/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "test.h" #include "test_ring.h" /* * Ring * ==== * * #. Functional tests. Tests single/bulk/burst, default/SPSC/MPMC, * legacy/custom element size (4B, 8B, 16B, 20B) APIs. * Some tests incorporate unaligned addresses for objects. * The enqueued/dequeued data is validated for correctness. * * #. Performance tests are in test_ring_perf.c */ #define RING_SIZE 4096 #define MAX_BULK 32 #define TEST_RING_VERIFY(exp) \ if (!(exp)) { \ printf("error at %s:%d\tcondition " #exp " failed\n", \ __func__, __LINE__); \ rte_ring_dump(stdout, r); \ return -1; \ } #define TEST_RING_FULL_EMTPY_ITER 8 static const int esize[] = {-1, 4, 8, 16, 20}; static const struct { const char *desc; uint32_t api_type; uint32_t create_flags; struct { unsigned int (*flegacy)(struct rte_ring *r, void * const *obj_table, unsigned int n, unsigned int *free_space); unsigned int (*felem)(struct rte_ring *r, const void *obj_table, unsigned int esize, unsigned int n, unsigned int *free_space); } enq; struct { unsigned int (*flegacy)(struct rte_ring *r, void **obj_table, unsigned int n, unsigned int *available); unsigned int (*felem)(struct rte_ring *r, void *obj_table, unsigned int esize, unsigned int n, unsigned int *available); } deq; } test_enqdeq_impl[] = { { .desc = "MP/MC sync mode", .api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF, .create_flags = 0, .enq = { .flegacy = rte_ring_enqueue_bulk, .felem = rte_ring_enqueue_bulk_elem, }, .deq = { .flegacy = rte_ring_dequeue_bulk, .felem = rte_ring_dequeue_bulk_elem, }, }, { .desc = "SP/SC sync mode", .api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_SPSC, .create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ, .enq = { .flegacy = rte_ring_sp_enqueue_bulk, .felem = rte_ring_sp_enqueue_bulk_elem, }, .deq = { .flegacy = rte_ring_sc_dequeue_bulk, .felem = rte_ring_sc_dequeue_bulk_elem, }, }, { .desc = "MP/MC sync mode", .api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_MPMC, .create_flags = 0, .enq = { .flegacy = rte_ring_mp_enqueue_bulk, .felem = rte_ring_mp_enqueue_bulk_elem, }, .deq = { .flegacy = rte_ring_mc_dequeue_bulk, .felem = rte_ring_mc_dequeue_bulk_elem, }, }, { .desc = "MP_RTS/MC_RTS sync mode", .api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF, .create_flags = RING_F_MP_RTS_ENQ | RING_F_MC_RTS_DEQ, .enq = { .flegacy = rte_ring_enqueue_bulk, .felem = rte_ring_enqueue_bulk_elem, }, .deq = { .flegacy = rte_ring_dequeue_bulk, .felem = rte_ring_dequeue_bulk_elem, }, }, { .desc = "MP_HTS/MC_HTS sync mode", .api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF, .create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ, .enq = { .flegacy = rte_ring_enqueue_bulk, .felem = rte_ring_enqueue_bulk_elem, }, .deq = { .flegacy = rte_ring_dequeue_bulk, .felem = rte_ring_dequeue_bulk_elem, }, }, { .desc = "MP/MC sync mode", .api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF, .create_flags = 0, .enq = { .flegacy = rte_ring_enqueue_burst, .felem = rte_ring_enqueue_burst_elem, }, .deq = { .flegacy = rte_ring_dequeue_burst, .felem = rte_ring_dequeue_burst_elem, }, }, { .desc = "SP/SC sync mode", .api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_SPSC, .create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ, .enq = { .flegacy = rte_ring_sp_enqueue_burst, .felem = rte_ring_sp_enqueue_burst_elem, }, .deq = { .flegacy = rte_ring_sc_dequeue_burst, .felem = rte_ring_sc_dequeue_burst_elem, }, }, { .desc = "MP/MC sync mode", .api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_MPMC, .create_flags = 0, .enq = { .flegacy = rte_ring_mp_enqueue_burst, .felem = rte_ring_mp_enqueue_burst_elem, }, .deq = { .flegacy = rte_ring_mc_dequeue_burst, .felem = rte_ring_mc_dequeue_burst_elem, }, }, { .desc = "MP_RTS/MC_RTS sync mode", .api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF, .create_flags = RING_F_MP_RTS_ENQ | RING_F_MC_RTS_DEQ, .enq = { .flegacy = rte_ring_enqueue_burst, .felem = rte_ring_enqueue_burst_elem, }, .deq = { .flegacy = rte_ring_dequeue_burst, .felem = rte_ring_dequeue_burst_elem, }, }, { .desc = "MP_HTS/MC_HTS sync mode", .api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF, .create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ, .enq = { .flegacy = rte_ring_enqueue_burst, .felem = rte_ring_enqueue_burst_elem, }, .deq = { .flegacy = rte_ring_dequeue_burst, .felem = rte_ring_dequeue_burst_elem, }, }, }; static unsigned int test_ring_enq_impl(struct rte_ring *r, void **obj, int esize, unsigned int n, unsigned int test_idx) { if (esize == -1) return test_enqdeq_impl[test_idx].enq.flegacy(r, obj, n, NULL); else return test_enqdeq_impl[test_idx].enq.felem(r, obj, esize, n, NULL); } static unsigned int test_ring_deq_impl(struct rte_ring *r, void **obj, int esize, unsigned int n, unsigned int test_idx) { if (esize == -1) return test_enqdeq_impl[test_idx].deq.flegacy(r, obj, n, NULL); else return test_enqdeq_impl[test_idx].deq.felem(r, obj, esize, n, NULL); } static void** test_ring_inc_ptr(void **obj, int esize, unsigned int n) { /* Legacy queue APIs? */ if ((esize) == -1) return ((void **)obj) + n; else return (void **)(((uint32_t *)obj) + (n * esize / sizeof(uint32_t))); } static void test_ring_mem_init(void *obj, unsigned int count, int esize) { unsigned int i; /* Legacy queue APIs? */ if (esize == -1) for (i = 0; i < count; i++) ((void **)obj)[i] = (void *)(unsigned long)i; else for (i = 0; i < (count * esize / sizeof(uint32_t)); i++) ((uint32_t *)obj)[i] = i; } static void test_ring_print_test_string(const char *istr, unsigned int api_type, int esize) { printf("\n%s: ", istr); if (esize == -1) printf("legacy APIs: "); else printf("elem APIs: element size %dB ", esize); if (api_type == TEST_RING_IGNORE_API_TYPE) return; if (api_type & TEST_RING_THREAD_DEF) printf(": default enqueue/dequeue: "); else if (api_type & TEST_RING_THREAD_SPSC) printf(": SP/SC: "); else if (api_type & TEST_RING_THREAD_MPMC) printf(": MP/MC: "); if (api_type & TEST_RING_ELEM_SINGLE) printf("single\n"); else if (api_type & TEST_RING_ELEM_BULK) printf("bulk\n"); else if (api_type & TEST_RING_ELEM_BURST) printf("burst\n"); } /* * Various negative test cases. */ static int test_ring_negative_tests(void) { struct rte_ring *rp = NULL; struct rte_ring *rt = NULL; unsigned int i; /* Test with esize not a multiple of 4 */ rp = test_ring_create("test_bad_element_size", 23, RING_SIZE + 1, SOCKET_ID_ANY, 0); if (rp != NULL) { printf("Test failed to detect invalid element size\n"); goto test_fail; } for (i = 0; i < RTE_DIM(esize); i++) { /* Test if ring size is not power of 2 */ rp = test_ring_create("test_bad_ring_size", esize[i], RING_SIZE + 1, SOCKET_ID_ANY, 0); if (rp != NULL) { printf("Test failed to detect odd count\n"); goto test_fail; } /* Test if ring size is exceeding the limit */ rp = test_ring_create("test_bad_ring_size", esize[i], RTE_RING_SZ_MASK + 1, SOCKET_ID_ANY, 0); if (rp != NULL) { printf("Test failed to detect limits\n"); goto test_fail; } /* Tests if lookup returns NULL on non-existing ring */ rp = rte_ring_lookup("ring_not_found"); if (rp != NULL && rte_errno != ENOENT) { printf("Test failed to detect NULL ring lookup\n"); goto test_fail; } /* Test to if a non-power of 2 count causes the create * function to fail correctly */ rp = test_ring_create("test_ring_count", esize[i], 4097, SOCKET_ID_ANY, 0); if (rp != NULL) goto test_fail; rp = test_ring_create("test_ring_negative", esize[i], RING_SIZE, SOCKET_ID_ANY, RING_F_SP_ENQ | RING_F_SC_DEQ); if (rp == NULL) { printf("test_ring_negative fail to create ring\n"); goto test_fail; } if (rte_ring_lookup("test_ring_negative") != rp) goto test_fail; if (rte_ring_empty(rp) != 1) { printf("test_ring_nagative ring is not empty but it should be\n"); goto test_fail; } /* Tests if it would always fail to create ring with an used * ring name. */ rt = test_ring_create("test_ring_negative", esize[i], RING_SIZE, SOCKET_ID_ANY, 0); if (rt != NULL) goto test_fail; rte_ring_free(rp); rp = NULL; } return 0; test_fail: rte_ring_free(rp); return -1; } /* * Burst and bulk operations with sp/sc, mp/mc and default (during creation) * Random number of elements are enqueued and dequeued. */ static int test_ring_burst_bulk_tests1(unsigned int test_idx) { struct rte_ring *r; void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL; int ret; unsigned int i, j; int rand; const unsigned int rsz = RING_SIZE - 1; for (i = 0; i < RTE_DIM(esize); i++) { test_ring_print_test_string(test_enqdeq_impl[test_idx].desc, test_enqdeq_impl[test_idx].api_type, esize[i]); /* Create the ring */ r = test_ring_create("test_ring_burst_bulk_tests", esize[i], RING_SIZE, SOCKET_ID_ANY, test_enqdeq_impl[test_idx].create_flags); /* alloc dummy object pointers */ src = test_ring_calloc(RING_SIZE * 2, esize[i]); if (src == NULL) goto fail; test_ring_mem_init(src, RING_SIZE * 2, esize[i]); cur_src = src; /* alloc some room for copied objects */ dst = test_ring_calloc(RING_SIZE * 2, esize[i]); if (dst == NULL) goto fail; cur_dst = dst; printf("Random full/empty test\n"); for (j = 0; j != TEST_RING_FULL_EMTPY_ITER; j++) { /* random shift in the ring */ rand = RTE_MAX(rte_rand() % RING_SIZE, 1UL); printf("%s: iteration %u, random shift: %u;\n", __func__, i, rand); ret = test_ring_enq_impl(r, cur_src, esize[i], rand, test_idx); TEST_RING_VERIFY(ret != 0); ret = test_ring_deq_impl(r, cur_dst, esize[i], rand, test_idx); TEST_RING_VERIFY(ret == rand); /* fill the ring */ ret = test_ring_enq_impl(r, cur_src, esize[i], rsz, test_idx); TEST_RING_VERIFY(ret != 0); TEST_RING_VERIFY(rte_ring_free_count(r) == 0); TEST_RING_VERIFY(rsz == rte_ring_count(r)); TEST_RING_VERIFY(rte_ring_full(r)); TEST_RING_VERIFY(rte_ring_empty(r) == 0); /* empty the ring */ ret = test_ring_deq_impl(r, cur_dst, esize[i], rsz, test_idx); TEST_RING_VERIFY(ret == (int)rsz); TEST_RING_VERIFY(rsz == rte_ring_free_count(r)); TEST_RING_VERIFY(rte_ring_count(r) == 0); TEST_RING_VERIFY(rte_ring_full(r) == 0); TEST_RING_VERIFY(rte_ring_empty(r)); /* check data */ TEST_RING_VERIFY(memcmp(src, dst, rsz) == 0); } /* Free memory before test completed */ rte_ring_free(r); rte_free(src); rte_free(dst); r = NULL; src = NULL; dst = NULL; } return 0; fail: rte_ring_free(r); rte_free(src); rte_free(dst); return -1; } /* * Burst and bulk operations with sp/sc, mp/mc and default (during creation) * Sequence of simple enqueues/dequeues and validate the enqueued and * dequeued data. */ static int test_ring_burst_bulk_tests2(unsigned int test_idx) { struct rte_ring *r; void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL; int ret; unsigned int i; for (i = 0; i < RTE_DIM(esize); i++) { test_ring_print_test_string(test_enqdeq_impl[test_idx].desc, test_enqdeq_impl[test_idx].api_type, esize[i]); /* Create the ring */ r = test_ring_create("test_ring_burst_bulk_tests", esize[i], RING_SIZE, SOCKET_ID_ANY, test_enqdeq_impl[test_idx].create_flags); /* alloc dummy object pointers */ src = test_ring_calloc(RING_SIZE * 2, esize[i]); if (src == NULL) goto fail; test_ring_mem_init(src, RING_SIZE * 2, esize[i]); cur_src = src; /* alloc some room for copied objects */ dst = test_ring_calloc(RING_SIZE * 2, esize[i]); if (dst == NULL) goto fail; cur_dst = dst; printf("enqueue 1 obj\n"); ret = test_ring_enq_impl(r, cur_src, esize[i], 1, test_idx); if (ret != 1) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], 1); printf("enqueue 2 objs\n"); ret = test_ring_enq_impl(r, cur_src, esize[i], 2, test_idx); if (ret != 2) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], 2); printf("enqueue MAX_BULK objs\n"); ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], MAX_BULK); printf("dequeue 1 obj\n"); ret = test_ring_deq_impl(r, cur_dst, esize[i], 1, test_idx); if (ret != 1) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 1); printf("dequeue 2 objs\n"); ret = test_ring_deq_impl(r, cur_dst, esize[i], 2, test_idx); if (ret != 2) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2); printf("dequeue MAX_BULK objs\n"); ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK); /* check data */ if (memcmp(src, dst, cur_dst - dst)) { rte_hexdump(stdout, "src", src, cur_src - src); rte_hexdump(stdout, "dst", dst, cur_dst - dst); printf("data after dequeue is not the same\n"); goto fail; } /* Free memory before test completed */ rte_ring_free(r); rte_free(src); rte_free(dst); r = NULL; src = NULL; dst = NULL; } return 0; fail: rte_ring_free(r); rte_free(src); rte_free(dst); return -1; } /* * Burst and bulk operations with sp/sc, mp/mc and default (during creation) * Enqueue and dequeue to cover the entire ring length. */ static int test_ring_burst_bulk_tests3(unsigned int test_idx) { struct rte_ring *r; void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL; int ret; unsigned int i, j; for (i = 0; i < RTE_DIM(esize); i++) { test_ring_print_test_string(test_enqdeq_impl[test_idx].desc, test_enqdeq_impl[test_idx].api_type, esize[i]); /* Create the ring */ r = test_ring_create("test_ring_burst_bulk_tests", esize[i], RING_SIZE, SOCKET_ID_ANY, test_enqdeq_impl[test_idx].create_flags); /* alloc dummy object pointers */ src = test_ring_calloc(RING_SIZE * 2, esize[i]); if (src == NULL) goto fail; test_ring_mem_init(src, RING_SIZE * 2, esize[i]); cur_src = src; /* alloc some room for copied objects */ dst = test_ring_calloc(RING_SIZE * 2, esize[i]); if (dst == NULL) goto fail; cur_dst = dst; printf("fill and empty the ring\n"); for (j = 0; j < RING_SIZE / MAX_BULK; j++) { ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], MAX_BULK); ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK); } /* check data */ if (memcmp(src, dst, cur_dst - dst)) { rte_hexdump(stdout, "src", src, cur_src - src); rte_hexdump(stdout, "dst", dst, cur_dst - dst); printf("data after dequeue is not the same\n"); goto fail; } /* Free memory before test completed */ rte_ring_free(r); rte_free(src); rte_free(dst); r = NULL; src = NULL; dst = NULL; } return 0; fail: rte_ring_free(r); rte_free(src); rte_free(dst); return -1; } /* * Burst and bulk operations with sp/sc, mp/mc and default (during creation) * Enqueue till the ring is full and dequeue till the ring becomes empty. */ static int test_ring_burst_bulk_tests4(unsigned int test_idx) { struct rte_ring *r; void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL; int ret; unsigned int i, j; unsigned int api_type, num_elems; api_type = test_enqdeq_impl[test_idx].api_type; for (i = 0; i < RTE_DIM(esize); i++) { test_ring_print_test_string(test_enqdeq_impl[test_idx].desc, test_enqdeq_impl[test_idx].api_type, esize[i]); /* Create the ring */ r = test_ring_create("test_ring_burst_bulk_tests", esize[i], RING_SIZE, SOCKET_ID_ANY, test_enqdeq_impl[test_idx].create_flags); /* alloc dummy object pointers */ src = test_ring_calloc(RING_SIZE * 2, esize[i]); if (src == NULL) goto fail; test_ring_mem_init(src, RING_SIZE * 2, esize[i]); cur_src = src; /* alloc some room for copied objects */ dst = test_ring_calloc(RING_SIZE * 2, esize[i]); if (dst == NULL) goto fail; cur_dst = dst; printf("Test enqueue without enough memory space\n"); for (j = 0; j < (RING_SIZE/MAX_BULK - 1); j++) { ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], MAX_BULK); } printf("Enqueue 2 objects, free entries = MAX_BULK - 2\n"); ret = test_ring_enq_impl(r, cur_src, esize[i], 2, test_idx); if (ret != 2) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], 2); printf("Enqueue the remaining entries = MAX_BULK - 3\n"); /* Bulk APIs enqueue exact number of elements */ if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK) num_elems = MAX_BULK - 3; else num_elems = MAX_BULK; /* Always one free entry left */ ret = test_ring_enq_impl(r, cur_src, esize[i], num_elems, test_idx); if (ret != MAX_BULK - 3) goto fail; cur_src = test_ring_inc_ptr(cur_src, esize[i], MAX_BULK - 3); printf("Test if ring is full\n"); if (rte_ring_full(r) != 1) goto fail; printf("Test enqueue for a full entry\n"); ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK, test_idx); if (ret != 0) goto fail; printf("Test dequeue without enough objects\n"); for (j = 0; j < RING_SIZE / MAX_BULK - 1; j++) { ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK, test_idx); if (ret != MAX_BULK) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK); } /* Available memory space for the exact MAX_BULK entries */ ret = test_ring_deq_impl(r, cur_dst, esize[i], 2, test_idx); if (ret != 2) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2); /* Bulk APIs enqueue exact number of elements */ if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK) num_elems = MAX_BULK - 3; else num_elems = MAX_BULK; ret = test_ring_deq_impl(r, cur_dst, esize[i], num_elems, test_idx); if (ret != MAX_BULK - 3) goto fail; cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK - 3); printf("Test if ring is empty\n"); /* Check if ring is empty */ if (rte_ring_empty(r) != 1) goto fail; /* check data */ if (memcmp(src, dst, cur_dst - dst)) { rte_hexdump(stdout, "src", src, cur_src - src); rte_hexdump(stdout, "dst", dst, cur_dst - dst); printf("data after dequeue is not the same\n"); goto fail; } /* Free memory before test completed */ rte_ring_free(r); rte_free(src); rte_free(dst); r = NULL; src = NULL; dst = NULL; } return 0; fail: rte_ring_free(r); rte_free(src); rte_free(dst); return -1; } /* * Test default, single element, bulk and burst APIs */ static int test_ring_basic_ex(void) { int ret = -1; unsigned int i, j; struct rte_ring *rp = NULL; void *obj = NULL; for (i = 0; i < RTE_DIM(esize); i++) { obj = test_ring_calloc(RING_SIZE, esize[i]); if (obj == NULL) { printf("%s: failed to alloc memory\n", __func__); goto fail_test; } rp = test_ring_create("test_ring_basic_ex", esize[i], RING_SIZE, SOCKET_ID_ANY, RING_F_SP_ENQ | RING_F_SC_DEQ); if (rp == NULL) { printf("%s: failed to create ring\n", __func__); goto fail_test; } if (rte_ring_lookup("test_ring_basic_ex") != rp) { printf("%s: failed to find ring\n", __func__); goto fail_test; } if (rte_ring_empty(rp) != 1) { printf("%s: ring is not empty but it should be\n", __func__); goto fail_test; } printf("%u ring entries are now free\n", rte_ring_free_count(rp)); for (j = 0; j < RING_SIZE; j++) { test_ring_enqueue(rp, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); } if (rte_ring_full(rp) != 1) { printf("%s: ring is not full but it should be\n", __func__); goto fail_test; } for (j = 0; j < RING_SIZE; j++) { test_ring_dequeue(rp, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); } if (rte_ring_empty(rp) != 1) { printf("%s: ring is not empty but it should be\n", __func__); goto fail_test; } /* Following tests use the configured flags to decide * SP/SC or MP/MC. */ /* Covering the ring burst operation */ ret = test_ring_enqueue(rp, obj, esize[i], 2, TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST); if (ret != 2) { printf("%s: rte_ring_enqueue_burst fails\n", __func__); goto fail_test; } ret = test_ring_dequeue(rp, obj, esize[i], 2, TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST); if (ret != 2) { printf("%s: rte_ring_dequeue_burst fails\n", __func__); goto fail_test; } /* Covering the ring bulk operation */ ret = test_ring_enqueue(rp, obj, esize[i], 2, TEST_RING_THREAD_DEF | TEST_RING_ELEM_BULK); if (ret != 2) { printf("%s: rte_ring_enqueue_bulk fails\n", __func__); goto fail_test; } ret = test_ring_dequeue(rp, obj, esize[i], 2, TEST_RING_THREAD_DEF | TEST_RING_ELEM_BULK); if (ret != 2) { printf("%s: rte_ring_dequeue_bulk fails\n", __func__); goto fail_test; } rte_ring_free(rp); rte_free(obj); rp = NULL; obj = NULL; } return 0; fail_test: rte_ring_free(rp); if (obj != NULL) rte_free(obj); return -1; } /* * Basic test cases with exact size ring. */ static int test_ring_with_exact_size(void) { struct rte_ring *std_r = NULL, *exact_sz_r = NULL; void *obj_orig; void *obj; const unsigned int ring_sz = 16; unsigned int i, j; int ret = -1; for (i = 0; i < RTE_DIM(esize); i++) { test_ring_print_test_string("Test exact size ring", TEST_RING_IGNORE_API_TYPE, esize[i]); /* alloc object pointers. Allocate one extra object * and create an unaligned address. */ obj_orig = test_ring_calloc(17, esize[i]); if (obj_orig == NULL) goto test_fail; obj = ((char *)obj_orig) + 1; std_r = test_ring_create("std", esize[i], ring_sz, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ); if (std_r == NULL) { printf("%s: error, can't create std ring\n", __func__); goto test_fail; } exact_sz_r = test_ring_create("exact sz", esize[i], ring_sz, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ | RING_F_EXACT_SZ); if (exact_sz_r == NULL) { printf("%s: error, can't create exact size ring\n", __func__); goto test_fail; } /* * Check that the exact size ring is bigger than the * standard ring */ if (rte_ring_get_size(std_r) >= rte_ring_get_size(exact_sz_r)) { printf("%s: error, std ring (size: %u) is not smaller than exact size one (size %u)\n", __func__, rte_ring_get_size(std_r), rte_ring_get_size(exact_sz_r)); goto test_fail; } /* * check that the exact_sz_ring can hold one more element * than the standard ring. (16 vs 15 elements) */ for (j = 0; j < ring_sz - 1; j++) { test_ring_enqueue(std_r, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); test_ring_enqueue(exact_sz_r, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); } ret = test_ring_enqueue(std_r, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); if (ret != -ENOBUFS) { printf("%s: error, unexpected successful enqueue\n", __func__); goto test_fail; } ret = test_ring_enqueue(exact_sz_r, obj, esize[i], 1, TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE); if (ret == -ENOBUFS) { printf("%s: error, enqueue failed\n", __func__); goto test_fail; } /* check that dequeue returns the expected number of elements */ ret = test_ring_dequeue(exact_sz_r, obj, esize[i], ring_sz, TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST); if (ret != (int)ring_sz) { printf("%s: error, failed to dequeue expected nb of elements\n", __func__); goto test_fail; } /* check that the capacity function returns expected value */ if (rte_ring_get_capacity(exact_sz_r) != ring_sz) { printf("%s: error, incorrect ring capacity reported\n", __func__); goto test_fail; } rte_free(obj_orig); rte_ring_free(std_r); rte_ring_free(exact_sz_r); obj_orig = NULL; std_r = NULL; exact_sz_r = NULL; } return 0; test_fail: rte_free(obj_orig); rte_ring_free(std_r); rte_ring_free(exact_sz_r); return -1; } static int test_ring(void) { int32_t rc; unsigned int i; /* Negative test cases */ if (test_ring_negative_tests() < 0) goto test_fail; /* Some basic operations */ if (test_ring_basic_ex() < 0) goto test_fail; if (test_ring_with_exact_size() < 0) goto test_fail; /* Burst and bulk operations with sp/sc, mp/mc and default. * The test cases are split into smaller test cases to * help clang compile faster. */ for (i = 0; i != RTE_DIM(test_enqdeq_impl); i++) { rc = test_ring_burst_bulk_tests1(i); if (rc < 0) goto test_fail; rc = test_ring_burst_bulk_tests2(i); if (rc < 0) goto test_fail; rc = test_ring_burst_bulk_tests3(i); if (rc < 0) goto test_fail; rc = test_ring_burst_bulk_tests4(i); if (rc < 0) goto test_fail; } /* dump the ring status */ rte_ring_list_dump(stdout); return 0; test_fail: return -1; } REGISTER_TEST_COMMAND(ring_autotest, test_ring);