(port->dev_conf)); if (diag != 0) { if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d\n", pi); /* try to reconfigure port next time */ port->need_reconfig = 1; return -1; } /* * Workaround for rte_eth_dev_configure(), max_rx_pkt_len * set MTU wrong for the PMDs that have frame overhead * bigger than RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN. * For a PMD that has 26 bytes overhead, rte_eth_dev_configure() * can set MTU to max 1492, not to expected 1500 bytes. * Using rte_eth_dev_set_mtu() to be able to set MTU correctly, * default MTU value is 1500. */ diag = rte_eth_dev_get_mtu(pi, &mtu); if (diag) printf("Failed to get MTU for port %d\n", pi); diag = rte_eth_dev_set_mtu(pi, mtu); if (diag != 0 && diag != -ENOTSUP) printf("Failed to set MTU to %u for port %d\n", mtu, pi); } if (port->need_reconfig_queues > 0) { port->need_reconfig_queues = 0; /* setup tx queues */ for (qi = 0; qi < nb_txq; qi++) { if ((numa_support) && (txring_numa[pi] != NUMA_NO_CONFIG)) diag = rte_eth_tx_queue_setup(pi, qi, port->nb_tx_desc[qi], txring_numa[pi], &(port->tx_conf[qi])); else diag = rte_eth_tx_queue_setup(pi, qi, port->nb_tx_desc[qi], port->socket_id, &(port->tx_conf[qi])); if (diag == 0) continue; /* Fail to setup tx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d tx queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } for (qi = 0; qi < nb_rxq; qi++) { /* setup rx queues */ if ((numa_support) && (rxring_numa[pi] != NUMA_NO_CONFIG)) { struct rte_mempool * mp = mbuf_pool_find (rxring_numa[pi], 0); if (mp == NULL) { printf("Failed to setup RX queue:" "No mempool allocation" " on the socket %d\n", rxring_numa[pi]); return -1; } diag = rx_queue_setup(pi, qi, port->nb_rx_desc[qi], rxring_numa[pi], &(port->rx_conf[qi]), mp); } else { struct rte_mempool *mp = mbuf_pool_find (port->socket_id, 0); if (mp == NULL) { printf("Failed to setup RX queue:" "No mempool allocation" " on the socket %d\n", port->socket_id); return -1; } diag = rx_queue_setup(pi, qi, port->nb_rx_desc[qi], port->socket_id, &(port->rx_conf[qi]), mp); } if (diag == 0) continue; /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d rx queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } /* setup hairpin queues */ if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) return -1; } configure_rxtx_dump_callbacks(verbose_level); if (clear_ptypes) { diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, NULL, 0); if (diag < 0) printf( "Port %d: Failed to disable Ptype parsing\n", pi); } p_pi = pi; cnt_pi++; /* start port */ if (rte_eth_dev_start(pi) < 0) { printf("Fail to start port %d\n", pi); /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back to " "stopped\n", pi); continue; } if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) printf("Port %d can not be set into started\n", pi); if (eth_macaddr_get_print_err(pi, &mac_addr) == 0) printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]); /* at least one port started, need checking link status */ need_check_link_status = 1; pl[cfg_pi++] = pi; } if (need_check_link_status == 1 && !no_link_check) check_all_ports_link_status(RTE_PORT_ALL); else if (need_check_link_status == 0) printf("Please stop the ports first\n"); if (hairpin_mode & 0xf) { uint16_t i; int j; /* bind all started hairpin ports */ for (i = 0; i < cfg_pi; i++) { pi = pl[i]; /* bind current Tx to all peer Rx */ peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, RTE_MAX_ETHPORTS, 1); if (peer_pi < 0) return peer_pi; for (j = 0; j < peer_pi; j++) { if (!port_is_started(peer_pl[j])) continue; diag = rte_eth_hairpin_bind(pi, peer_pl[j]); if (diag < 0) { printf("Error during binding hairpin" " Tx port %u to %u: %s\n", pi, peer_pl[j], rte_strerror(-diag)); return -1; } } /* bind all peer Tx to current Rx */ peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, RTE_MAX_ETHPORTS, 0); if (peer_pi < 0) return peer_pi; for (j = 0; j < peer_pi; j++) { if (!port_is_started(peer_pl[j])) continue; diag = rte_eth_hairpin_bind(peer_pl[j], pi); if (diag < 0) { printf("Error during binding hairpin" " Tx port %u to %u: %s\n", peer_pl[j], pi, rte_strerror(-diag)); return -1; } } } } printf("Done\n"); return 0; } void stop_port(portid_t pid) { portid_t pi; struct rte_port *port; int need_check_link_status = 0; portid_t peer_pl[RTE_MAX_ETHPORTS]; int peer_pi; if (dcb_test) { dcb_test = 0; dcb_config = 0; } if (port_id_is_invalid(pid, ENABLED_WARN)) return; printf("Stopping ports...\n"); RTE_ETH_FOREACH_DEV(pi) { if (pid != pi && pid != (portid_t)RTE_PORT_ALL) continue; if (port_is_forwarding(pi) != 0 && test_done == 0) { printf("Please remove port %d from forwarding configuration.\n", pi); continue; } if (port_is_bonding_slave(pi)) { printf("Please remove port %d from bonded device.\n", pi); continue; } port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, RTE_PORT_HANDLING) == 0) continue; if (hairpin_mode & 0xf) { int j; rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); /* unbind all peer Tx from current Rx */ peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, RTE_MAX_ETHPORTS, 0); if (peer_pi < 0) continue; for (j = 0; j < peer_pi; j++) { if (!port_is_started(peer_pl[j])) continue; rte_eth_hairpin_unbind(peer_pl[j], pi); } } if (rte_eth_dev_stop(pi) != 0) RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n", pi); if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set into stopped\n", pi); need_check_link_status = 1; } if (need_check_link_status && !no_link_check) check_all_ports_link_status(RTE_PORT_ALL); printf("Done\n"); } static void remove_invalid_ports_in(portid_t *array, portid_t *total) { portid_t i; portid_t new_total = 0; for (i = 0; i < *total; i++) if (!port_id_is_invalid(array[i], DISABLED_WARN)) { array[new_total] = array[i]; new_total++; } *total = new_total; } static void remove_invalid_ports(void) { remove_invalid_ports_in(ports_ids, &nb_ports); remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); nb_cfg_ports = nb_fwd_ports; } void close_port(portid_t pid) { portid_t pi; struct rte_port *port; if (port_id_is_invalid(pid, ENABLED_WARN)) return; printf("Closing ports...\n"); RTE_ETH_FOREACH_DEV(pi) { if (pid != pi && pid != (portid_t)RTE_PORT_ALL) continue; if (port_is_forwarding(pi) != 0 && test_done == 0) { printf("Please remove port %d from forwarding configuration.\n", pi); continue; } if (port_is_bonding_slave(pi)) { printf("Please remove port %d from bonded device.\n", pi); continue; } port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { printf("Port %d is already closed\n", pi); continue; } port_flow_flush(pi); rte_eth_dev_close(pi); } remove_invalid_ports(); printf("Done\n"); } void reset_port(portid_t pid) { int diag; portid_t pi; struct rte_port *port; if (port_id_is_invalid(pid, ENABLED_WARN)) return; if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { printf("Can not reset port(s), please stop port(s) first.\n"); return; } printf("Resetting ports...\n"); RTE_ETH_FOREACH_DEV(pi) { if (pid != pi && pid != (portid_t)RTE_PORT_ALL) continue; if (port_is_forwarding(pi) != 0 && test_done == 0) { printf("Please remove port %d from forwarding " "configuration.\n", pi); continue; } if (port_is_bonding_slave(pi)) { printf("Please remove port %d from bonded device.\n", pi); continue; } diag = rte_eth_dev_reset(pi); if (diag == 0) { port = &ports[pi]; port->need_reconfig = 1; port->need_reconfig_queues = 1; } else { printf("Failed to reset port %d. diag=%d\n", pi, diag); } } printf("Done\n"); } void attach_port(char *identifier) { portid_t pi; struct rte_dev_iterator iterator; printf("Attaching a new port...\n"); if (identifier == NULL) { printf("Invalid parameters are specified\n"); return; } if (rte_dev_probe(identifier) < 0) { TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); return; } /* first attach mode: event */ if (setup_on_probe_event) { /* new ports are detected on RTE_ETH_EVENT_NEW event */ for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) if (ports[pi].port_status == RTE_PORT_HANDLING && ports[pi].need_setup != 0) setup_attached_port(pi); return; } /* second attach mode: iterator */ RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { /* setup ports matching the devargs used for probing */ if (port_is_forwarding(pi)) continue; /* port was already attached before */ setup_attached_port(pi); } } static void setup_attached_port(portid_t pi) { unsigned int socket_id; int ret; socket_id = (unsigned)rte_eth_dev_socket_id(pi); /* if socket_id is invalid, set to the first available socket. */ if (check_socket_id(socket_id) < 0) socket_id = socket_ids[0]; reconfig(pi, socket_id); ret = rte_eth_promiscuous_enable(pi); if (ret != 0) printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", pi, rte_strerror(-ret)); ports_ids[nb_ports++] = pi; fwd_ports_ids[nb_fwd_ports++] = pi; nb_cfg_ports = nb_fwd_ports; ports[pi].need_setup = 0; ports[pi].port_status = RTE_PORT_STOPPED; printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); printf("Done\n"); } static void detach_device(struct rte_device *dev) { portid_t sibling; if (dev == NULL) { printf("Device already removed\n"); return; } printf("Removing a device...\n"); RTE_ETH_FOREACH_DEV_OF(sibling, dev) { if (ports[sibling].port_status != RTE_PORT_CLOSED) { if (ports[sibling].port_status != RTE_PORT_STOPPED) { printf("Port %u not stopped\n", sibling); return; } port_flow_flush(sibling); } } if (rte_dev_remove(dev) < 0) { TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); return; } remove_invalid_ports(); printf("Device is detached\n"); printf("Now total ports is %d\n", nb_ports); printf("Done\n"); return; } void detach_port_device(portid_t port_id) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (ports[port_id].port_status != RTE_PORT_CLOSED) { if (ports[port_id].port_status != RTE_PORT_STOPPED) { printf("Port not stopped\n"); return; } printf("Port was not closed\n"); } detach_device(rte_eth_devices[port_id].device); } void detach_devargs(char *identifier) { struct rte_dev_iterator iterator; struct rte_devargs da; portid_t port_id; printf("Removing a device...\n"); memset(&da, 0, sizeof(da)); if (rte_devargs_parsef(&da, "%s", identifier)) { printf("cannot parse identifier\n"); if (da.args) free(da.args); return; } RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { if (ports[port_id].port_status != RTE_PORT_CLOSED) { if (ports[port_id].port_status != RTE_PORT_STOPPED) { printf("Port %u not stopped\n", port_id); rte_eth_iterator_cleanup(&iterator); return; } port_flow_flush(port_id); } } if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", da.name, da.bus->name); return; } remove_invalid_ports(); printf("Device %s is detached\n", identifier); printf("Now total ports is %d\n", nb_ports); printf("Done\n"); } void pmd_test_exit(void) { portid_t pt_id; unsigned int i; int ret; if (test_done == 0) stop_packet_forwarding(); for (i = 0 ; i < RTE_DIM(mempools) ; i++) { if (mempools[i]) { if (mp_alloc_type == MP_ALLOC_ANON) rte_mempool_mem_iter(mempools[i], dma_unmap_cb, NULL); } } if (ports != NULL) { no_link_check = 1; RTE_ETH_FOREACH_DEV(pt_id) { printf("\nStopping port %d...\n", pt_id); fflush(stdout); stop_port(pt_id); } RTE_ETH_FOREACH_DEV(pt_id) { printf("\nShutting down port %d...\n", pt_id); fflush(stdout); close_port(pt_id); } } if (hot_plug) { ret = rte_dev_event_monitor_stop(); if (ret) { RTE_LOG(ERR, EAL, "fail to stop device event monitor."); return; } ret = rte_dev_event_callback_unregister(NULL, dev_event_callback, NULL); if (ret < 0) { RTE_LOG(ERR, EAL, "fail to unregister device event callback.\n"); return; } ret = rte_dev_hotplug_handle_disable(); if (ret) { RTE_LOG(ERR, EAL, "fail to disable hotplug handling.\n"); return; } } for (i = 0 ; i < RTE_DIM(mempools) ; i++) { if (mempools[i]) rte_mempool_free(mempools[i]); } printf("\nBye...\n"); } typedef void (*cmd_func_t)(void); struct pmd_test_command { const char *cmd_name; cmd_func_t cmd_func; }; /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ portid_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; int ret; char link_status[RTE_ETH_LINK_MAX_STR_LEN]; printf("Checking link statuses...\n"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); ret = rte_eth_link_get_nowait(portid, &link); if (ret < 0) { all_ports_up = 0; if (print_flag == 1) printf("Port %u link get failed: %s\n", portid, rte_strerror(-ret)); continue; } /* print link status if flag set */ if (print_flag == 1) { rte_eth_link_to_str(link_status, sizeof(link_status), &link); printf("Port %d %s\n", portid, link_status); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; } if (lsc_interrupt) break; } } static void rmv_port_callback(void *arg) { int need_to_start = 0; int org_no_link_check = no_link_check; portid_t port_id = (intptr_t)arg; struct rte_device *dev; RTE_ETH_VALID_PORTID_OR_RET(port_id); if (!test_done && port_is_forwarding(port_id)) { need_to_start = 1; stop_packet_forwarding(); } no_link_check = 1; stop_port(port_id); no_link_check = org_no_link_check; /* Save rte_device pointer before closing ethdev port */ dev = rte_eth_devices[port_id].device; close_port(port_id); detach_device(dev); /* might be already removed or have more ports */ if (need_to_start) start_packet_forwarding(0); } /* This function is used by the interrupt thread */ static int eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, void *ret_param) { RTE_SET_USED(param); RTE_SET_USED(ret_param); if (type >= RTE_ETH_EVENT_MAX) { fprintf(stderr, "\nPort %" PRIu16 ": %s called upon invalid event %d\n", port_id, __func__, type); fflush(stderr); } else if (event_print_mask & (UINT32_C(1) << type)) { printf("\nPort %" PRIu16 ": %s event\n", port_id, eth_event_desc[type]); fflush(stdout); } switch (type) { case RTE_ETH_EVENT_NEW: ports[port_id].need_setup = 1; ports[port_id].port_status = RTE_PORT_HANDLING; break; case RTE_ETH_EVENT_INTR_RMV: if (port_id_is_invalid(port_id, DISABLED_WARN)) break; if (rte_eal_alarm_set(100000, rmv_port_callback, (void *)(intptr_t)port_id)) fprintf(stderr, "Could not set up deferred device removal\n"); break; case RTE_ETH_EVENT_DESTROY: ports[port_id].port_status = RTE_PORT_CLOSED; printf("Port %u is closed\n", port_id); break; default: break; } return 0; } static int register_eth_event_callback(void) { int ret; enum rte_eth_event_type event; for (event = RTE_ETH_EVENT_UNKNOWN; event < RTE_ETH_EVENT_MAX; event++) { ret = rte_eth_dev_callback_register(RTE_ETH_ALL, event, eth_event_callback, NULL); if (ret != 0) { TESTPMD_LOG(ERR, "Failed to register callback for " "%s event\n", eth_event_desc[event]); return -1; } } return 0; } /* This function is used by the interrupt thread */ static void dev_event_callback(const char *device_name, enum rte_dev_event_type type, __rte_unused void *arg) { uint16_t port_id; int ret; if (type >= RTE_DEV_EVENT_MAX) { fprintf(stderr, "%s called upon invalid event %d\n", __func__, type); fflush(stderr); } switch (type) { case RTE_DEV_EVENT_REMOVE: RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", device_name); ret = rte_eth_dev_get_port_by_name(device_name, &port_id); if (ret) { RTE_LOG(ERR, EAL, "can not get port by device %s!\n", device_name); return; } /* * Because the user's callback is invoked in eal interrupt * callback, the interrupt callback need to be finished before * it can be unregistered when detaching device. So finish * callback soon and use a deferred removal to detach device * is need. It is a workaround, once the device detaching be * moved into the eal in the future, the deferred removal could * be deleted. */ if (rte_eal_alarm_set(100000, rmv_port_callback, (void *)(intptr_t)port_id)) RTE_LOG(ERR, EAL, "Could not set up deferred device removal\n"); break; case RTE_DEV_EVENT_ADD: RTE_LOG(ERR, EAL, "The device: %s has been added!\n", device_name); /* TODO: After finish kernel driver binding, * begin to attach port. */ break; default: break; } } static int set_tx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) { uint16_t i; int diag; uint8_t mapping_found = 0; for (i = 0; i < nb_tx_queue_stats_mappings; i++) { if ((tx_queue_stats_mappings[i].port_id == port_id) && (tx_queue_stats_mappings[i].queue_id < nb_txq )) { diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id, tx_queue_stats_mappings[i].queue_id, tx_queue_stats_mappings[i].stats_counter_id); if (diag != 0) return diag; mapping_found = 1; } } if (mapping_found) port->tx_queue_stats_mapping_enabled = 1; return 0; } static int set_rx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) { uint16_t i; int diag; uint8_t mapping_found = 0; for (i = 0; i < nb_rx_queue_stats_mappings; i++) { if ((rx_queue_stats_mappings[i].port_id == port_id) && (rx_queue_stats_mappings[i].queue_id < nb_rxq )) { diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id, rx_queue_stats_mappings[i].queue_id, rx_queue_stats_mappings[i].stats_counter_id); if (diag != 0) return diag; mapping_found = 1; } } if (mapping_found) port->rx_queue_stats_mapping_enabled = 1; return 0; } static void map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port) { int diag = 0; diag = set_tx_queue_stats_mapping_registers(pi, port); if (diag != 0) { if (diag == -ENOTSUP) { port->tx_queue_stats_mapping_enabled = 0; printf("TX queue stats mapping not supported port id=%d\n", pi); } else rte_exit(EXIT_FAILURE, "set_tx_queue_stats_mapping_registers " "failed for port id=%d diag=%d\n", pi, diag); } diag = set_rx_queue_stats_mapping_registers(pi, port); if (diag != 0) { if (diag == -ENOTSUP) { port->rx_queue_stats_mapping_enabled = 0; printf("RX queue stats mapping not supported port id=%d\n", pi); } else rte_exit(EXIT_FAILURE, "set_rx_queue_stats_mapping_registers " "failed for port id=%d diag=%d\n", pi, diag); } } static void rxtx_port_config(struct rte_port *port) { uint16_t qid; uint64_t offloads; for (qid = 0; qid < nb_rxq; qid++) { offloads = port->rx_conf[qid].offloads; port->rx_conf[qid] = port->dev_info.default_rxconf; if (offloads != 0) port->rx_conf[qid].offloads = offloads; /* Check if any Rx parameters have been passed */ if (rx_pthresh != RTE_PMD_PARAM_UNSET) port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; if (rx_hthresh != RTE_PMD_PARAM_UNSET) port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; if (rx_wthresh != RTE_PMD_PARAM_UNSET) port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; if (rx_free_thresh != RTE_PMD_PARAM_UNSET) port->rx_conf[qid].rx_free_thresh = rx_free_thresh; if (rx_drop_en != RTE_PMD_PARAM_UNSET) port->rx_conf[qid].rx_drop_en = rx_drop_en; port->nb_rx_desc[qid] = nb_rxd; } for (qid = 0; qid < nb_txq; qid++) { offloads = port->tx_conf[qid].offloads; port->tx_conf[qid] = port->dev_info.default_txconf; if (offloads != 0) port->tx_conf[qid].offloads = offloads; /* Check if any Tx parameters have been passed */ if (tx_pthresh != RTE_PMD_PARAM_UNSET) port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; if (tx_hthresh != RTE_PMD_PARAM_UNSET) port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; if (tx_wthresh != RTE_PMD_PARAM_UNSET) port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; if (tx_free_thresh != RTE_PMD_PARAM_UNSET) port->tx_conf[qid].tx_free_thresh = tx_free_thresh; port->nb_tx_desc[qid] = nb_txd; } } void init_port_config(void) { portid_t pid; struct rte_port *port; int ret; RTE_ETH_FOREACH_DEV(pid) { port = &ports[pid]; port->dev_conf.fdir_conf = fdir_conf; ret = eth_dev_info_get_print_err(pid, &port->dev_info); if (ret != 0) return; if (nb_rxq > 1) { port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; port->dev_conf.rx_adv_conf.rss_conf.rss_hf = rss_hf & port->dev_info.flow_type_rss_offloads; } else { port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; } if (port->dcb_flag == 0) { if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) port->dev_conf.rxmode.mq_mode = (enum rte_eth_rx_mq_mode) (rx_mq_mode & ETH_MQ_RX_RSS); else port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; } rxtx_port_config(port); ret = eth_macaddr_get_print_err(pid, &port->eth_addr); if (ret != 0) return; map_port_queue_stats_mapping_registers(pid, port); #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS rte_pmd_ixgbe_bypass_init(pid); #endif if (lsc_interrupt && (rte_eth_devices[pid].data->dev_flags & RTE_ETH_DEV_INTR_LSC)) port->dev_conf.intr_conf.lsc = 1; if (rmv_interrupt && (rte_eth_devices[pid].data->dev_flags & RTE_ETH_DEV_INTR_RMV)) port->dev_conf.intr_conf.rmv = 1; } } void set_port_slave_flag(portid_t slave_pid) { struct rte_port *port; port = &ports[slave_pid]; port->slave_flag = 1; } void clear_port_slave_flag(portid_t slave_pid) { struct rte_port *port; port = &ports[slave_pid]; port->slave_flag = 0; } uint8_t port_is_bonding_slave(portid_t slave_pid) { struct rte_port *port; port = &ports[slave_pid]; if ((rte_eth_devices[slave_pid].data->dev_flags & RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) return 1; return 0; } const uint16_t vlan_tags[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }; static int get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, enum dcb_mode_enable dcb_mode, enum rte_eth_nb_tcs num_tcs, uint8_t pfc_en) { uint8_t i; int32_t rc; struct rte_eth_rss_conf rss_conf; /* * Builds up the correct configuration for dcb+vt based on the vlan tags array * given above, and the number of traffic classes available for use. */ if (dcb_mode == DCB_VT_ENABLED) { struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = ð_conf->rx_adv_conf.vmdq_dcb_conf; struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; /* VMDQ+DCB RX and TX configurations */ vmdq_rx_conf->enable_default_pool = 0; vmdq_rx_conf->default_pool = 0; vmdq_rx_conf->nb_queue_pools = (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); vmdq_tx_conf->nb_queue_pools = (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; vmdq_rx_conf->pool_map[i].pools = 1 << (i % vmdq_rx_conf->nb_queue_pools); } for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { vmdq_rx_conf->dcb_tc[i] = i % num_tcs; vmdq_tx_conf->dcb_tc[i] = i % num_tcs; } /* set DCB mode of RX and TX of multiple queues */ eth_conf->rxmode.mq_mode = (enum rte_eth_rx_mq_mode) (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; } else { struct rte_eth_dcb_rx_conf *rx_conf = ð_conf->rx_adv_conf.dcb_rx_conf; struct rte_eth_dcb_tx_conf *tx_conf = ð_conf->tx_adv_conf.dcb_tx_conf; memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); if (rc != 0) return rc; rx_conf->nb_tcs = num_tcs; tx_conf->nb_tcs = num_tcs; for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { rx_conf->dcb_tc[i] = i % num_tcs; tx_conf->dcb_tc[i] = i % num_tcs; } eth_conf->rxmode.mq_mode = (enum rte_eth_rx_mq_mode) (rx_mq_mode & ETH_MQ_RX_DCB_RSS); eth_conf->rx_adv_conf.rss_conf = rss_conf; eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; } if (pfc_en) eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; else eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; return 0; } int init_port_dcb_config(portid_t pid, enum dcb_mode_enable dcb_mode, enum rte_eth_nb_tcs num_tcs, uint8_t pfc_en) { struct rte_eth_conf port_conf; struct rte_port *rte_port; int retval; uint16_t i; rte_port = &ports[pid]; memset(&port_conf, 0, sizeof(struct rte_eth_conf)); /* Enter DCB configuration status */ dcb_config = 1; port_conf.rxmode = rte_port->dev_conf.rxmode; port_conf.txmode = rte_port->dev_conf.txmode; /*set configuration of DCB in vt mode and DCB in non-vt mode*/ retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); if (retval < 0) return retval; port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; /* re-configure the device . */ retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); if (retval < 0) return retval; retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); if (retval != 0) return retval; /* If dev_info.vmdq_pool_base is greater than 0, * the queue id of vmdq pools is started after pf queues. */ if (dcb_mode == DCB_VT_ENABLED && rte_port->dev_info.vmdq_pool_base > 0) { printf("VMDQ_DCB multi-queue mode is nonsensical" " for port %d.", pid); return -1; } /* Assume the ports in testpmd have the same dcb capability * and has the same number of rxq and txq in dcb mode */ if (dcb_mode == DCB_VT_ENABLED) { if (rte_port->dev_info.max_vfs > 0) { nb_rxq = rte_port->dev_info.nb_rx_queues; nb_txq = rte_port->dev_info.nb_tx_queues; } else { nb_rxq = rte_port->dev_info.max_rx_queues; nb_txq = rte_port->dev_info.max_tx_queues; } } else { /*if vt is disabled, use all pf queues */ if (rte_port->dev_info.vmdq_pool_base == 0) { nb_rxq = rte_port->dev_info.max_rx_queues; nb_txq = rte_port->dev_info.max_tx_queues; } else { nb_rxq = (queueid_t)num_tcs; nb_txq = (queueid_t)num_tcs; } } rx_free_thresh = 64; memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); rxtx_port_config(rte_port); /* VLAN filter */ rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; for (i = 0; i < RTE_DIM(vlan_tags); i++) rx_vft_set(pid, vlan_tags[i], 1); retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); if (retval != 0) return retval; map_port_queue_stats_mapping_registers(pid, rte_port); rte_port->dcb_flag = 1; return 0; } static void init_port(void) { int i; /* Configuration of Ethernet ports. */ ports = rte_zmalloc("testpmd: ports", sizeof(struct rte_port) * RTE_MAX_ETHPORTS, RTE_CACHE_LINE_SIZE); if (ports == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(%d struct rte_port) failed\n", RTE_MAX_ETHPORTS); } for (i = 0; i < RTE_MAX_ETHPORTS; i++) LIST_INIT(&ports[i].flow_tunnel_list); /* Initialize ports NUMA structures */ memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); } static void force_quit(void) { pmd_test_exit(); prompt_exit(); } static void print_stats(void) { uint8_t i; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; /* Clear screen and move to top left */ printf("%s%s", clr, top_left); printf("\nPort statistics ===================================="); for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) nic_stats_display(fwd_ports_ids[i]); fflush(stdout); } static void signal_handler(int signum) { if (signum == SIGINT || signum == SIGTERM) { printf("\nSignal %d received, preparing to exit...\n", signum); #ifdef RTE_LIB_PDUMP /* uninitialize packet capture framework */ rte_pdump_uninit(); #endif #ifdef RTE_LIB_LATENCYSTATS if (latencystats_enabled != 0) rte_latencystats_uninit(); #endif force_quit(); /* Set flag to indicate the force termination. */ f_quit = 1; /* exit with the expected status */ signal(signum, SIG_DFL); kill(getpid(), signum); } } int main(int argc, char** argv) { int diag; portid_t port_id; uint16_t count; int ret; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); testpmd_logtype = rte_log_register("testpmd"); if (testpmd_logtype < 0) rte_exit(EXIT_FAILURE, "Cannot register log type"); rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); diag = rte_eal_init(argc, argv); if (diag < 0) rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", rte_strerror(rte_errno)); if (rte_eal_process_type() == RTE_PROC_SECONDARY) rte_exit(EXIT_FAILURE, "Secondary process type not supported.\n"); ret = register_eth_event_callback(); if (ret != 0) rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); #ifdef RTE_LIB_PDUMP /* initialize packet capture framework */ rte_pdump_init(); #endif count = 0; RTE_ETH_FOREACH_DEV(port_id) { ports_ids[count] = port_id; count++; } nb_ports = (portid_t) count; if (nb_ports == 0) TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); /* allocate port structures, and init them */ init_port(); set_def_fwd_config(); if (nb_lcores == 0) rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" "Check the core mask argument\n"); /* Bitrate/latency stats disabled by default */ #ifdef RTE_LIB_BITRATESTATS bitrate_enabled = 0; #endif #ifdef RTE_LIB_LATENCYSTATS latencystats_enabled = 0; #endif /* on FreeBSD, mlockall() is disabled by default */ #ifdef RTE_EXEC_ENV_FREEBSD do_mlockall = 0; #else do_mlockall = 1; #endif argc -= diag; argv += diag; if (argc > 1) launch_args_parse(argc, argv); if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", strerror(errno)); } if (tx_first && interactive) rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " "interactive mode.\n"); if (tx_first && lsc_interrupt) { printf("Warning: lsc_interrupt needs to be off when " " using tx_first. Disabling.\n"); lsc_interrupt = 0; } if (!nb_rxq && !nb_txq) printf("Warning: Either rx or tx queues should be non-zero\n"); if (nb_rxq > 1 && nb_rxq > nb_txq) printf("Warning: nb_rxq=%d enables RSS configuration, " "but nb_txq=%d will prevent to fully test it.\n", nb_rxq, nb_txq); init_config(); if (hot_plug) { ret = rte_dev_hotplug_handle_enable(); if (ret) { RTE_LOG(ERR, EAL, "fail to enable hotplug handling."); return -1; } ret = rte_dev_event_monitor_start(); if (ret) { RTE_LOG(ERR, EAL, "fail to start device event monitoring."); return -1; } ret = rte_dev_event_callback_register(NULL, dev_event_callback, NULL); if (ret) { RTE_LOG(ERR, EAL, "fail to register device event callback\n"); return -1; } } if (!no_device_start && start_port(RTE_PORT_ALL) != 0) rte_exit(EXIT_FAILURE, "Start ports failed\n"); /* set all ports to promiscuous mode by default */ RTE_ETH_FOREACH_DEV(port_id) { ret = rte_eth_promiscuous_enable(port_id); if (ret != 0) printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", port_id, rte_strerror(-ret)); } /* Init metrics library */ rte_metrics_init(rte_socket_id()); #ifdef RTE_LIB_LATENCYSTATS if (latencystats_enabled != 0) { int ret = rte_latencystats_init(1, NULL); if (ret) printf("Warning: latencystats init()" " returned error %d\n", ret); printf("Latencystats running on lcore %d\n", latencystats_lcore_id); } #endif /* Setup bitrate stats */ #ifdef RTE_LIB_BITRATESTATS if (bitrate_enabled != 0) { bitrate_data = rte_stats_bitrate_create(); if (bitrate_data == NULL) rte_exit(EXIT_FAILURE, "Could not allocate bitrate data.\n"); rte_stats_bitrate_reg(bitrate_data); } #endif #ifdef RTE_LIB_CMDLINE if (strlen(cmdline_filename) != 0) cmdline_read_from_file(cmdline_filename); if (interactive == 1) { if (auto_start) { printf("Start automatic packet forwarding\n"); start_packet_forwarding(0); } prompt(); pmd_test_exit(); } else #endif { char c; int rc; f_quit = 0; printf("No commandline core given, start packet forwarding\n"); start_packet_forwarding(tx_first); if (stats_period != 0) { uint64_t prev_time = 0, cur_time, diff_time = 0; uint64_t timer_period; /* Convert to number of cycles */ timer_period = stats_period * rte_get_timer_hz(); while (f_quit == 0) { cur_time = rte_get_timer_cycles(); diff_time += cur_time - prev_time; if (diff_time >= timer_period) { print_stats(); /* Reset the timer */ diff_time = 0; } /* Sleep to avoid unnecessary checks */ prev_time = cur_time; sleep(1); } } printf("Press enter to exit\n"); rc = read(0, &c, 1); pmd_test_exit(); if (rc < 0) return 1; } ret = rte_eal_cleanup(); if (ret != 0) rte_exit(EXIT_FAILURE, "EAL cleanup failed: %s\n", strerror(-ret)); return EXIT_SUCCESS; }