/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015 Akamai Technologies. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "test.h" #include #include #include #include #include #include #include #include #include #include #ifdef RTE_EXEC_ENV_LINUX #define usec_delay(us) usleep(us) #else #define usec_delay(us) rte_delay_us(us) #endif #define BILLION (1UL << 30) #define TEST_DURATION_S 4 /* in seconds */ #define N_TIMERS 50 static struct rte_timer timer[N_TIMERS]; static unsigned timer_lcore_id[N_TIMERS]; static unsigned master; static volatile unsigned stop_slaves; static int reload_timer(struct rte_timer *tim); int timer_logtype_test; RTE_INIT(test_timer_init_log) { timer_logtype_test = rte_log_register("test.timer"); } static void timer_cb(struct rte_timer *tim, void *arg __rte_unused) { /* Simulate slow callback function, 100 us. */ rte_delay_us(100); if (tim == &timer[0]) rte_log(RTE_LOG_DEBUG, timer_logtype_test, "------------------------------------------------\n"); rte_log(RTE_LOG_DEBUG, timer_logtype_test, "%s: core %u timer %" PRIuPTR "\n", __func__, rte_lcore_id(), tim - timer); (void)reload_timer(tim); } RTE_DEFINE_PER_LCORE(unsigned, n_reset_collisions); static int reload_timer(struct rte_timer *tim) { /* Make timer expire roughly when the TSC hits the next BILLION * multiple. Add in timer's index to make them expire in nearly * sorted order. This makes all timers somewhat synchronized, * firing ~2-3 times per second, assuming 2-3 GHz TSCs. */ uint64_t ticks = BILLION - (rte_get_timer_cycles() % BILLION) + (tim - timer); int ret; ret = rte_timer_reset(tim, ticks, PERIODICAL, master, timer_cb, NULL); if (ret != 0) { rte_log(RTE_LOG_DEBUG, timer_logtype_test, "- core %u failed to reset timer %" PRIuPTR " (OK)\n", rte_lcore_id(), tim - timer); RTE_PER_LCORE(n_reset_collisions) += 1; } return ret; } static int slave_main_loop(__attribute__((unused)) void *arg) { unsigned lcore_id = rte_lcore_id(); unsigned i; RTE_PER_LCORE(n_reset_collisions) = 0; printf("Starting main loop on core %u\n", lcore_id); while (!stop_slaves) { /* Wait until the timer manager is running. * We know it's running when we see timer[0] NOT pending. */ if (rte_timer_pending(&timer[0])) { rte_pause(); continue; } /* Now, go cause some havoc! * Reload our timers. */ for (i = 0; i < N_TIMERS; i++) { if (timer_lcore_id[i] == lcore_id) (void)reload_timer(&timer[i]); } usec_delay(100*1000); /* sleep 100 ms */ } if (RTE_PER_LCORE(n_reset_collisions) != 0) { printf("- core %u, %u reset collisions (OK)\n", lcore_id, RTE_PER_LCORE(n_reset_collisions)); } return 0; } static int test_timer_racecond(void) { int ret; uint64_t hz; uint64_t cur_time; uint64_t end_time; int64_t diff = 0; unsigned lcore_id; unsigned i; master = lcore_id = rte_lcore_id(); hz = rte_get_timer_hz(); /* init and start timers */ for (i = 0; i < N_TIMERS; i++) { rte_timer_init(&timer[i]); ret = reload_timer(&timer[i]); TEST_ASSERT(ret == 0, "reload_timer failed"); /* Distribute timers to slaves. * Note that we assign timer[0] to the master. */ timer_lcore_id[i] = lcore_id; lcore_id = rte_get_next_lcore(lcore_id, 1, 1); } /* calculate the "end of test" time */ cur_time = rte_get_timer_cycles(); end_time = cur_time + (hz * TEST_DURATION_S); /* start slave cores */ stop_slaves = 0; printf("Start timer manage race condition test (%u seconds)\n", TEST_DURATION_S); rte_eal_mp_remote_launch(slave_main_loop, NULL, SKIP_MASTER); while (diff >= 0) { /* run the timers */ rte_timer_manage(); /* wait 100 ms */ usec_delay(100*1000); cur_time = rte_get_timer_cycles(); diff = end_time - cur_time; } /* stop slave cores */ printf("Stopping timer manage race condition test\n"); stop_slaves = 1; rte_eal_mp_wait_lcore(); /* stop timers */ for (i = 0; i < N_TIMERS; i++) { ret = rte_timer_stop(&timer[i]); TEST_ASSERT(ret == 0, "rte_timer_stop failed"); } return TEST_SUCCESS; } REGISTER_TEST_COMMAND(timer_racecond_autotest, test_timer_racecond);