/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright(c) 2016 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_mempool.h" TAILQ_HEAD(rte_mempool_list, rte_tailq_entry); static struct rte_tailq_elem rte_mempool_tailq = { .name = "RTE_MEMPOOL", }; EAL_REGISTER_TAILQ(rte_mempool_tailq) #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5 #define CALC_CACHE_FLUSHTHRESH(c) \ ((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER)) /* * return the greatest common divisor between a and b (fast algorithm) * */ static unsigned get_gcd(unsigned a, unsigned b) { unsigned c; if (0 == a) return b; if (0 == b) return a; if (a < b) { c = a; a = b; b = c; } while (b != 0) { c = a % b; a = b; b = c; } return a; } /* * Depending on memory configuration, objects addresses are spread * between channels and ranks in RAM: the pool allocator will add * padding between objects. This function return the new size of the * object. */ static unsigned optimize_object_size(unsigned obj_size) { unsigned nrank, nchan; unsigned new_obj_size; /* get number of channels */ nchan = rte_memory_get_nchannel(); if (nchan == 0) nchan = 4; nrank = rte_memory_get_nrank(); if (nrank == 0) nrank = 1; /* process new object size */ new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN; while (get_gcd(new_obj_size, nrank * nchan) != 1) new_obj_size++; return new_obj_size * RTE_MEMPOOL_ALIGN; } static int find_min_pagesz(const struct rte_memseg_list *msl, void *arg) { size_t *min = arg; if (msl->page_sz < *min) *min = msl->page_sz; return 0; } static size_t get_min_page_size(void) { size_t min_pagesz = SIZE_MAX; rte_memseg_list_walk(find_min_pagesz, &min_pagesz); return min_pagesz == SIZE_MAX ? (size_t) getpagesize() : min_pagesz; } static void mempool_add_elem(struct rte_mempool *mp, void *obj, rte_iova_t iova) { struct rte_mempool_objhdr *hdr; struct rte_mempool_objtlr *tlr __rte_unused; /* set mempool ptr in header */ hdr = RTE_PTR_SUB(obj, sizeof(*hdr)); hdr->mp = mp; hdr->iova = iova; STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next); mp->populated_size++; #ifdef RTE_LIBRTE_MEMPOOL_DEBUG hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2; tlr = __mempool_get_trailer(obj); tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE; #endif /* enqueue in ring */ rte_mempool_ops_enqueue_bulk(mp, &obj, 1); } /* call obj_cb() for each mempool element */ uint32_t rte_mempool_obj_iter(struct rte_mempool *mp, rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg) { struct rte_mempool_objhdr *hdr; void *obj; unsigned n = 0; STAILQ_FOREACH(hdr, &mp->elt_list, next) { obj = (char *)hdr + sizeof(*hdr); obj_cb(mp, obj_cb_arg, obj, n); n++; } return n; } /* call mem_cb() for each mempool memory chunk */ uint32_t rte_mempool_mem_iter(struct rte_mempool *mp, rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg) { struct rte_mempool_memhdr *hdr; unsigned n = 0; STAILQ_FOREACH(hdr, &mp->mem_list, next) { mem_cb(mp, mem_cb_arg, hdr, n); n++; } return n; } /* get the header, trailer and total size of a mempool element. */ uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags, struct rte_mempool_objsz *sz) { struct rte_mempool_objsz lsz; sz = (sz != NULL) ? sz : &lsz; sz->header_size = sizeof(struct rte_mempool_objhdr); if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) sz->header_size = RTE_ALIGN_CEIL(sz->header_size, RTE_MEMPOOL_ALIGN); #ifdef RTE_LIBRTE_MEMPOOL_DEBUG sz->trailer_size = sizeof(struct rte_mempool_objtlr); #else sz->trailer_size = 0; #endif /* element size is 8 bytes-aligned at least */ sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t)); /* expand trailer to next cache line */ if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) { sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size; sz->trailer_size += ((RTE_MEMPOOL_ALIGN - (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) & RTE_MEMPOOL_ALIGN_MASK); } /* * increase trailer to add padding between objects in order to * spread them across memory channels/ranks */ if ((flags & MEMPOOL_F_NO_SPREAD) == 0) { unsigned new_size; new_size = optimize_object_size(sz->header_size + sz->elt_size + sz->trailer_size); sz->trailer_size = new_size - sz->header_size - sz->elt_size; } /* this is the size of an object, including header and trailer */ sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size; return sz->total_size; } /* * Calculate maximum amount of memory required to store given number of objects. */ size_t rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift, unsigned int flags) { size_t obj_per_page, pg_num, pg_sz; unsigned int mask; mask = MEMPOOL_F_CAPA_BLK_ALIGNED_OBJECTS | MEMPOOL_F_CAPA_PHYS_CONTIG; if ((flags & mask) == mask) /* alignment need one additional object */ elt_num += 1; if (total_elt_sz == 0) return 0; if (pg_shift == 0) return total_elt_sz * elt_num; pg_sz = (size_t)1 << pg_shift; obj_per_page = pg_sz / total_elt_sz; if (obj_per_page == 0) return RTE_ALIGN_CEIL(total_elt_sz, pg_sz) * elt_num; pg_num = (elt_num + obj_per_page - 1) / obj_per_page; return pg_num << pg_shift; } /* * Calculate how much memory would be actually required with the * given memory footprint to store required number of elements. */ ssize_t rte_mempool_xmem_usage(__rte_unused void *vaddr, uint32_t elt_num, size_t total_elt_sz, const rte_iova_t iova[], uint32_t pg_num, uint32_t pg_shift, unsigned int flags) { uint32_t elt_cnt = 0; rte_iova_t start, end; uint32_t iova_idx; size_t pg_sz = (size_t)1 << pg_shift; unsigned int mask; mask = MEMPOOL_F_CAPA_BLK_ALIGNED_OBJECTS | MEMPOOL_F_CAPA_PHYS_CONTIG; if ((flags & mask) == mask) /* alignment need one additional object */ elt_num += 1; /* if iova is NULL, assume contiguous memory */ if (iova == NULL) { start = 0; end = pg_sz * pg_num; iova_idx = pg_num; } else { start = iova[0]; end = iova[0] + pg_sz; iova_idx = 1; } while (elt_cnt < elt_num) { if (end - start >= total_elt_sz) { /* enough contiguous memory, add an object */ start += total_elt_sz; elt_cnt++; } else if (iova_idx < pg_num) { /* no room to store one obj, add a page */ if (end == iova[iova_idx]) { end += pg_sz; } else { start = iova[iova_idx]; end = iova[iova_idx] + pg_sz; } iova_idx++; } else { /* no more page, return how many elements fit */ return -(size_t)elt_cnt; } } return (size_t)iova_idx << pg_shift; } /* free a memchunk allocated with rte_memzone_reserve() */ static void rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr, void *opaque) { const struct rte_memzone *mz = opaque; rte_memzone_free(mz); } /* Free memory chunks used by a mempool. Objects must be in pool */ static void rte_mempool_free_memchunks(struct rte_mempool *mp) { struct rte_mempool_memhdr *memhdr; void *elt; while (!STAILQ_EMPTY(&mp->elt_list)) { rte_mempool_ops_dequeue_bulk(mp, &elt, 1); (void)elt; STAILQ_REMOVE_HEAD(&mp->elt_list, next); mp->populated_size--; } while (!STAILQ_EMPTY(&mp->mem_list)) { memhdr = STAILQ_FIRST(&mp->mem_list); STAILQ_REMOVE_HEAD(&mp->mem_list, next); if (memhdr->free_cb != NULL) memhdr->free_cb(memhdr, memhdr->opaque); rte_free(memhdr); mp->nb_mem_chunks--; } } /* Add objects in the pool, using a physically contiguous memory * zone. Return the number of objects added, or a negative value * on error. */ int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr, rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque) { unsigned total_elt_sz; unsigned int mp_capa_flags; unsigned i = 0; size_t off; struct rte_mempool_memhdr *memhdr; int ret; /* create the internal ring if not already done */ if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) { ret = rte_mempool_ops_alloc(mp); if (ret != 0) return ret; mp->flags |= MEMPOOL_F_POOL_CREATED; } /* Notify memory area to mempool */ ret = rte_mempool_ops_register_memory_area(mp, vaddr, iova, len); if (ret != -ENOTSUP && ret < 0) return ret; /* mempool is already populated */ if (mp->populated_size >= mp->size) return -ENOSPC; total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size; /* Get mempool capabilities */ mp_capa_flags = 0; ret = rte_mempool_ops_get_capabilities(mp, &mp_capa_flags); if ((ret < 0) && (ret != -ENOTSUP)) return ret; /* update mempool capabilities */ mp->flags |= mp_capa_flags; memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0); if (memhdr == NULL) return -ENOMEM; memhdr->mp = mp; memhdr->addr = vaddr; memhdr->iova = iova; memhdr->len = len; memhdr->free_cb = free_cb; memhdr->opaque = opaque; if (mp_capa_flags & MEMPOOL_F_CAPA_BLK_ALIGNED_OBJECTS) /* align object start address to a multiple of total_elt_sz */ off = total_elt_sz - ((uintptr_t)vaddr % total_elt_sz); else if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN) off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr; else off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr; while (off + total_elt_sz <= len && mp->populated_size < mp->size) { off += mp->header_size; if (iova == RTE_BAD_IOVA) mempool_add_elem(mp, (char *)vaddr + off, RTE_BAD_IOVA); else mempool_add_elem(mp, (char *)vaddr + off, iova + off); off += mp->elt_size + mp->trailer_size; i++; } /* not enough room to store one object */ if (i == 0) { ret = -EINVAL; goto fail; } STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next); mp->nb_mem_chunks++; return i; fail: rte_free(memhdr); return ret; } int rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr, phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque) { return rte_mempool_populate_iova(mp, vaddr, paddr, len, free_cb, opaque); } /* Add objects in the pool, using a table of physical pages. Return the * number of objects added, or a negative value on error. */ int rte_mempool_populate_iova_tab(struct rte_mempool *mp, char *vaddr, const rte_iova_t iova[], uint32_t pg_num, uint32_t pg_shift, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque) { uint32_t i, n; int ret, cnt = 0; size_t pg_sz = (size_t)1 << pg_shift; /* mempool must not be populated */ if (mp->nb_mem_chunks != 0) return -EEXIST; if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG) return rte_mempool_populate_iova(mp, vaddr, RTE_BAD_IOVA, pg_num * pg_sz, free_cb, opaque); for (i = 0; i < pg_num && mp->populated_size < mp->size; i += n) { /* populate with the largest group of contiguous pages */ for (n = 1; (i + n) < pg_num && iova[i + n - 1] + pg_sz == iova[i + n]; n++) ; ret = rte_mempool_populate_iova(mp, vaddr + i * pg_sz, iova[i], n * pg_sz, free_cb, opaque); if (ret < 0) { rte_mempool_free_memchunks(mp); return ret; } /* no need to call the free callback for next chunks */ free_cb = NULL; cnt += ret; } return cnt; } int rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque) { return rte_mempool_populate_iova_tab(mp, vaddr, paddr, pg_num, pg_shift, free_cb, opaque); } /* Populate the mempool with a virtual area. Return the number of * objects added, or a negative value on error. */ int rte_mempool_populate_virt(struct rte_mempool *mp, char *addr, size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque) { rte_iova_t iova; size_t off, phys_len; int ret, cnt = 0; /* mempool must not be populated */ if (mp->nb_mem_chunks != 0) return -EEXIST; /* address and len must be page-aligned */ if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr) return -EINVAL; if (RTE_ALIGN_CEIL(len, pg_sz) != len) return -EINVAL; if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG) return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA, len, free_cb, opaque); for (off = 0; off + pg_sz <= len && mp->populated_size < mp->size; off += phys_len) { iova = rte_mem_virt2iova(addr + off); if (iova == RTE_BAD_IOVA && rte_eal_has_hugepages()) { ret = -EINVAL; goto fail; } /* populate with the largest group of contiguous pages */ for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) { rte_iova_t iova_tmp; iova_tmp = rte_mem_virt2iova(addr + off + phys_len); if (iova_tmp != iova + phys_len) break; } ret = rte_mempool_populate_iova(mp, addr + off, iova, phys_len, free_cb, opaque); if (ret < 0) goto fail; /* no need to call the free callback for next chunks */ free_cb = NULL; cnt += ret; } return cnt; fail: rte_mempool_free_memchunks(mp); return ret; } /* Default function to populate the mempool: allocate memory in memzones, * and populate them. Return the number of objects added, or a negative * value on error. */ int rte_mempool_populate_default(struct rte_mempool *mp) { unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY; char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz; size_t size, total_elt_sz, align, pg_sz, pg_shift; rte_iova_t iova; unsigned mz_id, n; unsigned int mp_flags; int ret; bool force_contig, no_contig, try_contig, no_pageshift; /* mempool must not be populated */ if (mp->nb_mem_chunks != 0) return -EEXIST; /* Get mempool capabilities */ mp_flags = 0; ret = rte_mempool_ops_get_capabilities(mp, &mp_flags); if ((ret < 0) && (ret != -ENOTSUP)) return ret; /* update mempool capabilities */ mp->flags |= mp_flags; no_contig = mp->flags & MEMPOOL_F_NO_PHYS_CONTIG; force_contig = mp->flags & MEMPOOL_F_CAPA_PHYS_CONTIG; /* * the following section calculates page shift and page size values. * * these values impact the result of rte_mempool_xmem_size(), which * returns the amount of memory that should be allocated to store the * desired number of objects. when not zero, it allocates more memory * for the padding between objects, to ensure that an object does not * cross a page boundary. in other words, page size/shift are to be set * to zero if mempool elements won't care about page boundaries. * there are several considerations for page size and page shift here. * * if we don't need our mempools to have physically contiguous objects, * then just set page shift and page size to 0, because the user has * indicated that there's no need to care about anything. * * if we do need contiguous objects, there is also an option to reserve * the entire mempool memory as one contiguous block of memory, in * which case the page shift and alignment wouldn't matter as well. * * if we require contiguous objects, but not necessarily the entire * mempool reserved space to be contiguous, then there are two options. * * if our IO addresses are virtual, not actual physical (IOVA as VA * case), then no page shift needed - our memory allocation will give us * contiguous physical memory as far as the hardware is concerned, so * act as if we're getting contiguous memory. * * if our IO addresses are physical, we may get memory from bigger * pages, or we might get memory from smaller pages, and how much of it * we require depends on whether we want bigger or smaller pages. * However, requesting each and every memory size is too much work, so * what we'll do instead is walk through the page sizes available, pick * the smallest one and set up page shift to match that one. We will be * wasting some space this way, but it's much nicer than looping around * trying to reserve each and every page size. * * However, since size calculation will produce page-aligned sizes, it * makes sense to first try and see if we can reserve the entire memzone * in one contiguous chunk as well (otherwise we might end up wasting a * 1G page on a 10MB memzone). If we fail to get enough contiguous * memory, then we'll go and reserve space page-by-page. */ no_pageshift = no_contig || force_contig || rte_eal_iova_mode() == RTE_IOVA_VA; try_contig = !no_contig && !no_pageshift && rte_eal_has_hugepages(); if (force_contig) mz_flags |= RTE_MEMZONE_IOVA_CONTIG; if (no_pageshift) { pg_sz = 0; pg_shift = 0; align = RTE_CACHE_LINE_SIZE; } else if (try_contig) { pg_sz = get_min_page_size(); pg_shift = rte_bsf32(pg_sz); /* we're trying to reserve contiguous memzone first, so try * align to cache line; if we fail to reserve a contiguous * memzone, we'll adjust alignment to equal pagesize later. */ align = RTE_CACHE_LINE_SIZE; } else { pg_sz = getpagesize(); pg_shift = rte_bsf32(pg_sz); align = pg_sz; } total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size; for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) { unsigned int flags; if (try_contig || no_pageshift) size = rte_mempool_xmem_size(n, total_elt_sz, 0, mp->flags); else size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift, mp->flags); ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id); if (ret < 0 || ret >= (int)sizeof(mz_name)) { ret = -ENAMETOOLONG; goto fail; } flags = mz_flags; /* if we're trying to reserve contiguous memory, add appropriate * memzone flag. */ if (try_contig) flags |= RTE_MEMZONE_IOVA_CONTIG; mz = rte_memzone_reserve_aligned(mz_name, size, mp->socket_id, flags, align); /* if we were trying to allocate contiguous memory, adjust * memzone size and page size to fit smaller page sizes, and * try again. */ if (mz == NULL && try_contig) { try_contig = false; flags &= ~RTE_MEMZONE_IOVA_CONTIG; align = pg_sz; size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift, mp->flags); mz = rte_memzone_reserve_aligned(mz_name, size, mp->socket_id, flags, align); } /* don't try reserving with 0 size if we were asked to reserve * IOVA-contiguous memory. */ if (!force_contig && mz == NULL) { /* not enough memory, retry with the biggest zone we * have */ mz = rte_memzone_reserve_aligned(mz_name, 0, mp->socket_id, flags, align); } if (mz == NULL) { ret = -rte_errno; goto fail; } if (no_contig) iova = RTE_BAD_IOVA; else iova = mz->iova; if (no_pageshift || try_contig) ret = rte_mempool_populate_iova(mp, mz->addr, iova, mz->len, rte_mempool_memchunk_mz_free, (void *)(uintptr_t)mz); else ret = rte_mempool_populate_virt(mp, mz->addr, mz->len, pg_sz, rte_mempool_memchunk_mz_free, (void *)(uintptr_t)mz); if (ret < 0) { rte_memzone_free(mz); goto fail; } } return mp->size; fail: rte_mempool_free_memchunks(mp); return ret; } /* return the memory size required for mempool objects in anonymous mem */ static size_t get_anon_size(const struct rte_mempool *mp) { size_t size, total_elt_sz, pg_sz, pg_shift; pg_sz = getpagesize(); pg_shift = rte_bsf32(pg_sz); total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size; size = rte_mempool_xmem_size(mp->size, total_elt_sz, pg_shift, mp->flags); return size; } /* unmap a memory zone mapped by rte_mempool_populate_anon() */ static void rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr, void *opaque) { munmap(opaque, get_anon_size(memhdr->mp)); } /* populate the mempool with an anonymous mapping */ int rte_mempool_populate_anon(struct rte_mempool *mp) { size_t size; int ret; char *addr; /* mempool is already populated, error */ if (!STAILQ_EMPTY(&mp->mem_list)) { rte_errno = EINVAL; return 0; } /* get chunk of virtually continuous memory */ size = get_anon_size(mp); addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { rte_errno = errno; return 0; } /* can't use MMAP_LOCKED, it does not exist on BSD */ if (mlock(addr, size) < 0) { rte_errno = errno; munmap(addr, size); return 0; } ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(), rte_mempool_memchunk_anon_free, addr); if (ret == 0) goto fail; return mp->populated_size; fail: rte_mempool_free_memchunks(mp); return 0; } /* free a mempool */ void rte_mempool_free(struct rte_mempool *mp) { struct rte_mempool_list *mempool_list = NULL; struct rte_tailq_entry *te; if (mp == NULL) return; mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find out tailq entry */ TAILQ_FOREACH(te, mempool_list, next) { if (te->data == (void *)mp) break; } if (te != NULL) { TAILQ_REMOVE(mempool_list, te, next); rte_free(te); } rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_mempool_free_memchunks(mp); rte_mempool_ops_free(mp); rte_memzone_free(mp->mz); } static void mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size) { cache->size = size; cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size); cache->len = 0; } /* * Create and initialize a cache for objects that are retrieved from and * returned to an underlying mempool. This structure is identical to the * local_cache[lcore_id] pointed to by the mempool structure. */ struct rte_mempool_cache * rte_mempool_cache_create(uint32_t size, int socket_id) { struct rte_mempool_cache *cache; if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) { rte_errno = EINVAL; return NULL; } cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache), RTE_CACHE_LINE_SIZE, socket_id); if (cache == NULL) { RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n"); rte_errno = ENOMEM; return NULL; } mempool_cache_init(cache, size); return cache; } /* * Free a cache. It's the responsibility of the user to make sure that any * remaining objects in the cache are flushed to the corresponding * mempool. */ void rte_mempool_cache_free(struct rte_mempool_cache *cache) { rte_free(cache); } /* create an empty mempool */ struct rte_mempool * rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, int socket_id, unsigned flags) { char mz_name[RTE_MEMZONE_NAMESIZE]; struct rte_mempool_list *mempool_list; struct rte_mempool *mp = NULL; struct rte_tailq_entry *te = NULL; const struct rte_memzone *mz = NULL; size_t mempool_size; unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY; struct rte_mempool_objsz objsz; unsigned lcore_id; int ret; /* compilation-time checks */ RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) & RTE_CACHE_LINE_MASK) != 0); RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) & RTE_CACHE_LINE_MASK) != 0); #ifdef RTE_LIBRTE_MEMPOOL_DEBUG RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) & RTE_CACHE_LINE_MASK) != 0); RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) & RTE_CACHE_LINE_MASK) != 0); #endif mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list); /* asked cache too big */ if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE || CALC_CACHE_FLUSHTHRESH(cache_size) > n) { rte_errno = EINVAL; return NULL; } /* "no cache align" imply "no spread" */ if (flags & MEMPOOL_F_NO_CACHE_ALIGN) flags |= MEMPOOL_F_NO_SPREAD; /* calculate mempool object sizes. */ if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) { rte_errno = EINVAL; return NULL; } rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK); /* * reserve a memory zone for this mempool: private data is * cache-aligned */ private_data_size = (private_data_size + RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK); /* try to allocate tailq entry */ te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n"); goto exit_unlock; } mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size); mempool_size += private_data_size; mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN); ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name); if (ret < 0 || ret >= (int)sizeof(mz_name)) { rte_errno = ENAMETOOLONG; goto exit_unlock; } mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags); if (mz == NULL) goto exit_unlock; /* init the mempool structure */ mp = mz->addr; memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size)); ret = snprintf(mp->name, sizeof(mp->name), "%s", name); if (ret < 0 || ret >= (int)sizeof(mp->name)) { rte_errno = ENAMETOOLONG; goto exit_unlock; } mp->mz = mz; mp->size = n; mp->flags = flags; mp->socket_id = socket_id; mp->elt_size = objsz.elt_size; mp->header_size = objsz.header_size; mp->trailer_size = objsz.trailer_size; /* Size of default caches, zero means disabled. */ mp->cache_size = cache_size; mp->private_data_size = private_data_size; STAILQ_INIT(&mp->elt_list); STAILQ_INIT(&mp->mem_list); /* * local_cache pointer is set even if cache_size is zero. * The local_cache points to just past the elt_pa[] array. */ mp->local_cache = (struct rte_mempool_cache *) RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0)); /* Init all default caches. */ if (cache_size != 0) { for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) mempool_cache_init(&mp->local_cache[lcore_id], cache_size); } te->data = mp; rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_INSERT_TAIL(mempool_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK); return mp; exit_unlock: rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK); rte_free(te); rte_mempool_free(mp); return NULL; } /* create the mempool */ struct rte_mempool * rte_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_cb_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags) { int ret; struct rte_mempool *mp; mp = rte_mempool_create_empty(name, n, elt_size, cache_size, private_data_size, socket_id, flags); if (mp == NULL) return NULL; /* * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to * set the correct index into the table of ops structs. */ if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET)) ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL); else if (flags & MEMPOOL_F_SP_PUT) ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL); else if (flags & MEMPOOL_F_SC_GET) ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL); else ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL); if (ret) goto fail; /* call the mempool priv initializer */ if (mp_init) mp_init(mp, mp_init_arg); if (rte_mempool_populate_default(mp) < 0) goto fail; /* call the object initializers */ if (obj_init) rte_mempool_obj_iter(mp, obj_init, obj_init_arg); return mp; fail: rte_mempool_free(mp); return NULL; } /* * Create the mempool over already allocated chunk of memory. * That external memory buffer can consists of physically disjoint pages. * Setting vaddr to NULL, makes mempool to fallback to rte_mempool_create() * behavior. */ struct rte_mempool * rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_cb_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags, void *vaddr, const rte_iova_t iova[], uint32_t pg_num, uint32_t pg_shift) { struct rte_mempool *mp = NULL; int ret; /* no virtual address supplied, use rte_mempool_create() */ if (vaddr == NULL) return rte_mempool_create(name, n, elt_size, cache_size, private_data_size, mp_init, mp_init_arg, obj_init, obj_init_arg, socket_id, flags); /* check that we have both VA and PA */ if (iova == NULL) { rte_errno = EINVAL; return NULL; } /* Check that pg_shift parameter is valid. */ if (pg_shift > MEMPOOL_PG_SHIFT_MAX) { rte_errno = EINVAL; return NULL; } mp = rte_mempool_create_empty(name, n, elt_size, cache_size, private_data_size, socket_id, flags); if (mp == NULL) return NULL; /* call the mempool priv initializer */ if (mp_init) mp_init(mp, mp_init_arg); ret = rte_mempool_populate_iova_tab(mp, vaddr, iova, pg_num, pg_shift, NULL, NULL); if (ret < 0 || ret != (int)mp->size) goto fail; /* call the object initializers */ if (obj_init) rte_mempool_obj_iter(mp, obj_init, obj_init_arg); return mp; fail: rte_mempool_free(mp); return NULL; } /* Return the number of entries in the mempool */ unsigned int rte_mempool_avail_count(const struct rte_mempool *mp) { unsigned count; unsigned lcore_id; count = rte_mempool_ops_get_count(mp); if (mp->cache_size == 0) return count; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) count += mp->local_cache[lcore_id].len; /* * due to race condition (access to len is not locked), the * total can be greater than size... so fix the result */ if (count > mp->size) return mp->size; return count; } /* return the number of entries allocated from the mempool */ unsigned int rte_mempool_in_use_count(const struct rte_mempool *mp) { return mp->size - rte_mempool_avail_count(mp); } /* dump the cache status */ static unsigned rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp) { unsigned lcore_id; unsigned count = 0; unsigned cache_count; fprintf(f, " internal cache infos:\n"); fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size); if (mp->cache_size == 0) return count; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { cache_count = mp->local_cache[lcore_id].len; fprintf(f, " cache_count[%u]=%"PRIu32"\n", lcore_id, cache_count); count += cache_count; } fprintf(f, " total_cache_count=%u\n", count); return count; } #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif /* check and update cookies or panic (internal) */ void rte_mempool_check_cookies(const struct rte_mempool *mp, void * const *obj_table_const, unsigned n, int free) { #ifdef RTE_LIBRTE_MEMPOOL_DEBUG struct rte_mempool_objhdr *hdr; struct rte_mempool_objtlr *tlr; uint64_t cookie; void *tmp; void *obj; void **obj_table; /* Force to drop the "const" attribute. This is done only when * DEBUG is enabled */ tmp = (void *) obj_table_const; obj_table = tmp; while (n--) { obj = obj_table[n]; if (rte_mempool_from_obj(obj) != mp) rte_panic("MEMPOOL: object is owned by another " "mempool\n"); hdr = __mempool_get_header(obj); cookie = hdr->cookie; if (free == 0) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) { RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%" PRIx64 "\n", obj, (const void *) mp, cookie); rte_panic("MEMPOOL: bad header cookie (put)\n"); } hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2; } else if (free == 1) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) { RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%" PRIx64 "\n", obj, (const void *) mp, cookie); rte_panic("MEMPOOL: bad header cookie (get)\n"); } hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1; } else if (free == 2) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 && cookie != RTE_MEMPOOL_HEADER_COOKIE2) { RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%" PRIx64 "\n", obj, (const void *) mp, cookie); rte_panic("MEMPOOL: bad header cookie (audit)\n"); } } tlr = __mempool_get_trailer(obj); cookie = tlr->cookie; if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) { RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%" PRIx64 "\n", obj, (const void *) mp, cookie); rte_panic("MEMPOOL: bad trailer cookie\n"); } } #else RTE_SET_USED(mp); RTE_SET_USED(obj_table_const); RTE_SET_USED(n); RTE_SET_USED(free); #endif } #ifdef RTE_LIBRTE_MEMPOOL_DEBUG static void mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque, void *obj, __rte_unused unsigned idx) { __mempool_check_cookies(mp, &obj, 1, 2); } static void mempool_audit_cookies(struct rte_mempool *mp) { unsigned num; num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL); if (num != mp->size) { rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) " "iterated only over %u elements\n", mp, mp->size, num); } } #else #define mempool_audit_cookies(mp) do {} while(0) #endif #ifndef __INTEL_COMPILER #pragma GCC diagnostic error "-Wcast-qual" #endif /* check cookies before and after objects */ static void mempool_audit_cache(const struct rte_mempool *mp) { /* check cache size consistency */ unsigned lcore_id; if (mp->cache_size == 0) return; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { const struct rte_mempool_cache *cache; cache = &mp->local_cache[lcore_id]; if (cache->len > cache->flushthresh) { RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n", lcore_id); rte_panic("MEMPOOL: invalid cache len\n"); } } } /* check the consistency of mempool (size, cookies, ...) */ void rte_mempool_audit(struct rte_mempool *mp) { mempool_audit_cache(mp); mempool_audit_cookies(mp); /* For case where mempool DEBUG is not set, and cache size is 0 */ RTE_SET_USED(mp); } /* dump the status of the mempool on the console */ void rte_mempool_dump(FILE *f, struct rte_mempool *mp) { #ifdef RTE_LIBRTE_MEMPOOL_DEBUG struct rte_mempool_debug_stats sum; unsigned lcore_id; #endif struct rte_mempool_memhdr *memhdr; unsigned common_count; unsigned cache_count; size_t mem_len = 0; RTE_ASSERT(f != NULL); RTE_ASSERT(mp != NULL); fprintf(f, "mempool <%s>@%p\n", mp->name, mp); fprintf(f, " flags=%x\n", mp->flags); fprintf(f, " pool=%p\n", mp->pool_data); fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova); fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks); fprintf(f, " size=%"PRIu32"\n", mp->size); fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size); fprintf(f, " header_size=%"PRIu32"\n", mp->header_size); fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size); fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size); fprintf(f, " total_obj_size=%"PRIu32"\n", mp->header_size + mp->elt_size + mp->trailer_size); fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size); STAILQ_FOREACH(memhdr, &mp->mem_list, next) mem_len += memhdr->len; if (mem_len != 0) { fprintf(f, " avg bytes/object=%#Lf\n", (long double)mem_len / mp->size); } cache_count = rte_mempool_dump_cache(f, mp); common_count = rte_mempool_ops_get_count(mp); if ((cache_count + common_count) > mp->size) common_count = mp->size - cache_count; fprintf(f, " common_pool_count=%u\n", common_count); /* sum and dump statistics */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG memset(&sum, 0, sizeof(sum)); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { sum.put_bulk += mp->stats[lcore_id].put_bulk; sum.put_objs += mp->stats[lcore_id].put_objs; sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk; sum.get_success_objs += mp->stats[lcore_id].get_success_objs; sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk; sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs; } fprintf(f, " stats:\n"); fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk); fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs); fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk); fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs); fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk); fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs); #else fprintf(f, " no statistics available\n"); #endif rte_mempool_audit(mp); } /* dump the status of all mempools on the console */ void rte_mempool_list_dump(FILE *f) { struct rte_mempool *mp = NULL; struct rte_tailq_entry *te; struct rte_mempool_list *mempool_list; mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list); rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH(te, mempool_list, next) { mp = (struct rte_mempool *) te->data; rte_mempool_dump(f, mp); } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); } /* search a mempool from its name */ struct rte_mempool * rte_mempool_lookup(const char *name) { struct rte_mempool *mp = NULL; struct rte_tailq_entry *te; struct rte_mempool_list *mempool_list; mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list); rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH(te, mempool_list, next) { mp = (struct rte_mempool *) te->data; if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return mp; } void rte_mempool_walk(void (*func)(struct rte_mempool *, void *), void *arg) { struct rte_tailq_entry *te = NULL; struct rte_mempool_list *mempool_list; void *tmp_te; mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list); rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) { (*func)((struct rte_mempool *) te->data, arg); } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); }