/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018-2019 Hisilicon Limited. */ #ifndef _HNS3_RXTX_H_ #define _HNS3_RXTX_H_ #include #include #define HNS3_MIN_RING_DESC 64 #define HNS3_MAX_RING_DESC 32768 #define HNS3_DEFAULT_RING_DESC 1024 #define HNS3_ALIGN_RING_DESC 32 #define HNS3_RING_BASE_ALIGN 128 #define HNS3_BULK_ALLOC_MBUF_NUM 32 #define HNS3_DEFAULT_RX_FREE_THRESH 32 #define HNS3_DEFAULT_TX_FREE_THRESH 32 #define HNS3_DEFAULT_TX_RS_THRESH 32 #define HNS3_TX_FAST_FREE_AHEAD 64 #define HNS3_DEFAULT_RX_BURST 32 #if (HNS3_DEFAULT_RX_BURST > 64) #error "PMD HNS3: HNS3_DEFAULT_RX_BURST must <= 64\n" #endif #define HNS3_DEFAULT_DESCS_PER_LOOP 4 #define HNS3_SVE_DEFAULT_DESCS_PER_LOOP 8 #if (HNS3_DEFAULT_DESCS_PER_LOOP > HNS3_SVE_DEFAULT_DESCS_PER_LOOP) #define HNS3_VECTOR_RX_OFFSET_TABLE_LEN HNS3_DEFAULT_DESCS_PER_LOOP #else #define HNS3_VECTOR_RX_OFFSET_TABLE_LEN HNS3_SVE_DEFAULT_DESCS_PER_LOOP #endif #define HNS3_DEFAULT_RXQ_REARM_THRESH 64 #define HNS3_UINT8_BIT 8 #define HNS3_UINT16_BIT 16 #define HNS3_UINT32_BIT 32 #define HNS3_512_BD_BUF_SIZE 512 #define HNS3_1K_BD_BUF_SIZE 1024 #define HNS3_2K_BD_BUF_SIZE 2048 #define HNS3_4K_BD_BUF_SIZE 4096 #define HNS3_MIN_BD_BUF_SIZE HNS3_512_BD_BUF_SIZE #define HNS3_MAX_BD_BUF_SIZE HNS3_4K_BD_BUF_SIZE #define HNS3_BD_SIZE_512_TYPE 0 #define HNS3_BD_SIZE_1024_TYPE 1 #define HNS3_BD_SIZE_2048_TYPE 2 #define HNS3_BD_SIZE_4096_TYPE 3 #define HNS3_RX_FLAG_VLAN_PRESENT 0x1 #define HNS3_RX_FLAG_L3ID_IPV4 0x0 #define HNS3_RX_FLAG_L3ID_IPV6 0x1 #define HNS3_RX_FLAG_L4ID_UDP 0x0 #define HNS3_RX_FLAG_L4ID_TCP 0x1 #define HNS3_RXD_DMAC_S 0 #define HNS3_RXD_DMAC_M (0x3 << HNS3_RXD_DMAC_S) #define HNS3_RXD_VLAN_S 2 #define HNS3_RXD_VLAN_M (0x3 << HNS3_RXD_VLAN_S) #define HNS3_RXD_L3ID_S 4 #define HNS3_RXD_L3ID_M (0xf << HNS3_RXD_L3ID_S) #define HNS3_RXD_L4ID_S 8 #define HNS3_RXD_L4ID_M (0xf << HNS3_RXD_L4ID_S) #define HNS3_RXD_FRAG_B 12 #define HNS3_RXD_STRP_TAGP_S 13 #define HNS3_RXD_STRP_TAGP_M (0x3 << HNS3_RXD_STRP_TAGP_S) #define HNS3_RXD_L2E_B 16 #define HNS3_RXD_L3E_B 17 #define HNS3_RXD_L4E_B 18 #define HNS3_RXD_TRUNCATE_B 19 #define HNS3_RXD_HOI_B 20 #define HNS3_RXD_DOI_B 21 #define HNS3_RXD_OL3E_B 22 #define HNS3_RXD_OL4E_B 23 #define HNS3_RXD_GRO_COUNT_S 24 #define HNS3_RXD_GRO_COUNT_M (0x3f << HNS3_RXD_GRO_COUNT_S) #define HNS3_RXD_GRO_FIXID_B 30 #define HNS3_RXD_GRO_ECN_B 31 #define HNS3_RXD_ODMAC_S 0 #define HNS3_RXD_ODMAC_M (0x3 << HNS3_RXD_ODMAC_S) #define HNS3_RXD_OVLAN_S 2 #define HNS3_RXD_OVLAN_M (0x3 << HNS3_RXD_OVLAN_S) #define HNS3_RXD_OL3ID_S 4 #define HNS3_RXD_OL3ID_M (0xf << HNS3_RXD_OL3ID_S) #define HNS3_RXD_OL4ID_S 8 #define HNS3_RXD_OL4ID_M (0xf << HNS3_RXD_OL4ID_S) #define HNS3_RXD_FBHI_S 12 #define HNS3_RXD_FBHI_M (0x3 << HNS3_RXD_FBHI_S) #define HNS3_RXD_FBLI_S 14 #define HNS3_RXD_FBLI_M (0x3 << HNS3_RXD_FBLI_S) #define HNS3_RXD_BDTYPE_S 0 #define HNS3_RXD_BDTYPE_M (0xf << HNS3_RXD_BDTYPE_S) #define HNS3_RXD_VLD_B 4 #define HNS3_RXD_UDP0_B 5 #define HNS3_RXD_EXTEND_B 7 #define HNS3_RXD_FE_B 8 #define HNS3_RXD_LUM_B 9 #define HNS3_RXD_CRCP_B 10 #define HNS3_RXD_L3L4P_B 11 #define HNS3_RXD_TSIND_S 12 #define HNS3_RXD_TSIND_M (0x7 << HNS3_RXD_TSIND_S) #define HNS3_RXD_LKBK_B 15 #define HNS3_RXD_GRO_SIZE_S 16 #define HNS3_RXD_GRO_SIZE_M (0x3fff << HNS3_RXD_GRO_SIZE_S) #define HNS3_TXD_L3T_S 0 #define HNS3_TXD_L3T_M (0x3 << HNS3_TXD_L3T_S) #define HNS3_TXD_L4T_S 2 #define HNS3_TXD_L4T_M (0x3 << HNS3_TXD_L4T_S) #define HNS3_TXD_L3CS_B 4 #define HNS3_TXD_L4CS_B 5 #define HNS3_TXD_VLAN_B 6 #define HNS3_TXD_TSO_B 7 #define HNS3_TXD_L2LEN_S 8 #define HNS3_TXD_L2LEN_M (0xff << HNS3_TXD_L2LEN_S) #define HNS3_TXD_L3LEN_S 16 #define HNS3_TXD_L3LEN_M (0xff << HNS3_TXD_L3LEN_S) #define HNS3_TXD_L4LEN_S 24 #define HNS3_TXD_L4LEN_M (0xffUL << HNS3_TXD_L4LEN_S) #define HNS3_TXD_OL3T_S 0 #define HNS3_TXD_OL3T_M (0x3 << HNS3_TXD_OL3T_S) #define HNS3_TXD_OVLAN_B 2 #define HNS3_TXD_MACSEC_B 3 #define HNS3_TXD_TUNTYPE_S 4 #define HNS3_TXD_TUNTYPE_M (0xf << HNS3_TXD_TUNTYPE_S) #define HNS3_TXD_BDTYPE_S 0 #define HNS3_TXD_BDTYPE_M (0xf << HNS3_TXD_BDTYPE_S) #define HNS3_TXD_FE_B 4 #define HNS3_TXD_SC_S 5 #define HNS3_TXD_SC_M (0x3 << HNS3_TXD_SC_S) #define HNS3_TXD_EXTEND_B 7 #define HNS3_TXD_VLD_B 8 #define HNS3_TXD_RI_B 9 #define HNS3_TXD_RA_B 10 #define HNS3_TXD_TSYN_B 11 #define HNS3_TXD_DECTTL_S 12 #define HNS3_TXD_DECTTL_M (0xf << HNS3_TXD_DECTTL_S) #define HNS3_TXD_MSS_S 0 #define HNS3_TXD_MSS_M (0x3fff << HNS3_TXD_MSS_S) #define HNS3_L2_LEN_UNIT 1UL #define HNS3_L3_LEN_UNIT 2UL #define HNS3_L4_LEN_UNIT 2UL #define HNS3_TXD_DEFAULT_BDTYPE 0 #define HNS3_TXD_VLD_CMD (0x1 << HNS3_TXD_VLD_B) #define HNS3_TXD_FE_CMD (0x1 << HNS3_TXD_FE_B) #define HNS3_TXD_DEFAULT_VLD_FE_BDTYPE \ (HNS3_TXD_VLD_CMD | HNS3_TXD_FE_CMD | HNS3_TXD_DEFAULT_BDTYPE) #define HNS3_TXD_SEND_SIZE_SHIFT 16 enum hns3_pkt_l2t_type { HNS3_L2_TYPE_UNICAST, HNS3_L2_TYPE_MULTICAST, HNS3_L2_TYPE_BROADCAST, HNS3_L2_TYPE_INVALID, }; enum hns3_pkt_l3t_type { HNS3_L3T_NONE, HNS3_L3T_IPV6, HNS3_L3T_IPV4, HNS3_L3T_RESERVED }; enum hns3_pkt_l4t_type { HNS3_L4T_UNKNOWN, HNS3_L4T_TCP, HNS3_L4T_UDP, HNS3_L4T_SCTP }; enum hns3_pkt_ol3t_type { HNS3_OL3T_NONE, HNS3_OL3T_IPV6, HNS3_OL3T_IPV4_NO_CSUM, HNS3_OL3T_IPV4_CSUM }; enum hns3_pkt_tun_type { HNS3_TUN_NONE, HNS3_TUN_MAC_IN_UDP, HNS3_TUN_NVGRE, HNS3_TUN_OTHER }; /* hardware spec ring buffer format */ struct hns3_desc { union { uint64_t addr; struct { uint32_t addr0; uint32_t addr1; }; }; union { struct { uint16_t vlan_tag; uint16_t send_size; union { /* * L3T | L4T | L3CS | L4CS | VLAN | TSO | * L2_LEN */ uint32_t type_cs_vlan_tso_len; struct { uint8_t type_cs_vlan_tso; uint8_t l2_len; uint8_t l3_len; uint8_t l4_len; }; }; uint16_t outer_vlan_tag; uint16_t tv; union { /* OL3T | OVALAN | MACSEC */ uint32_t ol_type_vlan_len_msec; struct { uint8_t ol_type_vlan_msec; uint8_t ol2_len; uint8_t ol3_len; uint8_t ol4_len; }; }; uint32_t paylen; uint16_t tp_fe_sc_vld_ra_ri; uint16_t mss; } tx; struct { uint32_t l234_info; uint16_t pkt_len; uint16_t size; uint32_t rss_hash; uint16_t fd_id; uint16_t vlan_tag; union { uint32_t ol_info; struct { uint16_t o_dm_vlan_id_fb; uint16_t ot_vlan_tag; }; }; union { uint32_t bd_base_info; struct { uint16_t bdtype_vld_udp0; uint16_t fe_lum_crcp_l3l4p; }; }; } rx; }; } __rte_packed; struct hns3_entry { struct rte_mbuf *mbuf; }; struct hns3_rx_basic_stats { uint64_t packets; uint64_t bytes; uint64_t errors; }; struct hns3_rx_dfx_stats { uint64_t l3_csum_errors; uint64_t l4_csum_errors; uint64_t ol3_csum_errors; uint64_t ol4_csum_errors; }; struct hns3_rx_bd_errors_stats { uint64_t l2_errors; uint64_t pkt_len_errors; }; struct hns3_rx_queue { void *io_base; volatile void *io_head_reg; struct hns3_adapter *hns; struct hns3_ptype_table *ptype_tbl; struct rte_mempool *mb_pool; struct hns3_desc *rx_ring; uint64_t rx_ring_phys_addr; /* RX ring DMA address */ const struct rte_memzone *mz; struct hns3_entry *sw_ring; struct rte_mbuf *pkt_first_seg; struct rte_mbuf *pkt_last_seg; uint16_t queue_id; uint16_t port_id; uint16_t nb_rx_desc; uint16_t rx_buf_len; /* * threshold for the number of BDs waited to passed to hardware. If the * number exceeds the threshold, driver will pass these BDs to hardware. */ uint16_t rx_free_thresh; uint16_t next_to_use; /* index of next BD to be polled */ uint16_t rx_free_hold; /* num of BDs waited to passed to hardware */ uint16_t rx_rearm_start; /* index of BD that driver re-arming from */ uint16_t rx_rearm_nb; /* number of remaining BDs to be re-armed */ /* 4 if DEV_RX_OFFLOAD_KEEP_CRC offload set, 0 otherwise */ uint8_t crc_len; bool rx_deferred_start; /* don't start this queue in dev start */ bool configured; /* indicate if rx queue has been configured */ /* * Indicate whether ignore the outer VLAN field in the Rx BD reported * by the Hardware. Because the outer VLAN is the PVID if the PVID is * set for some version of hardware network engine whose vlan mode is * HNS3_SW_SHIFT_AND_DISCARD_MODE, such as kunpeng 920. And this VLAN * should not be transitted to the upper-layer application. For hardware * network engine whose vlan mode is HNS3_HW_SHIFT_AND_DISCARD_MODE, * such as kunpeng 930, PVID will not be reported to the BDs. So, PMD * driver does not need to perform PVID-related operation in Rx. At this * point, the pvid_sw_discard_en will be false. */ bool pvid_sw_discard_en; bool enabled; /* indicate if Rx queue has been enabled */ struct hns3_rx_basic_stats basic_stats; /* DFX statistics that driver does not need to discard packets */ struct hns3_rx_dfx_stats dfx_stats; /* Error statistics that driver needs to discard packets */ struct hns3_rx_bd_errors_stats err_stats; struct rte_mbuf *bulk_mbuf[HNS3_BULK_ALLOC_MBUF_NUM]; uint16_t bulk_mbuf_num; /* offset_table: used for vector, to solve execute re-order problem */ uint8_t offset_table[HNS3_VECTOR_RX_OFFSET_TABLE_LEN + 1]; uint64_t mbuf_initializer; /* value to init mbufs used with vector rx */ struct rte_mbuf fake_mbuf; /* fake mbuf used with vector rx */ }; struct hns3_tx_basic_stats { uint64_t packets; uint64_t bytes; }; /* * The following items are used for the abnormal errors statistics in * the Tx datapath. When upper level application calls the * rte_eth_tx_burst API function to send multiple packets at a time with * burst mode based on hns3 network engine, there are some abnormal * conditions that cause the driver to fail to operate the hardware to * send packets correctly. * Note: When using burst mode to call the rte_eth_tx_burst API function * to send multiple packets at a time. When the first abnormal error is * detected, add one to the relevant error statistics item, and then * exit the loop of sending multiple packets of the function. That is to * say, even if there are multiple packets in which abnormal errors may * be detected in the burst, the relevant error statistics in the driver * will only be increased by one. * The detail description of the Tx abnormal errors statistic items as * below: * - over_length_pkt_cnt * Total number of greater than HNS3_MAX_FRAME_LEN the driver * supported. * * - exceed_limit_bd_pkt_cnt * Total number of exceeding the hardware limited bd which process * a packet needed bd numbers. * * - exceed_limit_bd_reassem_fail * Total number of exceeding the hardware limited bd fail which * process a packet needed bd numbers and reassemble fail. * * - unsupported_tunnel_pkt_cnt * Total number of unsupported tunnel packet. The unsupported tunnel * type: vxlan_gpe, gtp, ipip and MPLSINUDP, MPLSINUDP is a packet * with MPLS-in-UDP RFC 7510 header. * * - queue_full_cnt * Total count which the available bd numbers in current bd queue is * less than the bd numbers with the pkt process needed. * * - pkt_padding_fail_cnt * Total count which the packet length is less than minimum packet * length(struct hns3_tx_queue::min_tx_pkt_len) supported by * hardware in Tx direction and fail to be appended with 0. */ struct hns3_tx_dfx_stats { uint64_t over_length_pkt_cnt; uint64_t exceed_limit_bd_pkt_cnt; uint64_t exceed_limit_bd_reassem_fail; uint64_t unsupported_tunnel_pkt_cnt; uint64_t queue_full_cnt; uint64_t pkt_padding_fail_cnt; }; struct hns3_tx_queue { void *io_base; volatile void *io_tail_reg; struct hns3_adapter *hns; struct hns3_desc *tx_ring; uint64_t tx_ring_phys_addr; /* TX ring DMA address */ const struct rte_memzone *mz; struct hns3_entry *sw_ring; uint16_t queue_id; uint16_t port_id; uint16_t nb_tx_desc; /* * index of next BD whose corresponding rte_mbuf can be released by * driver. */ uint16_t next_to_clean; /* index of next BD to be filled by driver to send packet */ uint16_t next_to_use; /* num of remaining BDs ready to be filled by driver to send packet */ uint16_t tx_bd_ready; /* threshold for free tx buffer if available BDs less than this value */ uint16_t tx_free_thresh; /* * For better performance in tx datapath, releasing mbuf in batches is * required. * Only checking the VLD bit of the last descriptor in a batch of the * thresh descriptors does not mean that these descriptors are all sent * by hardware successfully. So we need to check that the VLD bits of * all descriptors are cleared. and then free all mbufs in the batch. * - tx_rs_thresh * Number of mbufs released at a time. * * - free * Tx mbuf free array used for preserving temporarily address of mbuf * released back to mempool, when releasing mbuf in batches. */ uint16_t tx_rs_thresh; struct rte_mbuf **free; /* * tso mode. * value range: * HNS3_TSO_SW_CAL_PSEUDO_H_CSUM/HNS3_TSO_HW_CAL_PSEUDO_H_CSUM * * - HNS3_TSO_SW_CAL_PSEUDO_H_CSUM * In this mode, because of the hardware constraint, network driver * software need erase the L4 len value of the TCP pseudo header * and recalculate the TCP pseudo header checksum of packets that * need TSO. * * - HNS3_TSO_HW_CAL_PSEUDO_H_CSUM * In this mode, hardware support recalculate the TCP pseudo header * checksum of packets that need TSO, so network driver software * not need to recalculate it. */ uint8_t tso_mode; /* * The minimum length of the packet supported by hardware in the Tx * direction. */ uint32_t min_tx_pkt_len; uint8_t max_non_tso_bd_num; /* max BD number of one non-TSO packet */ bool tx_deferred_start; /* don't start this queue in dev start */ bool configured; /* indicate if tx queue has been configured */ /* * Indicate whether add the vlan_tci of the mbuf to the inner VLAN field * of Tx BD. Because the outer VLAN will always be the PVID when the * PVID is set and for some version of hardware network engine whose * vlan mode is HNS3_SW_SHIFT_AND_DISCARD_MODE, such as kunpeng 920, the * PVID will overwrite the outer VLAN field of Tx BD. For the hardware * network engine whose vlan mode is HNS3_HW_SHIFT_AND_DISCARD_MODE, * such as kunpeng 930, if the PVID is set, the hardware will shift the * VLAN field automatically. So, PMD driver does not need to do * PVID-related operations in Tx. And pvid_sw_shift_en will be false at * this point. */ bool pvid_sw_shift_en; bool enabled; /* indicate if Tx queue has been enabled */ struct hns3_tx_basic_stats basic_stats; struct hns3_tx_dfx_stats dfx_stats; }; #define HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) \ ((txq)->nb_tx_desc - 1 - (txq)->tx_bd_ready) struct hns3_queue_info { const char *type; /* point to queue memory name */ const char *ring_name; /* point to hardware ring name */ uint16_t idx; uint16_t nb_desc; unsigned int socket_id; }; #define HNS3_TX_CKSUM_OFFLOAD_MASK ( \ PKT_TX_OUTER_IP_CKSUM | \ PKT_TX_IP_CKSUM | \ PKT_TX_TCP_SEG | \ PKT_TX_L4_MASK) enum hns3_cksum_status { HNS3_CKSUM_NONE = 0, HNS3_L3_CKSUM_ERR = 1, HNS3_L4_CKSUM_ERR = 2, HNS3_OUTER_L3_CKSUM_ERR = 4, HNS3_OUTER_L4_CKSUM_ERR = 8 }; static inline int hns3_handle_bdinfo(struct hns3_rx_queue *rxq, struct rte_mbuf *rxm, uint32_t bd_base_info, uint32_t l234_info, uint32_t *cksum_err) { #define L2E_TRUNC_ERR_FLAG (BIT(HNS3_RXD_L2E_B) | \ BIT(HNS3_RXD_TRUNCATE_B)) #define CHECKSUM_ERR_FLAG (BIT(HNS3_RXD_L3E_B) | \ BIT(HNS3_RXD_L4E_B) | \ BIT(HNS3_RXD_OL3E_B) | \ BIT(HNS3_RXD_OL4E_B)) uint32_t tmp = 0; /* * If packet len bigger than mtu when recv with no-scattered algorithm, * the first n bd will without FE bit, we need process this sisution. * Note: we don't need add statistic counter because latest BD which * with FE bit will mark HNS3_RXD_L2E_B bit. */ if (unlikely((bd_base_info & BIT(HNS3_RXD_FE_B)) == 0)) return -EINVAL; if (unlikely((l234_info & L2E_TRUNC_ERR_FLAG) || rxm->pkt_len == 0)) { if (l234_info & BIT(HNS3_RXD_L2E_B)) rxq->err_stats.l2_errors++; else rxq->err_stats.pkt_len_errors++; return -EINVAL; } if (bd_base_info & BIT(HNS3_RXD_L3L4P_B)) { if (likely((l234_info & CHECKSUM_ERR_FLAG) == 0)) { *cksum_err = 0; return 0; } if (unlikely(l234_info & BIT(HNS3_RXD_L3E_B))) { rxm->ol_flags |= PKT_RX_IP_CKSUM_BAD; rxq->dfx_stats.l3_csum_errors++; tmp |= HNS3_L3_CKSUM_ERR; } if (unlikely(l234_info & BIT(HNS3_RXD_L4E_B))) { rxm->ol_flags |= PKT_RX_L4_CKSUM_BAD; rxq->dfx_stats.l4_csum_errors++; tmp |= HNS3_L4_CKSUM_ERR; } if (unlikely(l234_info & BIT(HNS3_RXD_OL3E_B))) { rxq->dfx_stats.ol3_csum_errors++; tmp |= HNS3_OUTER_L3_CKSUM_ERR; } if (unlikely(l234_info & BIT(HNS3_RXD_OL4E_B))) { rxm->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD; rxq->dfx_stats.ol4_csum_errors++; tmp |= HNS3_OUTER_L4_CKSUM_ERR; } } *cksum_err = tmp; return 0; } static inline void hns3_rx_set_cksum_flag(struct rte_mbuf *rxm, const uint64_t packet_type, const uint32_t cksum_err) { if (unlikely((packet_type & RTE_PTYPE_TUNNEL_MASK))) { if (likely(packet_type & RTE_PTYPE_INNER_L3_MASK) && (cksum_err & HNS3_L3_CKSUM_ERR) == 0) rxm->ol_flags |= PKT_RX_IP_CKSUM_GOOD; if (likely(packet_type & RTE_PTYPE_INNER_L4_MASK) && (cksum_err & HNS3_L4_CKSUM_ERR) == 0) rxm->ol_flags |= PKT_RX_L4_CKSUM_GOOD; if (likely(packet_type & RTE_PTYPE_L4_MASK) && (cksum_err & HNS3_OUTER_L4_CKSUM_ERR) == 0) rxm->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD; } else { if (likely(packet_type & RTE_PTYPE_L3_MASK) && (cksum_err & HNS3_L3_CKSUM_ERR) == 0) rxm->ol_flags |= PKT_RX_IP_CKSUM_GOOD; if (likely(packet_type & RTE_PTYPE_L4_MASK) && (cksum_err & HNS3_L4_CKSUM_ERR) == 0) rxm->ol_flags |= PKT_RX_L4_CKSUM_GOOD; } } static inline uint32_t hns3_rx_calc_ptype(struct hns3_rx_queue *rxq, const uint32_t l234_info, const uint32_t ol_info) { const struct hns3_ptype_table * const ptype_tbl = rxq->ptype_tbl; uint32_t l2id, l3id, l4id; uint32_t ol3id, ol4id, ol2id; ol4id = hns3_get_field(ol_info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S); ol3id = hns3_get_field(ol_info, HNS3_RXD_OL3ID_M, HNS3_RXD_OL3ID_S); ol2id = hns3_get_field(ol_info, HNS3_RXD_OVLAN_M, HNS3_RXD_OVLAN_S); l2id = hns3_get_field(l234_info, HNS3_RXD_VLAN_M, HNS3_RXD_VLAN_S); l3id = hns3_get_field(l234_info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); l4id = hns3_get_field(l234_info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S); if (unlikely(ptype_tbl->ol4table[ol4id])) return ptype_tbl->inner_l2table[l2id] | ptype_tbl->inner_l3table[l3id] | ptype_tbl->inner_l4table[l4id] | ptype_tbl->ol3table[ol3id] | ptype_tbl->ol4table[ol4id] | ptype_tbl->ol2table[ol2id]; else return ptype_tbl->l2l3table[l2id][l3id] | ptype_tbl->l4table[l4id]; } void hns3_dev_rx_queue_release(void *queue); void hns3_dev_tx_queue_release(void *queue); void hns3_free_all_queues(struct rte_eth_dev *dev); int hns3_reset_all_tqps(struct hns3_adapter *hns); void hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en); int hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); int hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); void hns3_enable_all_queues(struct hns3_hw *hw, bool en); int hns3_init_queues(struct hns3_adapter *hns, bool reset_queue); void hns3_start_tqps(struct hns3_hw *hw); void hns3_stop_tqps(struct hns3_hw *hw); int hns3_rxq_iterate(struct rte_eth_dev *dev, int (*callback)(struct hns3_rx_queue *, void *), void *arg); void hns3_dev_release_mbufs(struct hns3_adapter *hns); int hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp); int hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket, const struct rte_eth_txconf *conf); uint32_t hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id); int hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id); int hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id); int hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id); int hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id); uint16_t hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t hns3_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t hns3_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t hns3_recv_pkts_vec_sve(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); int hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode); int hns3_rx_check_vec_support(struct rte_eth_dev *dev); uint16_t hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t hns3_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t hns3_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t hns3_xmit_pkts_vec_sve(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); int hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode); const uint32_t *hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev); void hns3_init_rx_ptype_tble(struct rte_eth_dev *dev); void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev); uint32_t hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id); void hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id, uint8_t gl_idx, uint16_t gl_value); void hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value); void hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value); int hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q, uint16_t nb_tx_q); int hns3_config_gro(struct hns3_hw *hw, bool en); int hns3_restore_gro_conf(struct hns3_hw *hw); void hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw); void hns3_rx_scattered_reset(struct rte_eth_dev *dev); void hns3_rx_scattered_calc(struct rte_eth_dev *dev); int hns3_rx_check_vec_support(struct rte_eth_dev *dev); int hns3_tx_check_vec_support(struct rte_eth_dev *dev); void hns3_rxq_vec_setup(struct hns3_rx_queue *rxq); void hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo); void hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo); uint32_t hns3_get_tqp_reg_offset(uint16_t idx); int hns3_start_all_txqs(struct rte_eth_dev *dev); int hns3_start_all_rxqs(struct rte_eth_dev *dev); void hns3_stop_all_txqs(struct rte_eth_dev *dev); void hns3_restore_tqp_enable_state(struct hns3_hw *hw); #endif /* _HNS3_RXTX_H_ */