/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017-2018 Intel Corporation. * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_eventdev.h" #include "rte_eventdev_pmd.h" #include "rte_eventdev_trace.h" #include "rte_event_timer_adapter.h" #include "rte_event_timer_adapter_pmd.h" #define DATA_MZ_NAME_MAX_LEN 64 #define DATA_MZ_NAME_FORMAT "rte_event_timer_adapter_data_%d" RTE_LOG_REGISTER(evtim_logtype, lib.eventdev.adapter.timer, NOTICE); RTE_LOG_REGISTER(evtim_buffer_logtype, lib.eventdev.adapter.timer, NOTICE); RTE_LOG_REGISTER(evtim_svc_logtype, lib.eventdev.adapter.timer.svc, NOTICE); static struct rte_event_timer_adapter adapters[RTE_EVENT_TIMER_ADAPTER_NUM_MAX]; static const struct rte_event_timer_adapter_ops swtim_ops; #define EVTIM_LOG(level, logtype, ...) \ rte_log(RTE_LOG_ ## level, logtype, \ RTE_FMT("EVTIMER: %s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) \ "\n", __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) #define EVTIM_LOG_ERR(...) EVTIM_LOG(ERR, evtim_logtype, __VA_ARGS__) #ifdef RTE_LIBRTE_EVENTDEV_DEBUG #define EVTIM_LOG_DBG(...) \ EVTIM_LOG(DEBUG, evtim_logtype, __VA_ARGS__) #define EVTIM_BUF_LOG_DBG(...) \ EVTIM_LOG(DEBUG, evtim_buffer_logtype, __VA_ARGS__) #define EVTIM_SVC_LOG_DBG(...) \ EVTIM_LOG(DEBUG, evtim_svc_logtype, __VA_ARGS__) #else #define EVTIM_LOG_DBG(...) (void)0 #define EVTIM_BUF_LOG_DBG(...) (void)0 #define EVTIM_SVC_LOG_DBG(...) (void)0 #endif static int default_port_conf_cb(uint16_t id, uint8_t event_dev_id, uint8_t *event_port_id, void *conf_arg) { struct rte_event_timer_adapter *adapter; struct rte_eventdev *dev; struct rte_event_dev_config dev_conf; struct rte_event_port_conf *port_conf, def_port_conf = {0}; int started; uint8_t port_id; uint8_t dev_id; int ret; RTE_SET_USED(event_dev_id); adapter = &adapters[id]; dev = &rte_eventdevs[adapter->data->event_dev_id]; dev_id = dev->data->dev_id; dev_conf = dev->data->dev_conf; started = dev->data->dev_started; if (started) rte_event_dev_stop(dev_id); port_id = dev_conf.nb_event_ports; dev_conf.nb_event_ports += 1; ret = rte_event_dev_configure(dev_id, &dev_conf); if (ret < 0) { EVTIM_LOG_ERR("failed to configure event dev %u\n", dev_id); if (started) if (rte_event_dev_start(dev_id)) return -EIO; return ret; } if (conf_arg != NULL) port_conf = conf_arg; else { port_conf = &def_port_conf; ret = rte_event_port_default_conf_get(dev_id, port_id, port_conf); if (ret < 0) return ret; } ret = rte_event_port_setup(dev_id, port_id, port_conf); if (ret < 0) { EVTIM_LOG_ERR("failed to setup event port %u on event dev %u\n", port_id, dev_id); return ret; } *event_port_id = port_id; if (started) ret = rte_event_dev_start(dev_id); return ret; } struct rte_event_timer_adapter * rte_event_timer_adapter_create(const struct rte_event_timer_adapter_conf *conf) { return rte_event_timer_adapter_create_ext(conf, default_port_conf_cb, NULL); } struct rte_event_timer_adapter * rte_event_timer_adapter_create_ext( const struct rte_event_timer_adapter_conf *conf, rte_event_timer_adapter_port_conf_cb_t conf_cb, void *conf_arg) { uint16_t adapter_id; struct rte_event_timer_adapter *adapter; const struct rte_memzone *mz; char mz_name[DATA_MZ_NAME_MAX_LEN]; int n, ret; struct rte_eventdev *dev; if (conf == NULL) { rte_errno = EINVAL; return NULL; } /* Check eventdev ID */ if (!rte_event_pmd_is_valid_dev(conf->event_dev_id)) { rte_errno = EINVAL; return NULL; } dev = &rte_eventdevs[conf->event_dev_id]; adapter_id = conf->timer_adapter_id; /* Check that adapter_id is in range */ if (adapter_id >= RTE_EVENT_TIMER_ADAPTER_NUM_MAX) { rte_errno = EINVAL; return NULL; } /* Check adapter ID not already allocated */ adapter = &adapters[adapter_id]; if (adapter->allocated) { rte_errno = EEXIST; return NULL; } /* Create shared data area. */ n = snprintf(mz_name, sizeof(mz_name), DATA_MZ_NAME_FORMAT, adapter_id); if (n >= (int)sizeof(mz_name)) { rte_errno = EINVAL; return NULL; } mz = rte_memzone_reserve(mz_name, sizeof(struct rte_event_timer_adapter_data), conf->socket_id, 0); if (mz == NULL) /* rte_errno set by rte_memzone_reserve */ return NULL; adapter->data = mz->addr; memset(adapter->data, 0, sizeof(struct rte_event_timer_adapter_data)); adapter->data->mz = mz; adapter->data->event_dev_id = conf->event_dev_id; adapter->data->id = adapter_id; adapter->data->socket_id = conf->socket_id; adapter->data->conf = *conf; /* copy conf structure */ /* Query eventdev PMD for timer adapter capabilities and ops */ ret = dev->dev_ops->timer_adapter_caps_get(dev, adapter->data->conf.flags, &adapter->data->caps, &adapter->ops); if (ret < 0) { rte_errno = -ret; goto free_memzone; } if (!(adapter->data->caps & RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) { FUNC_PTR_OR_NULL_RET_WITH_ERRNO(conf_cb, EINVAL); ret = conf_cb(adapter->data->id, adapter->data->event_dev_id, &adapter->data->event_port_id, conf_arg); if (ret < 0) { rte_errno = -ret; goto free_memzone; } } /* If eventdev PMD did not provide ops, use default software * implementation. */ if (adapter->ops == NULL) adapter->ops = &swtim_ops; /* Allow driver to do some setup */ FUNC_PTR_OR_NULL_RET_WITH_ERRNO(adapter->ops->init, ENOTSUP); ret = adapter->ops->init(adapter); if (ret < 0) { rte_errno = -ret; goto free_memzone; } /* Set fast-path function pointers */ adapter->arm_burst = adapter->ops->arm_burst; adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst; adapter->cancel_burst = adapter->ops->cancel_burst; adapter->allocated = 1; rte_eventdev_trace_timer_adapter_create(adapter_id, adapter, conf, conf_cb); return adapter; free_memzone: rte_memzone_free(adapter->data->mz); return NULL; } int rte_event_timer_adapter_get_info(const struct rte_event_timer_adapter *adapter, struct rte_event_timer_adapter_info *adapter_info) { ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); if (adapter->ops->get_info) /* let driver set values it knows */ adapter->ops->get_info(adapter, adapter_info); /* Set common values */ adapter_info->conf = adapter->data->conf; adapter_info->event_dev_port_id = adapter->data->event_port_id; adapter_info->caps = adapter->data->caps; return 0; } int rte_event_timer_adapter_start(const struct rte_event_timer_adapter *adapter) { int ret; ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); FUNC_PTR_OR_ERR_RET(adapter->ops->start, -EINVAL); if (adapter->data->started) { EVTIM_LOG_ERR("event timer adapter %"PRIu8" already started", adapter->data->id); return -EALREADY; } ret = adapter->ops->start(adapter); if (ret < 0) return ret; adapter->data->started = 1; rte_eventdev_trace_timer_adapter_start(adapter); return 0; } int rte_event_timer_adapter_stop(const struct rte_event_timer_adapter *adapter) { int ret; ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); FUNC_PTR_OR_ERR_RET(adapter->ops->stop, -EINVAL); if (adapter->data->started == 0) { EVTIM_LOG_ERR("event timer adapter %"PRIu8" already stopped", adapter->data->id); return 0; } ret = adapter->ops->stop(adapter); if (ret < 0) return ret; adapter->data->started = 0; rte_eventdev_trace_timer_adapter_stop(adapter); return 0; } struct rte_event_timer_adapter * rte_event_timer_adapter_lookup(uint16_t adapter_id) { char name[DATA_MZ_NAME_MAX_LEN]; const struct rte_memzone *mz; struct rte_event_timer_adapter_data *data; struct rte_event_timer_adapter *adapter; int ret; struct rte_eventdev *dev; if (adapters[adapter_id].allocated) return &adapters[adapter_id]; /* Adapter is already loaded */ snprintf(name, DATA_MZ_NAME_MAX_LEN, DATA_MZ_NAME_FORMAT, adapter_id); mz = rte_memzone_lookup(name); if (mz == NULL) { rte_errno = ENOENT; return NULL; } data = mz->addr; adapter = &adapters[data->id]; adapter->data = data; dev = &rte_eventdevs[adapter->data->event_dev_id]; /* Query eventdev PMD for timer adapter capabilities and ops */ ret = dev->dev_ops->timer_adapter_caps_get(dev, adapter->data->conf.flags, &adapter->data->caps, &adapter->ops); if (ret < 0) { rte_errno = EINVAL; return NULL; } /* If eventdev PMD did not provide ops, use default software * implementation. */ if (adapter->ops == NULL) adapter->ops = &swtim_ops; /* Set fast-path function pointers */ adapter->arm_burst = adapter->ops->arm_burst; adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst; adapter->cancel_burst = adapter->ops->cancel_burst; adapter->allocated = 1; return adapter; } int rte_event_timer_adapter_free(struct rte_event_timer_adapter *adapter) { int ret; ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); FUNC_PTR_OR_ERR_RET(adapter->ops->uninit, -EINVAL); if (adapter->data->started == 1) { EVTIM_LOG_ERR("event timer adapter %"PRIu8" must be stopped " "before freeing", adapter->data->id); return -EBUSY; } /* free impl priv data */ ret = adapter->ops->uninit(adapter); if (ret < 0) return ret; /* free shared data area */ ret = rte_memzone_free(adapter->data->mz); if (ret < 0) return ret; adapter->data = NULL; adapter->allocated = 0; rte_eventdev_trace_timer_adapter_free(adapter); return 0; } int rte_event_timer_adapter_service_id_get(struct rte_event_timer_adapter *adapter, uint32_t *service_id) { ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); if (adapter->data->service_inited && service_id != NULL) *service_id = adapter->data->service_id; return adapter->data->service_inited ? 0 : -ESRCH; } int rte_event_timer_adapter_stats_get(struct rte_event_timer_adapter *adapter, struct rte_event_timer_adapter_stats *stats) { ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); FUNC_PTR_OR_ERR_RET(adapter->ops->stats_get, -EINVAL); if (stats == NULL) return -EINVAL; return adapter->ops->stats_get(adapter, stats); } int rte_event_timer_adapter_stats_reset(struct rte_event_timer_adapter *adapter) { ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL); FUNC_PTR_OR_ERR_RET(adapter->ops->stats_reset, -EINVAL); return adapter->ops->stats_reset(adapter); } /* * Software event timer adapter buffer helper functions */ #define NSECPERSEC 1E9 /* Optimizations used to index into the buffer require that the buffer size * be a power of 2. */ #define EVENT_BUFFER_SZ 4096 #define EVENT_BUFFER_BATCHSZ 32 #define EVENT_BUFFER_MASK (EVENT_BUFFER_SZ - 1) #define EXP_TIM_BUF_SZ 128 struct event_buffer { size_t head; size_t tail; struct rte_event events[EVENT_BUFFER_SZ]; } __rte_cache_aligned; static inline bool event_buffer_full(struct event_buffer *bufp) { return (bufp->head - bufp->tail) == EVENT_BUFFER_SZ; } static inline bool event_buffer_batch_ready(struct event_buffer *bufp) { return (bufp->head - bufp->tail) >= EVENT_BUFFER_BATCHSZ; } static void event_buffer_init(struct event_buffer *bufp) { bufp->head = bufp->tail = 0; memset(&bufp->events, 0, sizeof(struct rte_event) * EVENT_BUFFER_SZ); } static int event_buffer_add(struct event_buffer *bufp, struct rte_event *eventp) { size_t head_idx; struct rte_event *buf_eventp; if (event_buffer_full(bufp)) return -1; /* Instead of modulus, bitwise AND with mask to get head_idx. */ head_idx = bufp->head & EVENT_BUFFER_MASK; buf_eventp = &bufp->events[head_idx]; rte_memcpy(buf_eventp, eventp, sizeof(struct rte_event)); /* Wrap automatically when overflow occurs. */ bufp->head++; return 0; } static void event_buffer_flush(struct event_buffer *bufp, uint8_t dev_id, uint8_t port_id, uint16_t *nb_events_flushed, uint16_t *nb_events_inv) { struct rte_event *events = bufp->events; size_t head_idx, tail_idx; uint16_t n = 0; /* Instead of modulus, bitwise AND with mask to get index. */ head_idx = bufp->head & EVENT_BUFFER_MASK; tail_idx = bufp->tail & EVENT_BUFFER_MASK; RTE_ASSERT(head_idx < EVENT_BUFFER_SZ && tail_idx < EVENT_BUFFER_SZ); /* Determine the largest contigous run we can attempt to enqueue to the * event device. */ if (head_idx > tail_idx) n = head_idx - tail_idx; else if (head_idx < tail_idx) n = EVENT_BUFFER_SZ - tail_idx; else if (event_buffer_full(bufp)) n = EVENT_BUFFER_SZ - tail_idx; else { *nb_events_flushed = 0; return; } n = RTE_MIN(EVENT_BUFFER_BATCHSZ, n); *nb_events_inv = 0; *nb_events_flushed = rte_event_enqueue_burst(dev_id, port_id, &events[tail_idx], n); if (*nb_events_flushed != n) { if (rte_errno == EINVAL) { EVTIM_LOG_ERR("failed to enqueue invalid event - " "dropping it"); (*nb_events_inv)++; } else if (rte_errno == ENOSPC) rte_pause(); } if (*nb_events_flushed > 0) EVTIM_BUF_LOG_DBG("enqueued %"PRIu16" timer events to event " "device", *nb_events_flushed); bufp->tail = bufp->tail + *nb_events_flushed + *nb_events_inv; } /* * Software event timer adapter implementation */ struct swtim { /* Identifier of service executing timer management logic. */ uint32_t service_id; /* The cycle count at which the adapter should next tick */ uint64_t next_tick_cycles; /* The tick resolution used by adapter instance. May have been * adjusted from what user requested */ uint64_t timer_tick_ns; /* Maximum timeout in nanoseconds allowed by adapter instance. */ uint64_t max_tmo_ns; /* Buffered timer expiry events to be enqueued to an event device. */ struct event_buffer buffer; /* Statistics */ struct rte_event_timer_adapter_stats stats; /* Mempool of timer objects */ struct rte_mempool *tim_pool; /* Back pointer for convenience */ struct rte_event_timer_adapter *adapter; /* Identifier of timer data instance */ uint32_t timer_data_id; /* Track which cores have actually armed a timer */ struct { uint16_t v; } __rte_cache_aligned in_use[RTE_MAX_LCORE]; /* Track which cores' timer lists should be polled */ unsigned int poll_lcores[RTE_MAX_LCORE]; /* The number of lists that should be polled */ int n_poll_lcores; /* Timers which have expired and can be returned to a mempool */ struct rte_timer *expired_timers[EXP_TIM_BUF_SZ]; /* The number of timers that can be returned to a mempool */ size_t n_expired_timers; }; static inline struct swtim * swtim_pmd_priv(const struct rte_event_timer_adapter *adapter) { return adapter->data->adapter_priv; } static void swtim_callback(struct rte_timer *tim) { struct rte_event_timer *evtim = tim->arg; struct rte_event_timer_adapter *adapter; unsigned int lcore = rte_lcore_id(); struct swtim *sw; uint16_t nb_evs_flushed = 0; uint16_t nb_evs_invalid = 0; uint64_t opaque; int ret; int n_lcores; opaque = evtim->impl_opaque[1]; adapter = (struct rte_event_timer_adapter *)(uintptr_t)opaque; sw = swtim_pmd_priv(adapter); ret = event_buffer_add(&sw->buffer, &evtim->ev); if (ret < 0) { /* If event buffer is full, put timer back in list with * immediate expiry value, so that we process it again on the * next iteration. */ ret = rte_timer_alt_reset(sw->timer_data_id, tim, 0, SINGLE, lcore, NULL, evtim); if (ret < 0) { EVTIM_LOG_DBG("event buffer full, failed to reset " "timer with immediate expiry value"); } else { sw->stats.evtim_retry_count++; EVTIM_LOG_DBG("event buffer full, resetting rte_timer " "with immediate expiry value"); } if (unlikely(sw->in_use[lcore].v == 0)) { sw->in_use[lcore].v = 1; n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1, __ATOMIC_RELAXED); __atomic_store_n(&sw->poll_lcores[n_lcores], lcore, __ATOMIC_RELAXED); } } else { EVTIM_BUF_LOG_DBG("buffered an event timer expiry event"); /* Empty the buffer here, if necessary, to free older expired * timers only */ if (unlikely(sw->n_expired_timers == EXP_TIM_BUF_SZ)) { rte_mempool_put_bulk(sw->tim_pool, (void **)sw->expired_timers, sw->n_expired_timers); sw->n_expired_timers = 0; } sw->expired_timers[sw->n_expired_timers++] = tim; sw->stats.evtim_exp_count++; __atomic_store_n(&evtim->state, RTE_EVENT_TIMER_NOT_ARMED, __ATOMIC_RELEASE); } if (event_buffer_batch_ready(&sw->buffer)) { event_buffer_flush(&sw->buffer, adapter->data->event_dev_id, adapter->data->event_port_id, &nb_evs_flushed, &nb_evs_invalid); sw->stats.ev_enq_count += nb_evs_flushed; sw->stats.ev_inv_count += nb_evs_invalid; } } static __rte_always_inline uint64_t get_timeout_cycles(struct rte_event_timer *evtim, const struct rte_event_timer_adapter *adapter) { struct swtim *sw = swtim_pmd_priv(adapter); uint64_t timeout_ns = evtim->timeout_ticks * sw->timer_tick_ns; return timeout_ns * rte_get_timer_hz() / NSECPERSEC; } /* This function returns true if one or more (adapter) ticks have occurred since * the last time it was called. */ static inline bool swtim_did_tick(struct swtim *sw) { uint64_t cycles_per_adapter_tick, start_cycles; uint64_t *next_tick_cyclesp; next_tick_cyclesp = &sw->next_tick_cycles; cycles_per_adapter_tick = sw->timer_tick_ns * (rte_get_timer_hz() / NSECPERSEC); start_cycles = rte_get_timer_cycles(); /* Note: initially, *next_tick_cyclesp == 0, so the clause below will * execute, and set things going. */ if (start_cycles >= *next_tick_cyclesp) { /* Snap the current cycle count to the preceding adapter tick * boundary. */ start_cycles -= start_cycles % cycles_per_adapter_tick; *next_tick_cyclesp = start_cycles + cycles_per_adapter_tick; return true; } return false; } /* Check that event timer timeout value is in range */ static __rte_always_inline int check_timeout(struct rte_event_timer *evtim, const struct rte_event_timer_adapter *adapter) { uint64_t tmo_nsec; struct swtim *sw = swtim_pmd_priv(adapter); tmo_nsec = evtim->timeout_ticks * sw->timer_tick_ns; if (tmo_nsec > sw->max_tmo_ns) return -1; if (tmo_nsec < sw->timer_tick_ns) return -2; return 0; } /* Check that event timer event queue sched type matches destination event queue * sched type */ static __rte_always_inline int check_destination_event_queue(struct rte_event_timer *evtim, const struct rte_event_timer_adapter *adapter) { int ret; uint32_t sched_type; ret = rte_event_queue_attr_get(adapter->data->event_dev_id, evtim->ev.queue_id, RTE_EVENT_QUEUE_ATTR_SCHEDULE_TYPE, &sched_type); if ((ret == 0 && evtim->ev.sched_type == sched_type) || ret == -EOVERFLOW) return 0; return -1; } static int swtim_service_func(void *arg) { struct rte_event_timer_adapter *adapter = arg; struct swtim *sw = swtim_pmd_priv(adapter); uint16_t nb_evs_flushed = 0; uint16_t nb_evs_invalid = 0; if (swtim_did_tick(sw)) { rte_timer_alt_manage(sw->timer_data_id, sw->poll_lcores, sw->n_poll_lcores, swtim_callback); /* Return expired timer objects back to mempool */ rte_mempool_put_bulk(sw->tim_pool, (void **)sw->expired_timers, sw->n_expired_timers); sw->n_expired_timers = 0; event_buffer_flush(&sw->buffer, adapter->data->event_dev_id, adapter->data->event_port_id, &nb_evs_flushed, &nb_evs_invalid); sw->stats.ev_enq_count += nb_evs_flushed; sw->stats.ev_inv_count += nb_evs_invalid; sw->stats.adapter_tick_count++; } return 0; } /* The adapter initialization function rounds the mempool size up to the next * power of 2, so we can take the difference between that value and what the * user requested, and use the space for caches. This avoids a scenario where a * user can't arm the number of timers the adapter was configured with because * mempool objects have been lost to caches. * * nb_actual should always be a power of 2, so we can iterate over the powers * of 2 to see what the largest cache size we can use is. */ static int compute_msg_mempool_cache_size(uint64_t nb_requested, uint64_t nb_actual) { int i; int size; int cache_size = 0; for (i = 0;; i++) { size = 1 << i; if (RTE_MAX_LCORE * size < (int)(nb_actual - nb_requested) && size < RTE_MEMPOOL_CACHE_MAX_SIZE && size <= nb_actual / 1.5) cache_size = size; else break; } return cache_size; } static int swtim_init(struct rte_event_timer_adapter *adapter) { int i, ret; struct swtim *sw; unsigned int flags; struct rte_service_spec service; /* Allocate storage for private data area */ #define SWTIM_NAMESIZE 32 char swtim_name[SWTIM_NAMESIZE]; snprintf(swtim_name, SWTIM_NAMESIZE, "swtim_%"PRIu8, adapter->data->id); sw = rte_zmalloc_socket(swtim_name, sizeof(*sw), RTE_CACHE_LINE_SIZE, adapter->data->socket_id); if (sw == NULL) { EVTIM_LOG_ERR("failed to allocate space for private data"); rte_errno = ENOMEM; return -1; } /* Connect storage to adapter instance */ adapter->data->adapter_priv = sw; sw->adapter = adapter; sw->timer_tick_ns = adapter->data->conf.timer_tick_ns; sw->max_tmo_ns = adapter->data->conf.max_tmo_ns; /* Create a timer pool */ char pool_name[SWTIM_NAMESIZE]; snprintf(pool_name, SWTIM_NAMESIZE, "swtim_pool_%"PRIu8, adapter->data->id); /* Optimal mempool size is a power of 2 minus one */ uint64_t nb_timers = rte_align64pow2(adapter->data->conf.nb_timers); int pool_size = nb_timers - 1; int cache_size = compute_msg_mempool_cache_size( adapter->data->conf.nb_timers, nb_timers); flags = 0; /* pool is multi-producer, multi-consumer */ sw->tim_pool = rte_mempool_create(pool_name, pool_size, sizeof(struct rte_timer), cache_size, 0, NULL, NULL, NULL, NULL, adapter->data->socket_id, flags); if (sw->tim_pool == NULL) { EVTIM_LOG_ERR("failed to create timer object mempool"); rte_errno = ENOMEM; goto free_alloc; } /* Initialize the variables that track in-use timer lists */ for (i = 0; i < RTE_MAX_LCORE; i++) sw->in_use[i].v = 0; /* Initialize the timer subsystem and allocate timer data instance */ ret = rte_timer_subsystem_init(); if (ret < 0) { if (ret != -EALREADY) { EVTIM_LOG_ERR("failed to initialize timer subsystem"); rte_errno = -ret; goto free_mempool; } } ret = rte_timer_data_alloc(&sw->timer_data_id); if (ret < 0) { EVTIM_LOG_ERR("failed to allocate timer data instance"); rte_errno = -ret; goto free_mempool; } /* Initialize timer event buffer */ event_buffer_init(&sw->buffer); sw->adapter = adapter; /* Register a service component to run adapter logic */ memset(&service, 0, sizeof(service)); snprintf(service.name, RTE_SERVICE_NAME_MAX, "swtim_svc_%"PRIu8, adapter->data->id); service.socket_id = adapter->data->socket_id; service.callback = swtim_service_func; service.callback_userdata = adapter; service.capabilities &= ~(RTE_SERVICE_CAP_MT_SAFE); ret = rte_service_component_register(&service, &sw->service_id); if (ret < 0) { EVTIM_LOG_ERR("failed to register service %s with id %"PRIu32 ": err = %d", service.name, sw->service_id, ret); rte_errno = ENOSPC; goto free_mempool; } EVTIM_LOG_DBG("registered service %s with id %"PRIu32, service.name, sw->service_id); adapter->data->service_id = sw->service_id; adapter->data->service_inited = 1; return 0; free_mempool: rte_mempool_free(sw->tim_pool); free_alloc: rte_free(sw); return -1; } static void swtim_free_tim(struct rte_timer *tim, void *arg) { struct swtim *sw = arg; rte_mempool_put(sw->tim_pool, tim); } /* Traverse the list of outstanding timers and put them back in the mempool * before freeing the adapter to avoid leaking the memory. */ static int swtim_uninit(struct rte_event_timer_adapter *adapter) { int ret; struct swtim *sw = swtim_pmd_priv(adapter); /* Free outstanding timers */ rte_timer_stop_all(sw->timer_data_id, sw->poll_lcores, sw->n_poll_lcores, swtim_free_tim, sw); ret = rte_service_component_unregister(sw->service_id); if (ret < 0) { EVTIM_LOG_ERR("failed to unregister service component"); return ret; } rte_mempool_free(sw->tim_pool); rte_free(sw); adapter->data->adapter_priv = NULL; return 0; } static inline int32_t get_mapped_count_for_service(uint32_t service_id) { int32_t core_count, i, mapped_count = 0; uint32_t lcore_arr[RTE_MAX_LCORE]; core_count = rte_service_lcore_list(lcore_arr, RTE_MAX_LCORE); for (i = 0; i < core_count; i++) if (rte_service_map_lcore_get(service_id, lcore_arr[i]) == 1) mapped_count++; return mapped_count; } static int swtim_start(const struct rte_event_timer_adapter *adapter) { int mapped_count; struct swtim *sw = swtim_pmd_priv(adapter); /* Mapping the service to more than one service core can introduce * delays while one thread is waiting to acquire a lock, so only allow * one core to be mapped to the service. * * Note: the service could be modified such that it spreads cores to * poll over multiple service instances. */ mapped_count = get_mapped_count_for_service(sw->service_id); if (mapped_count != 1) return mapped_count < 1 ? -ENOENT : -ENOTSUP; return rte_service_component_runstate_set(sw->service_id, 1); } static int swtim_stop(const struct rte_event_timer_adapter *adapter) { int ret; struct swtim *sw = swtim_pmd_priv(adapter); ret = rte_service_component_runstate_set(sw->service_id, 0); if (ret < 0) return ret; /* Wait for the service to complete its final iteration */ while (rte_service_may_be_active(sw->service_id)) rte_pause(); return 0; } static void swtim_get_info(const struct rte_event_timer_adapter *adapter, struct rte_event_timer_adapter_info *adapter_info) { struct swtim *sw = swtim_pmd_priv(adapter); adapter_info->min_resolution_ns = sw->timer_tick_ns; adapter_info->max_tmo_ns = sw->max_tmo_ns; } static int swtim_stats_get(const struct rte_event_timer_adapter *adapter, struct rte_event_timer_adapter_stats *stats) { struct swtim *sw = swtim_pmd_priv(adapter); *stats = sw->stats; /* structure copy */ return 0; } static int swtim_stats_reset(const struct rte_event_timer_adapter *adapter) { struct swtim *sw = swtim_pmd_priv(adapter); memset(&sw->stats, 0, sizeof(sw->stats)); return 0; } static uint16_t __swtim_arm_burst(const struct rte_event_timer_adapter *adapter, struct rte_event_timer **evtims, uint16_t nb_evtims) { int i, ret; struct swtim *sw = swtim_pmd_priv(adapter); uint32_t lcore_id = rte_lcore_id(); struct rte_timer *tim, *tims[nb_evtims]; uint64_t cycles; int n_lcores; /* Timer list for this lcore is not in use. */ uint16_t exp_state = 0; enum rte_event_timer_state n_state; #ifdef RTE_LIBRTE_EVENTDEV_DEBUG /* Check that the service is running. */ if (rte_service_runstate_get(adapter->data->service_id) != 1) { rte_errno = EINVAL; return 0; } #endif /* Adjust lcore_id if non-EAL thread. Arbitrarily pick the timer list of * the highest lcore to insert such timers into */ if (lcore_id == LCORE_ID_ANY) lcore_id = RTE_MAX_LCORE - 1; /* If this is the first time we're arming an event timer on this lcore, * mark this lcore as "in use"; this will cause the service * function to process the timer list that corresponds to this lcore. * The atomic compare-and-swap operation can prevent the race condition * on in_use flag between multiple non-EAL threads. */ if (unlikely(__atomic_compare_exchange_n(&sw->in_use[lcore_id].v, &exp_state, 1, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED))) { EVTIM_LOG_DBG("Adding lcore id = %u to list of lcores to poll", lcore_id); n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1, __ATOMIC_RELAXED); __atomic_store_n(&sw->poll_lcores[n_lcores], lcore_id, __ATOMIC_RELAXED); } ret = rte_mempool_get_bulk(sw->tim_pool, (void **)tims, nb_evtims); if (ret < 0) { rte_errno = ENOSPC; return 0; } for (i = 0; i < nb_evtims; i++) { n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE); if (n_state == RTE_EVENT_TIMER_ARMED) { rte_errno = EALREADY; break; } else if (!(n_state == RTE_EVENT_TIMER_NOT_ARMED || n_state == RTE_EVENT_TIMER_CANCELED)) { rte_errno = EINVAL; break; } ret = check_timeout(evtims[i], adapter); if (unlikely(ret == -1)) { __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ERROR_TOOLATE, __ATOMIC_RELAXED); rte_errno = EINVAL; break; } else if (unlikely(ret == -2)) { __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ERROR_TOOEARLY, __ATOMIC_RELAXED); rte_errno = EINVAL; break; } if (unlikely(check_destination_event_queue(evtims[i], adapter) < 0)) { __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ERROR, __ATOMIC_RELAXED); rte_errno = EINVAL; break; } tim = tims[i]; rte_timer_init(tim); evtims[i]->impl_opaque[0] = (uintptr_t)tim; evtims[i]->impl_opaque[1] = (uintptr_t)adapter; cycles = get_timeout_cycles(evtims[i], adapter); ret = rte_timer_alt_reset(sw->timer_data_id, tim, cycles, SINGLE, lcore_id, NULL, evtims[i]); if (ret < 0) { /* tim was in RUNNING or CONFIG state */ __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ERROR, __ATOMIC_RELEASE); break; } EVTIM_LOG_DBG("armed an event timer"); /* RELEASE ordering guarantees the adapter specific value * changes observed before the update of state. */ __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ARMED, __ATOMIC_RELEASE); } if (i < nb_evtims) rte_mempool_put_bulk(sw->tim_pool, (void **)&tims[i], nb_evtims - i); return i; } static uint16_t swtim_arm_burst(const struct rte_event_timer_adapter *adapter, struct rte_event_timer **evtims, uint16_t nb_evtims) { return __swtim_arm_burst(adapter, evtims, nb_evtims); } static uint16_t swtim_cancel_burst(const struct rte_event_timer_adapter *adapter, struct rte_event_timer **evtims, uint16_t nb_evtims) { int i, ret; struct rte_timer *timp; uint64_t opaque; struct swtim *sw = swtim_pmd_priv(adapter); enum rte_event_timer_state n_state; #ifdef RTE_LIBRTE_EVENTDEV_DEBUG /* Check that the service is running. */ if (rte_service_runstate_get(adapter->data->service_id) != 1) { rte_errno = EINVAL; return 0; } #endif for (i = 0; i < nb_evtims; i++) { /* Don't modify the event timer state in these cases */ /* ACQUIRE ordering guarantees the access of implementation * specific opaque data under the correct state. */ n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE); if (n_state == RTE_EVENT_TIMER_CANCELED) { rte_errno = EALREADY; break; } else if (n_state != RTE_EVENT_TIMER_ARMED) { rte_errno = EINVAL; break; } opaque = evtims[i]->impl_opaque[0]; timp = (struct rte_timer *)(uintptr_t)opaque; RTE_ASSERT(timp != NULL); ret = rte_timer_alt_stop(sw->timer_data_id, timp); if (ret < 0) { /* Timer is running or being configured */ rte_errno = EAGAIN; break; } rte_mempool_put(sw->tim_pool, (void **)timp); /* The RELEASE ordering here pairs with atomic ordering * to make sure the state update data observed between * threads. */ __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_CANCELED, __ATOMIC_RELEASE); } return i; } static uint16_t swtim_arm_tmo_tick_burst(const struct rte_event_timer_adapter *adapter, struct rte_event_timer **evtims, uint64_t timeout_ticks, uint16_t nb_evtims) { int i; for (i = 0; i < nb_evtims; i++) evtims[i]->timeout_ticks = timeout_ticks; return __swtim_arm_burst(adapter, evtims, nb_evtims); } static const struct rte_event_timer_adapter_ops swtim_ops = { .init = swtim_init, .uninit = swtim_uninit, .start = swtim_start, .stop = swtim_stop, .get_info = swtim_get_info, .stats_get = swtim_stats_get, .stats_reset = swtim_stats_reset, .arm_burst = swtim_arm_burst, .arm_tmo_tick_burst = swtim_arm_tmo_tick_burst, .cancel_burst = swtim_cancel_burst, };