/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015 Akamai Technologies. * All rights reserved. */ #include "test.h" #include #include #include #include #include #include #include #include #include #include #ifdef RTE_EXEC_ENV_LINUX #define usec_delay(us) usleep(us) #else #define usec_delay(us) rte_delay_us(us) #endif #define BILLION (1UL << 30) #define TEST_DURATION_S 4 /* in seconds */ #define N_TIMERS 50 static struct rte_timer timer[N_TIMERS]; static unsigned int timer_lcore_id[N_TIMERS]; static unsigned int main_lcore; static volatile unsigned int stop_workers; static int reload_timer(struct rte_timer *tim); RTE_LOG_REGISTER(timer_logtype_test, test.timer, INFO); static void timer_cb(struct rte_timer *tim, void *arg __rte_unused) { /* Simulate slow callback function, 100 us. */ rte_delay_us(100); if (tim == &timer[0]) rte_log(RTE_LOG_DEBUG, timer_logtype_test, "------------------------------------------------\n"); rte_log(RTE_LOG_DEBUG, timer_logtype_test, "%s: core %u timer %" PRIuPTR "\n", __func__, rte_lcore_id(), tim - timer); (void)reload_timer(tim); } RTE_DEFINE_PER_LCORE(unsigned, n_reset_collisions); static int reload_timer(struct rte_timer *tim) { /* Make timer expire roughly when the TSC hits the next BILLION * multiple. Add in timer's index to make them expire in nearly * sorted order. This makes all timers somewhat synchronized, * firing ~2-3 times per second, assuming 2-3 GHz TSCs. */ uint64_t ticks = BILLION - (rte_get_timer_cycles() % BILLION) + (tim - timer); int ret; ret = rte_timer_reset(tim, ticks, PERIODICAL, main_lcore, timer_cb, NULL); if (ret != 0) { rte_log(RTE_LOG_DEBUG, timer_logtype_test, "- core %u failed to reset timer %" PRIuPTR " (OK)\n", rte_lcore_id(), tim - timer); RTE_PER_LCORE(n_reset_collisions) += 1; } return ret; } static int worker_main_loop(__rte_unused void *arg) { unsigned lcore_id = rte_lcore_id(); unsigned i; RTE_PER_LCORE(n_reset_collisions) = 0; printf("Starting main loop on core %u\n", lcore_id); while (!stop_workers) { /* Wait until the timer manager is running. * We know it's running when we see timer[0] NOT pending. */ if (rte_timer_pending(&timer[0])) { rte_pause(); continue; } /* Now, go cause some havoc! * Reload our timers. */ for (i = 0; i < N_TIMERS; i++) { if (timer_lcore_id[i] == lcore_id) (void)reload_timer(&timer[i]); } usec_delay(100*1000); /* sleep 100 ms */ } if (RTE_PER_LCORE(n_reset_collisions) != 0) { printf("- core %u, %u reset collisions (OK)\n", lcore_id, RTE_PER_LCORE(n_reset_collisions)); } return 0; } static int test_timer_racecond(void) { int ret; uint64_t hz; uint64_t cur_time; uint64_t end_time; int64_t diff = 0; unsigned lcore_id; unsigned i; main_lcore = lcore_id = rte_lcore_id(); hz = rte_get_timer_hz(); /* init and start timers */ for (i = 0; i < N_TIMERS; i++) { rte_timer_init(&timer[i]); ret = reload_timer(&timer[i]); TEST_ASSERT(ret == 0, "reload_timer failed"); /* Distribute timers to workers. * Note that we assign timer[0] to the main. */ timer_lcore_id[i] = lcore_id; lcore_id = rte_get_next_lcore(lcore_id, 1, 1); } /* calculate the "end of test" time */ cur_time = rte_get_timer_cycles(); end_time = cur_time + (hz * TEST_DURATION_S); /* start worker cores */ stop_workers = 0; printf("Start timer manage race condition test (%u seconds)\n", TEST_DURATION_S); rte_eal_mp_remote_launch(worker_main_loop, NULL, SKIP_MAIN); while (diff >= 0) { /* run the timers */ rte_timer_manage(); /* wait 100 ms */ usec_delay(100*1000); cur_time = rte_get_timer_cycles(); diff = end_time - cur_time; } /* stop worker cores */ printf("Stopping timer manage race condition test\n"); stop_workers = 1; rte_eal_mp_wait_lcore(); /* stop timers */ for (i = 0; i < N_TIMERS; i++) { ret = rte_timer_stop(&timer[i]); TEST_ASSERT(ret == 0, "rte_timer_stop failed"); } return TEST_SUCCESS; } REGISTER_TEST_COMMAND(timer_racecond_autotest, test_timer_racecond);