/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 6WIND S.A. */ #ifndef _RTE_NET_PTYPE_H_ #define _RTE_NET_PTYPE_H_ #ifdef __cplusplus extern "C" { #endif #include #include #include #include /** * Structure containing header lengths associated to a packet, filled * by rte_net_get_ptype(). */ struct rte_net_hdr_lens { uint8_t l2_len; uint8_t inner_l2_len; uint16_t l3_len; uint16_t inner_l3_len; uint16_t tunnel_len; uint8_t l4_len; uint8_t inner_l4_len; }; /** * Skip IPv6 header extensions. * * This function skips all IPv6 extensions, returning size of * complete header including options and final protocol value. * * @warning * @b EXPERIMENTAL: this API may change without prior notice * * @param proto * Protocol field of IPv6 header. * @param m * The packet mbuf to be parsed. * @param off * On input, must contain the offset to the first byte following * IPv6 header, on output, contains offset to the first byte * of next layer (after any IPv6 extension header) * @param frag * Contains 1 in output if packet is an IPv6 fragment. * @return * Protocol that follows IPv6 header. * -1 if an error occurs during mbuf parsing. */ __rte_experimental int rte_net_skip_ip6_ext(uint16_t proto, const struct rte_mbuf *m, uint32_t *off, int *frag); /** * Parse an Ethernet packet to get its packet type. * * This function parses the network headers in mbuf data and return its * packet type. * * If it is provided by the user, it also fills a rte_net_hdr_lens * structure that contains the lengths of the parsed network * headers. Each length field is valid only if the associated packet * type is set. For instance, hdr_lens->l2_len is valid only if * (retval & RTE_PTYPE_L2_MASK) != RTE_PTYPE_UNKNOWN. * * Supported packet types are: * L2: Ether, Vlan, QinQ * L3: IPv4, IPv6 * L4: TCP, UDP, SCTP * Tunnels: IPv4, IPv6, Gre, Nvgre * * @param m * The packet mbuf to be parsed. * @param hdr_lens * A pointer to a structure where the header lengths will be returned, * or NULL. * @param layers * List of layers to parse. The function will stop at the first * empty layer. Examples: * - To parse all known layers, use RTE_PTYPE_ALL_MASK. * - To parse only L2 and L3, use RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK * @return * The packet type of the packet. */ uint32_t rte_net_get_ptype(const struct rte_mbuf *m, struct rte_net_hdr_lens *hdr_lens, uint32_t layers); /** * Prepare pseudo header checksum * * This function prepares pseudo header checksum for TSO and non-TSO tcp/udp in * provided mbufs packet data and based on the requested offload flags. * * - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set * in packet data, * - for TSO the IP payload length is not included in pseudo header. * * This function expects that used headers are in the first data segment of * mbuf, are not fragmented and can be safely modified. * * @param m * The packet mbuf to be fixed. * @param ol_flags * TX offloads flags to use with this packet. * @return * 0 if checksum is initialized properly */ static inline int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) { /* Initialise ipv4_hdr to avoid false positive compiler warnings. */ struct rte_ipv4_hdr *ipv4_hdr = NULL; struct rte_ipv6_hdr *ipv6_hdr; struct rte_tcp_hdr *tcp_hdr; struct rte_udp_hdr *udp_hdr; uint64_t inner_l3_offset = m->l2_len; /* * Does packet set any of available offloads? * Mainly it is required to avoid fragmented headers check if * no offloads are requested. */ if (!(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK | PKT_TX_TCP_SEG))) return 0; if (ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)) inner_l3_offset += m->outer_l2_len + m->outer_l3_len; /* * Check if headers are fragmented. * The check could be less strict depending on which offloads are * requested and headers to be used, but let's keep it simple. */ if (unlikely(rte_pktmbuf_data_len(m) < inner_l3_offset + m->l3_len + m->l4_len)) return -ENOTSUP; if (ol_flags & PKT_TX_IPV4) { ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, inner_l3_offset); if (ol_flags & PKT_TX_IP_CKSUM) ipv4_hdr->hdr_checksum = 0; } if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM) { if (ol_flags & PKT_TX_IPV4) { udp_hdr = (struct rte_udp_hdr *)((char *)ipv4_hdr + m->l3_len); udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); } else { ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, inner_l3_offset); /* non-TSO udp */ udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, inner_l3_offset + m->l3_len); udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); } } else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM || (ol_flags & PKT_TX_TCP_SEG)) { if (ol_flags & PKT_TX_IPV4) { /* non-TSO tcp or TSO */ tcp_hdr = (struct rte_tcp_hdr *)((char *)ipv4_hdr + m->l3_len); tcp_hdr->cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); } else { ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, inner_l3_offset); /* non-TSO tcp or TSO */ tcp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_tcp_hdr *, inner_l3_offset + m->l3_len); tcp_hdr->cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); } } return 0; } /** * Prepare pseudo header checksum * * This function prepares pseudo header checksum for TSO and non-TSO tcp/udp in * provided mbufs packet data. * * - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set * in packet data, * - for TSO the IP payload length is not included in pseudo header. * * This function expects that used headers are in the first data segment of * mbuf, are not fragmented and can be safely modified. * * @param m * The packet mbuf to be fixed. * @return * 0 if checksum is initialized properly */ static inline int rte_net_intel_cksum_prepare(struct rte_mbuf *m) { return rte_net_intel_cksum_flags_prepare(m, m->ol_flags); } #ifdef __cplusplus } #endif #endif /* _RTE_NET_PTYPE_H_ */