/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015 Intel Corporation */ /* * This application is a simple Layer 2 PTP v2 client. It shows delta values * which are used to synchronize the PHC clock. if the "-T 1" parameter is * passed to the application the Linux kernel clock is also synchronized. */ #include #include #include #include #include #include #include #include #include #include #include #define RX_RING_SIZE 1024 #define TX_RING_SIZE 1024 #define NUM_MBUFS 8191 #define MBUF_CACHE_SIZE 250 /* Values for the PTP messageType field. */ #define SYNC 0x0 #define DELAY_REQ 0x1 #define PDELAY_REQ 0x2 #define PDELAY_RESP 0x3 #define FOLLOW_UP 0x8 #define DELAY_RESP 0x9 #define PDELAY_RESP_FOLLOW_UP 0xA #define ANNOUNCE 0xB #define SIGNALING 0xC #define MANAGEMENT 0xD #define NSEC_PER_SEC 1000000000L #define KERNEL_TIME_ADJUST_LIMIT 20000 #define PTP_PROTOCOL 0x88F7 struct rte_mempool *mbuf_pool; uint32_t ptp_enabled_port_mask; uint8_t ptp_enabled_port_nb; static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS]; static const struct rte_eth_conf port_conf_default = { .rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN, }, }; static const struct rte_ether_addr ether_multicast = { .addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0} }; /* Structs used for PTP handling. */ struct tstamp { uint16_t sec_msb; uint32_t sec_lsb; uint32_t ns; } __attribute__((packed)); struct clock_id { uint8_t id[8]; }; struct port_id { struct clock_id clock_id; uint16_t port_number; } __attribute__((packed)); struct ptp_header { uint8_t msg_type; uint8_t ver; uint16_t message_length; uint8_t domain_number; uint8_t reserved1; uint8_t flag_field[2]; int64_t correction; uint32_t reserved2; struct port_id source_port_id; uint16_t seq_id; uint8_t control; int8_t log_message_interval; } __attribute__((packed)); struct sync_msg { struct ptp_header hdr; struct tstamp origin_tstamp; } __attribute__((packed)); struct follow_up_msg { struct ptp_header hdr; struct tstamp precise_origin_tstamp; uint8_t suffix[0]; } __attribute__((packed)); struct delay_req_msg { struct ptp_header hdr; struct tstamp origin_tstamp; } __attribute__((packed)); struct delay_resp_msg { struct ptp_header hdr; struct tstamp rx_tstamp; struct port_id req_port_id; uint8_t suffix[0]; } __attribute__((packed)); struct ptp_message { union { struct ptp_header header; struct sync_msg sync; struct delay_req_msg delay_req; struct follow_up_msg follow_up; struct delay_resp_msg delay_resp; } __attribute__((packed)); }; struct ptpv2_data_slave_ordinary { struct rte_mbuf *m; struct timespec tstamp1; struct timespec tstamp2; struct timespec tstamp3; struct timespec tstamp4; struct clock_id client_clock_id; struct clock_id master_clock_id; struct timeval new_adj; int64_t delta; uint16_t portid; uint16_t seqID_SYNC; uint16_t seqID_FOLLOWUP; uint8_t ptpset; uint8_t kernel_time_set; uint16_t current_ptp_port; }; static struct ptpv2_data_slave_ordinary ptp_data; static inline uint64_t timespec64_to_ns(const struct timespec *ts) { return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; } static struct timeval ns_to_timeval(int64_t nsec) { struct timespec t_spec = {0, 0}; struct timeval t_eval = {0, 0}; int32_t rem; if (nsec == 0) return t_eval; rem = nsec % NSEC_PER_SEC; t_spec.tv_sec = nsec / NSEC_PER_SEC; if (rem < 0) { t_spec.tv_sec--; rem += NSEC_PER_SEC; } t_spec.tv_nsec = rem; t_eval.tv_sec = t_spec.tv_sec; t_eval.tv_usec = t_spec.tv_nsec / 1000; return t_eval; } /* * Initializes a given port using global settings and with the RX buffers * coming from the mbuf_pool passed as a parameter. */ static inline int port_init(uint16_t port, struct rte_mempool *mbuf_pool) { struct rte_eth_dev_info dev_info; struct rte_eth_conf port_conf = port_conf_default; const uint16_t rx_rings = 1; const uint16_t tx_rings = 1; int retval; uint16_t q; uint16_t nb_rxd = RX_RING_SIZE; uint16_t nb_txd = TX_RING_SIZE; if (!rte_eth_dev_is_valid_port(port)) return -1; rte_eth_dev_info_get(port, &dev_info); if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; /* Force full Tx path in the driver, required for IEEE1588 */ port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; /* Configure the Ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd); if (retval != 0) return retval; /* Allocate and set up 1 RX queue per Ethernet port. */ for (q = 0; q < rx_rings; q++) { retval = rte_eth_rx_queue_setup(port, q, nb_rxd, rte_eth_dev_socket_id(port), NULL, mbuf_pool); if (retval < 0) return retval; } /* Allocate and set up 1 TX queue per Ethernet port. */ for (q = 0; q < tx_rings; q++) { struct rte_eth_txconf *txconf; txconf = &dev_info.default_txconf; txconf->offloads = port_conf.txmode.offloads; retval = rte_eth_tx_queue_setup(port, q, nb_txd, rte_eth_dev_socket_id(port), txconf); if (retval < 0) return retval; } /* Start the Ethernet port. */ retval = rte_eth_dev_start(port); if (retval < 0) return retval; /* Enable timesync timestamping for the Ethernet device */ retval = rte_eth_timesync_enable(port); if (retval < 0) { printf("Timesync enable failed: %d\n", retval); return retval; } /* Enable RX in promiscuous mode for the Ethernet device. */ rte_eth_promiscuous_enable(port); return 0; } static void print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data) { int64_t nsec; struct timespec net_time, sys_time; printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", ptp_data->master_clock_id.id[0], ptp_data->master_clock_id.id[1], ptp_data->master_clock_id.id[2], ptp_data->master_clock_id.id[3], ptp_data->master_clock_id.id[4], ptp_data->master_clock_id.id[5], ptp_data->master_clock_id.id[6], ptp_data->master_clock_id.id[7]); printf("\nT2 - Slave Clock. %lds %ldns", (ptp_data->tstamp2.tv_sec), (ptp_data->tstamp2.tv_nsec)); printf("\nT1 - Master Clock. %lds %ldns ", ptp_data->tstamp1.tv_sec, (ptp_data->tstamp1.tv_nsec)); printf("\nT3 - Slave Clock. %lds %ldns", ptp_data->tstamp3.tv_sec, (ptp_data->tstamp3.tv_nsec)); printf("\nT4 - Master Clock. %lds %ldns ", ptp_data->tstamp4.tv_sec, (ptp_data->tstamp4.tv_nsec)); printf("\nDelta between master and slave clocks:%"PRId64"ns\n", ptp_data->delta); clock_gettime(CLOCK_REALTIME, &sys_time); rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time); time_t ts = net_time.tv_sec; printf("\n\nComparison between Linux kernel Time and PTP:"); printf("\nCurrent PTP Time: %.24s %.9ld ns", ctime(&ts), net_time.tv_nsec); nsec = (int64_t)timespec64_to_ns(&net_time) - (int64_t)timespec64_to_ns(&sys_time); ptp_data->new_adj = ns_to_timeval(nsec); gettimeofday(&ptp_data->new_adj, NULL); time_t tp = ptp_data->new_adj.tv_sec; printf("\nCurrent SYS Time: %.24s %.6ld ns", ctime(&tp), ptp_data->new_adj.tv_usec); printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n", nsec); printf("[Ctrl+C to quit]\n"); /* Clear screen and put cursor in column 1, row 1 */ printf("\033[2J\033[1;1H"); } static int64_t delta_eval(struct ptpv2_data_slave_ordinary *ptp_data) { int64_t delta; uint64_t t1 = 0; uint64_t t2 = 0; uint64_t t3 = 0; uint64_t t4 = 0; t1 = timespec64_to_ns(&ptp_data->tstamp1); t2 = timespec64_to_ns(&ptp_data->tstamp2); t3 = timespec64_to_ns(&ptp_data->tstamp3); t4 = timespec64_to_ns(&ptp_data->tstamp4); delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2; return delta; } /* * Parse the PTP SYNC message. */ static void parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx) { struct ptp_header *ptp_hdr; ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *) + sizeof(struct rte_ether_hdr)); ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id); if (ptp_data->ptpset == 0) { rte_memcpy(&ptp_data->master_clock_id, &ptp_hdr->source_port_id.clock_id, sizeof(struct clock_id)); ptp_data->ptpset = 1; } if (memcmp(&ptp_hdr->source_port_id.clock_id, &ptp_hdr->source_port_id.clock_id, sizeof(struct clock_id)) == 0) { if (ptp_data->ptpset == 1) rte_eth_timesync_read_rx_timestamp(ptp_data->portid, &ptp_data->tstamp2, rx_tstamp_idx); } } /* * Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock. */ static void parse_fup(struct ptpv2_data_slave_ordinary *ptp_data) { struct rte_ether_hdr *eth_hdr; struct ptp_header *ptp_hdr; struct clock_id *client_clkid; struct ptp_message *ptp_msg; struct rte_mbuf *created_pkt; struct tstamp *origin_tstamp; struct rte_ether_addr eth_multicast = ether_multicast; size_t pkt_size; int wait_us; struct rte_mbuf *m = ptp_data->m; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) + sizeof(struct rte_ether_hdr)); if (memcmp(&ptp_data->master_clock_id, &ptp_hdr->source_port_id.clock_id, sizeof(struct clock_id)) != 0) return; ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id); ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + sizeof(struct rte_ether_hdr)); origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp; ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns); ptp_data->tstamp1.tv_sec = ((uint64_t)ntohl(origin_tstamp->sec_lsb)) | (((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32); if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) { created_pkt = rte_pktmbuf_alloc(mbuf_pool); pkt_size = sizeof(struct rte_ether_hdr) + sizeof(struct ptp_message); created_pkt->data_len = pkt_size; created_pkt->pkt_len = pkt_size; eth_hdr = rte_pktmbuf_mtod(created_pkt, struct rte_ether_hdr *); rte_eth_macaddr_get(ptp_data->portid, ð_hdr->s_addr); /* Set multicast address 01-1B-19-00-00-00. */ rte_ether_addr_copy(ð_multicast, ð_hdr->d_addr); eth_hdr->ether_type = htons(PTP_PROTOCOL); ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(created_pkt, char *) + sizeof(struct rte_ether_hdr)); ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC); ptp_msg->delay_req.hdr.msg_type = DELAY_REQ; ptp_msg->delay_req.hdr.ver = 2; ptp_msg->delay_req.hdr.control = 1; ptp_msg->delay_req.hdr.log_message_interval = 127; ptp_msg->delay_req.hdr.message_length = htons(sizeof(struct delay_req_msg)); ptp_msg->delay_req.hdr.domain_number = ptp_hdr->domain_number; /* Set up clock id. */ client_clkid = &ptp_msg->delay_req.hdr.source_port_id.clock_id; client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0]; client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1]; client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2]; client_clkid->id[3] = 0xFF; client_clkid->id[4] = 0xFE; client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3]; client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4]; client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5]; rte_memcpy(&ptp_data->client_clock_id, client_clkid, sizeof(struct clock_id)); /* Enable flag for hardware timestamping. */ created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST; /*Read value from NIC to prevent latching with old value. */ rte_eth_timesync_read_tx_timestamp(ptp_data->portid, &ptp_data->tstamp3); /* Transmit the packet. */ rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1); wait_us = 0; ptp_data->tstamp3.tv_nsec = 0; ptp_data->tstamp3.tv_sec = 0; /* Wait at least 1 us to read TX timestamp. */ while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid, &ptp_data->tstamp3) < 0) && (wait_us < 1000)) { rte_delay_us(1); wait_us++; } } } /* * Update the kernel time with the difference between it and the current NIC * time. */ static inline void update_kernel_time(void) { int64_t nsec; struct timespec net_time, sys_time; clock_gettime(CLOCK_REALTIME, &sys_time); rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time); nsec = (int64_t)timespec64_to_ns(&net_time) - (int64_t)timespec64_to_ns(&sys_time); ptp_data.new_adj = ns_to_timeval(nsec); /* * If difference between kernel time and system time in NIC is too big * (more than +/- 20 microseconds), use clock_settime to set directly * the kernel time, as adjtime is better for small adjustments (takes * longer to adjust the time). */ if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT) clock_settime(CLOCK_REALTIME, &net_time); else adjtime(&ptp_data.new_adj, 0); } /* * Parse the DELAY_RESP message. */ static void parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data) { struct rte_mbuf *m = ptp_data->m; struct ptp_message *ptp_msg; struct tstamp *rx_tstamp; uint16_t seq_id; ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + sizeof(struct rte_ether_hdr)); seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id); if (memcmp(&ptp_data->client_clock_id, &ptp_msg->delay_resp.req_port_id.clock_id, sizeof(struct clock_id)) == 0) { if (seq_id == ptp_data->seqID_FOLLOWUP) { rx_tstamp = &ptp_msg->delay_resp.rx_tstamp; ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns); ptp_data->tstamp4.tv_sec = ((uint64_t)ntohl(rx_tstamp->sec_lsb)) | (((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32); /* Evaluate the delta for adjustment. */ ptp_data->delta = delta_eval(ptp_data); rte_eth_timesync_adjust_time(ptp_data->portid, ptp_data->delta); ptp_data->current_ptp_port = ptp_data->portid; /* Update kernel time if enabled in app parameters. */ if (ptp_data->kernel_time_set == 1) update_kernel_time(); } } } /* This function processes PTP packets, implementing slave PTP IEEE1588 L2 * functionality. */ static void parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) { struct ptp_header *ptp_hdr; struct rte_ether_hdr *eth_hdr; uint16_t eth_type; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); eth_type = rte_be_to_cpu_16(eth_hdr->ether_type); if (eth_type == PTP_PROTOCOL) { ptp_data.m = m; ptp_data.portid = portid; ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) + sizeof(struct rte_ether_hdr)); switch (ptp_hdr->msg_type) { case SYNC: parse_sync(&ptp_data, m->timesync); break; case FOLLOW_UP: parse_fup(&ptp_data); break; case DELAY_RESP: parse_drsp(&ptp_data); print_clock_info(&ptp_data); break; default: break; } } } /* * The lcore main. This is the main thread that does the work, reading from an * input port and writing to an output port. */ static __attribute__((noreturn)) void lcore_main(void) { uint16_t portid; unsigned nb_rx; struct rte_mbuf *m; /* * Check that the port is on the same NUMA node as the polling thread * for best performance. */ printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n", rte_lcore_id()); /* Run until the application is quit or killed. */ while (1) { /* Read packet from RX queues. */ for (portid = 0; portid < ptp_enabled_port_nb; portid++) { portid = ptp_enabled_ports[portid]; nb_rx = rte_eth_rx_burst(portid, 0, &m, 1); if (likely(nb_rx == 0)) continue; if (m->ol_flags & PKT_RX_IEEE1588_PTP) parse_ptp_frames(portid, m); rte_pktmbuf_free(m); } } } static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK -T VALUE\n" " -T VALUE: 0 - Disable, 1 - Enable Linux Clock" " Synchronization (0 default)\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n", prgname); } static int ptp_parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* Parse the hexadecimal string. */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } static int parse_ptp_kernel(const char *param) { char *end = NULL; unsigned long pm; /* Parse the hexadecimal string. */ pm = strtoul(param, &end, 16); if ((param[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return 0; return 1; } /* Parse the commandline arguments. */ static int ptp_parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:T:", lgopts, &option_index)) != EOF) { switch (opt) { /* Portmask. */ case 'p': ptp_enabled_port_mask = ptp_parse_portmask(optarg); if (ptp_enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; /* Time synchronization. */ case 'T': ret = parse_ptp_kernel(optarg); if (ret < 0) { print_usage(prgname); return -1; } ptp_data.kernel_time_set = ret; break; default: print_usage(prgname); return -1; } } argv[optind-1] = prgname; optind = 1; /* Reset getopt lib. */ return 0; } /* * The main function, which does initialization and calls the per-lcore * functions. */ int main(int argc, char *argv[]) { unsigned nb_ports; uint16_t portid; /* Initialize the Environment Abstraction Layer (EAL). */ int ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary)); argc -= ret; argv += ret; ret = ptp_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with PTP initialization\n"); /* Check that there is an even number of ports to send/receive on. */ nb_ports = rte_eth_dev_count_avail(); /* Creates a new mempool in memory to hold the mbufs. */ mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); /* Initialize all ports. */ RTE_ETH_FOREACH_DEV(portid) { if ((ptp_enabled_port_mask & (1 << portid)) != 0) { if (port_init(portid, mbuf_pool) == 0) { ptp_enabled_ports[ptp_enabled_port_nb] = portid; ptp_enabled_port_nb++; } else { rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", portid); } } else printf("Skipping disabled port %u\n", portid); } if (ptp_enabled_port_nb == 0) { rte_exit(EXIT_FAILURE, "All available ports are disabled." " Please set portmask.\n"); } if (rte_lcore_count() > 1) printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); /* Call lcore_main on the master core only. */ lcore_main(); return 0; }