/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* BSD LICENSE * * Copyright(c) 2013 6WIND. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of 6WIND S.A. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #include "eal_internal_cfg.h" #include "eal_filesystem.h" #include "eal_hugepages.h" /** * @file * Huge page mapping under linux * * To reserve a big contiguous amount of memory, we use the hugepage * feature of linux. For that, we need to have hugetlbfs mounted. This * code will create many files in this directory (one per page) and * map them in virtual memory. For each page, we will retrieve its * physical address and remap it in order to have a virtual contiguous * zone as well as a physical contiguous zone. */ static uint64_t baseaddr_offset; #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" /* Lock page in physical memory and prevent from swapping. */ int rte_mem_lock_page(const void *virt) { unsigned long virtual = (unsigned long)virt; int page_size = getpagesize(); unsigned long aligned = (virtual & ~ (page_size - 1)); return mlock((void*)aligned, page_size); } /* * Get physical address of any mapped virtual address in the current process. */ phys_addr_t rte_mem_virt2phy(const void *virtaddr) { int fd; uint64_t page, physaddr; unsigned long virt_pfn; int page_size; off_t offset; /* standard page size */ page_size = getpagesize(); fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", __func__, strerror(errno)); return RTE_BAD_PHYS_ADDR; } virt_pfn = (unsigned long)virtaddr / page_size; offset = sizeof(uint64_t) * virt_pfn; if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); return RTE_BAD_PHYS_ADDR; } if (read(fd, &page, sizeof(uint64_t)) < 0) { RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); return RTE_BAD_PHYS_ADDR; } /* * the pfn (page frame number) are bits 0-54 (see * pagemap.txt in linux Documentation) */ physaddr = ((page & 0x7fffffffffffffULL) * page_size) + ((unsigned long)virtaddr % page_size); close(fd); return physaddr; } /* * For each hugepage in hugepg_tbl, fill the physaddr value. We find * it by browsing the /proc/self/pagemap special file. */ static int find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned i; phys_addr_t addr; for (i = 0; i < hpi->num_pages[0]; i++) { addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); if (addr == RTE_BAD_PHYS_ADDR) return -1; hugepg_tbl[i].physaddr = addr; } return 0; } /* * Check whether address-space layout randomization is enabled in * the kernel. This is important for multi-process as it can prevent * two processes mapping data to the same virtual address * Returns: * 0 - address space randomization disabled * 1/2 - address space randomization enabled * negative error code on error */ static int aslr_enabled(void) { char c; int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY); if (fd < 0) return -errno; retval = read(fd, &c, 1); close(fd); if (retval < 0) return -errno; if (retval == 0) return -EIO; switch (c) { case '0' : return 0; case '1' : return 1; case '2' : return 2; default: return -EINVAL; } } /* * Try to mmap *size bytes in /dev/zero. If it is successful, return the * pointer to the mmap'd area and keep *size unmodified. Else, retry * with a smaller zone: decrease *size by hugepage_sz until it reaches * 0. In this case, return NULL. Note: this function returns an address * which is a multiple of hugepage size. */ static void * get_virtual_area(size_t *size, size_t hugepage_sz) { void *addr; int fd; long aligned_addr; if (internal_config.base_virtaddr != 0) { addr = (void*) (uintptr_t) (internal_config.base_virtaddr + baseaddr_offset); } else addr = NULL; RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); fd = open("/dev/zero", O_RDONLY); if (fd < 0){ RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n"); return NULL; } do { addr = mmap(addr, (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0); if (addr == MAP_FAILED) *size -= hugepage_sz; } while (addr == MAP_FAILED && *size > 0); if (addr == MAP_FAILED) { close(fd); RTE_LOG(INFO, EAL, "Cannot get a virtual area\n"); return NULL; } munmap(addr, (*size) + hugepage_sz); close(fd); /* align addr to a huge page size boundary */ aligned_addr = (long)addr; aligned_addr += (hugepage_sz - 1); aligned_addr &= (~(hugepage_sz - 1)); addr = (void *)(aligned_addr); RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n", addr, *size); /* increment offset */ baseaddr_offset += *size; return addr; } /* * Mmap all hugepages of hugepage table: it first open a file in * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to * map continguous physical blocks in contiguous virtual blocks. */ static int map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, int orig) { int fd; unsigned i; void *virtaddr; void *vma_addr = NULL; size_t vma_len = 0; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS RTE_SET_USED(vma_len); #endif for (i = 0; i < hpi->num_pages[0]; i++) { uint64_t hugepage_sz = hpi->hugepage_sz; if (orig) { hugepg_tbl[i].file_id = i; hugepg_tbl[i].size = hugepage_sz; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS eal_get_hugefile_temp_path(hugepg_tbl[i].filepath, sizeof(hugepg_tbl[i].filepath), hpi->hugedir, hugepg_tbl[i].file_id); #else eal_get_hugefile_path(hugepg_tbl[i].filepath, sizeof(hugepg_tbl[i].filepath), hpi->hugedir, hugepg_tbl[i].file_id); #endif hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0'; } #ifndef RTE_ARCH_64 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse * original map address as final map address. */ else if ((hugepage_sz == RTE_PGSIZE_1G) || (hugepage_sz == RTE_PGSIZE_16G)) { hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; hugepg_tbl[i].orig_va = NULL; continue; } #endif #ifndef RTE_EAL_SINGLE_FILE_SEGMENTS else if (vma_len == 0) { unsigned j, num_pages; /* reserve a virtual area for next contiguous * physical block: count the number of * contiguous physical pages. */ for (j = i+1; j < hpi->num_pages[0] ; j++) { #ifdef RTE_ARCH_PPC_64 /* The physical addresses are sorted in * descending order on PPC64 */ if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr - hugepage_sz) break; #else if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) break; #endif } num_pages = j - i; vma_len = num_pages * hugepage_sz; /* get the biggest virtual memory area up to * vma_len. If it fails, vma_addr is NULL, so * let the kernel provide the address. */ vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); if (vma_addr == NULL) vma_len = hugepage_sz; } #endif /* try to create hugepage file */ fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); return -1; } virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (virtaddr == MAP_FAILED) { RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); close(fd); return -1; } if (orig) { hugepg_tbl[i].orig_va = virtaddr; memset(virtaddr, 0, hugepage_sz); } else { hugepg_tbl[i].final_va = virtaddr; } /* set shared flock on the file. */ if (flock(fd, LOCK_SH | LOCK_NB) == -1) { RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", __func__, strerror(errno)); close(fd); return -1; } close(fd); vma_addr = (char *)vma_addr + hugepage_sz; vma_len -= hugepage_sz; } return 0; } #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS /* * Remaps all hugepages into single file segments */ static int remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { int fd; unsigned i = 0, j, num_pages, page_idx = 0; void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL; size_t vma_len = 0; size_t hugepage_sz = hpi->hugepage_sz; size_t total_size, offset; char filepath[MAX_HUGEPAGE_PATH]; phys_addr_t physaddr; int socket; while (i < hpi->num_pages[0]) { #ifndef RTE_ARCH_64 /* for 32-bit systems, don't remap 1G pages and 16G pages, * just reuse original map address as final map address. */ if ((hugepage_sz == RTE_PGSIZE_1G) || (hugepage_sz == RTE_PGSIZE_16G)) { hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; hugepg_tbl[i].orig_va = NULL; i++; continue; } #endif /* reserve a virtual area for next contiguous * physical block: count the number of * contiguous physical pages. */ for (j = i+1; j < hpi->num_pages[0] ; j++) { #ifdef RTE_ARCH_PPC_64 /* The physical addresses are sorted in descending * order on PPC64 */ if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr - hugepage_sz) break; #else if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) break; #endif } num_pages = j - i; vma_len = num_pages * hugepage_sz; socket = hugepg_tbl[i].socket_id; /* get the biggest virtual memory area up to * vma_len. If it fails, vma_addr is NULL, so * let the kernel provide the address. */ vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); /* If we can't find a big enough virtual area, work out how many pages * we are going to get */ if (vma_addr == NULL) j = i + 1; else if (vma_len != num_pages * hugepage_sz) { num_pages = vma_len / hugepage_sz; j = i + num_pages; } hugepg_tbl[page_idx].file_id = page_idx; eal_get_hugefile_path(filepath, sizeof(filepath), hpi->hugedir, hugepg_tbl[page_idx].file_id); /* try to create hugepage file */ fd = open(filepath, O_CREAT | O_RDWR, 0755); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); return -1; } total_size = 0; for (;i < j; i++) { /* unmap current segment */ if (total_size > 0) munmap(vma_addr, total_size); /* unmap original page */ munmap(hugepg_tbl[i].orig_va, hugepage_sz); unlink(hugepg_tbl[i].filepath); total_size += hugepage_sz; old_addr = vma_addr; /* map new, bigger segment */ vma_addr = mmap(vma_addr, total_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (vma_addr == MAP_FAILED || vma_addr != old_addr) { RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); close(fd); return -1; } /* touch the page. this is needed because kernel postpones mapping * creation until the first page fault. with this, we pin down * the page and it is marked as used and gets into process' pagemap. */ for (offset = 0; offset < total_size; offset += hugepage_sz) *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset)); } /* set shared flock on the file. */ if (flock(fd, LOCK_SH | LOCK_NB) == -1) { RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", __func__, strerror(errno)); close(fd); return -1; } snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s", filepath); physaddr = rte_mem_virt2phy(vma_addr); if (physaddr == RTE_BAD_PHYS_ADDR) return -1; hugepg_tbl[page_idx].final_va = vma_addr; hugepg_tbl[page_idx].physaddr = physaddr; hugepg_tbl[page_idx].repeated = num_pages; hugepg_tbl[page_idx].socket_id = socket; close(fd); /* verify the memory segment - that is, check that every VA corresponds * to the physical address we expect to see */ for (offset = 0; offset < vma_len; offset += hugepage_sz) { uint64_t expected_physaddr; expected_physaddr = hugepg_tbl[page_idx].physaddr + offset; page_addr = RTE_PTR_ADD(vma_addr, offset); physaddr = rte_mem_virt2phy(page_addr); if (physaddr != expected_physaddr) { RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr " "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64 " (expected 0x%" PRIx64 ")\n", page_addr, offset, physaddr, expected_physaddr); return -1; } } /* zero out the whole segment */ memset(hugepg_tbl[page_idx].final_va, 0, total_size); page_idx++; } /* zero out the rest */ memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file)); return page_idx; } #else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */ /* Unmap all hugepages from original mapping */ static int unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned i; for (i = 0; i < hpi->num_pages[0]; i++) { if (hugepg_tbl[i].orig_va) { munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz); hugepg_tbl[i].orig_va = NULL; } } return 0; } #endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */ /* * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge * page. */ static int find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { int socket_id; char *end, *nodestr; unsigned i, hp_count = 0; uint64_t virt_addr; char buf[BUFSIZ]; char hugedir_str[PATH_MAX]; FILE *f; f = fopen("/proc/self/numa_maps", "r"); if (f == NULL) { RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps," " consider that all memory is in socket_id 0\n"); return 0; } snprintf(hugedir_str, sizeof(hugedir_str), "%s/%s", hpi->hugedir, internal_config.hugefile_prefix); /* parse numa map */ while (fgets(buf, sizeof(buf), f) != NULL) { /* ignore non huge page */ if (strstr(buf, " huge ") == NULL && strstr(buf, hugedir_str) == NULL) continue; /* get zone addr */ virt_addr = strtoull(buf, &end, 16); if (virt_addr == 0 || end == buf) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } /* get node id (socket id) */ nodestr = strstr(buf, " N"); if (nodestr == NULL) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } nodestr += 2; end = strstr(nodestr, "="); if (end == NULL) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } end[0] = '\0'; end = NULL; socket_id = strtoul(nodestr, &end, 0); if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } /* if we find this page in our mappings, set socket_id */ for (i = 0; i < hpi->num_pages[0]; i++) { void *va = (void *)(unsigned long)virt_addr; if (hugepg_tbl[i].orig_va == va) { hugepg_tbl[i].socket_id = socket_id; hp_count++; } } } if (hp_count < hpi->num_pages[0]) goto error; fclose(f); return 0; error: fclose(f); return -1; } /* * Sort the hugepg_tbl by physical address (lower addresses first on x86, * higher address first on powerpc). We use a slow algorithm, but we won't * have millions of pages, and this is only done at init time. */ static int sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned i, j; int compare_idx; uint64_t compare_addr; struct hugepage_file tmp; for (i = 0; i < hpi->num_pages[0]; i++) { compare_addr = 0; compare_idx = -1; /* * browse all entries starting at 'i', and find the * entry with the smallest addr */ for (j=i; j< hpi->num_pages[0]; j++) { if (compare_addr == 0 || #ifdef RTE_ARCH_PPC_64 hugepg_tbl[j].physaddr > compare_addr) { #else hugepg_tbl[j].physaddr < compare_addr) { #endif compare_addr = hugepg_tbl[j].physaddr; compare_idx = j; } } /* should not happen */ if (compare_idx == -1) { RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__); return -1; } /* swap the 2 entries in the table */ memcpy(&tmp, &hugepg_tbl[compare_idx], sizeof(struct hugepage_file)); memcpy(&hugepg_tbl[compare_idx], &hugepg_tbl[i], sizeof(struct hugepage_file)); memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file)); } return 0; } /* * Uses mmap to create a shared memory area for storage of data * Used in this file to store the hugepage file map on disk */ static void * create_shared_memory(const char *filename, const size_t mem_size) { void *retval; int fd = open(filename, O_CREAT | O_RDWR, 0666); if (fd < 0) return NULL; if (ftruncate(fd, mem_size) < 0) { close(fd); return NULL; } retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); close(fd); return retval; } /* * this copies *active* hugepages from one hugepage table to another. * destination is typically the shared memory. */ static int copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, const struct hugepage_file * src, int src_size) { int src_pos, dst_pos = 0; for (src_pos = 0; src_pos < src_size; src_pos++) { if (src[src_pos].final_va != NULL) { /* error on overflow attempt */ if (dst_pos == dest_size) return -1; memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); dst_pos++; } } return 0; } /* * unmaps hugepages that are not going to be used. since we originally allocate * ALL hugepages (not just those we need), additional unmapping needs to be done. */ static int unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, unsigned num_hp_info) { unsigned socket, size; int page, nrpages = 0; /* get total number of hugepages */ for (size = 0; size < num_hp_info; size++) for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) nrpages += internal_config.hugepage_info[size].num_pages[socket]; for (size = 0; size < num_hp_info; size++) { for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { unsigned pages_found = 0; /* traverse until we have unmapped all the unused pages */ for (page = 0; page < nrpages; page++) { struct hugepage_file *hp = &hugepg_tbl[page]; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS /* if this page was already cleared */ if (hp->final_va == NULL) continue; #endif /* find a page that matches the criteria */ if ((hp->size == hpi[size].hugepage_sz) && (hp->socket_id == (int) socket)) { /* if we skipped enough pages, unmap the rest */ if (pages_found == hpi[size].num_pages[socket]) { uint64_t unmap_len; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS unmap_len = hp->size * hp->repeated; #else unmap_len = hp->size; #endif /* get start addr and len of the remaining segment */ munmap(hp->final_va, (size_t) unmap_len); hp->final_va = NULL; if (unlink(hp->filepath) == -1) { RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n", __func__, hp->filepath, strerror(errno)); return -1; } } #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS /* else, check how much do we need to map */ else { int nr_pg_left = hpi[size].num_pages[socket] - pages_found; /* if we need enough memory to fit into the segment */ if (hp->repeated <= nr_pg_left) { pages_found += hp->repeated; } /* truncate the segment */ else { uint64_t final_size = nr_pg_left * hp->size; uint64_t seg_size = hp->repeated * hp->size; void * unmap_va = RTE_PTR_ADD(hp->final_va, final_size); int fd; munmap(unmap_va, seg_size - final_size); fd = open(hp->filepath, O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", hp->filepath, strerror(errno)); return -1; } if (ftruncate(fd, final_size) < 0) { RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n", hp->filepath, strerror(errno)); return -1; } close(fd); pages_found += nr_pg_left; hp->repeated = nr_pg_left; } } #else /* else, lock the page and skip */ else pages_found++; #endif } /* match page */ } /* foreach page */ } /* foreach socket */ } /* foreach pagesize */ return 0; } static inline uint64_t get_socket_mem_size(int socket) { uint64_t size = 0; unsigned i; for (i = 0; i < internal_config.num_hugepage_sizes; i++){ struct hugepage_info *hpi = &internal_config.hugepage_info[i]; if (hpi->hugedir != NULL) size += hpi->hugepage_sz * hpi->num_pages[socket]; } return size; } /* * This function is a NUMA-aware equivalent of calc_num_pages. * It takes in the list of hugepage sizes and the * number of pages thereof, and calculates the best number of * pages of each size to fulfill the request for ram */ static int calc_num_pages_per_socket(uint64_t * memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned num_hp_info) { unsigned socket, j, i = 0; unsigned requested, available; int total_num_pages = 0; uint64_t remaining_mem, cur_mem; uint64_t total_mem = internal_config.memory; if (num_hp_info == 0) return -1; /* if specific memory amounts per socket weren't requested */ if (internal_config.force_sockets == 0) { int cpu_per_socket[RTE_MAX_NUMA_NODES]; size_t default_size, total_size; unsigned lcore_id; /* Compute number of cores per socket */ memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); RTE_LCORE_FOREACH(lcore_id) { cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; } /* * Automatically spread requested memory amongst detected sockets according * to number of cores from cpu mask present on each socket */ total_size = internal_config.memory; for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* Set memory amount per socket */ default_size = (internal_config.memory * cpu_per_socket[socket]) / rte_lcore_count(); /* Limit to maximum available memory on socket */ default_size = RTE_MIN(default_size, get_socket_mem_size(socket)); /* Update sizes */ memory[socket] = default_size; total_size -= default_size; } /* * If some memory is remaining, try to allocate it by getting all * available memory from sockets, one after the other */ for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* take whatever is available */ default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket], total_size); /* Update sizes */ memory[socket] += default_size; total_size -= default_size; } } for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { /* skips if the memory on specific socket wasn't requested */ for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ hp_used[i].hugedir = hp_info[i].hugedir; hp_used[i].num_pages[socket] = RTE_MIN( memory[socket] / hp_info[i].hugepage_sz, hp_info[i].num_pages[socket]); cur_mem = hp_used[i].num_pages[socket] * hp_used[i].hugepage_sz; memory[socket] -= cur_mem; total_mem -= cur_mem; total_num_pages += hp_used[i].num_pages[socket]; /* check if we have met all memory requests */ if (memory[socket] == 0) break; /* check if we have any more pages left at this size, if so * move on to next size */ if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) continue; /* At this point we know that there are more pages available that are * bigger than the memory we want, so lets see if we can get enough * from other page sizes. */ remaining_mem = 0; for (j = i+1; j < num_hp_info; j++) remaining_mem += hp_info[j].hugepage_sz * hp_info[j].num_pages[socket]; /* is there enough other memory, if not allocate another page and quit */ if (remaining_mem < memory[socket]){ cur_mem = RTE_MIN(memory[socket], hp_info[i].hugepage_sz); memory[socket] -= cur_mem; total_mem -= cur_mem; hp_used[i].num_pages[socket]++; total_num_pages++; break; /* we are done with this socket*/ } } /* if we didn't satisfy all memory requirements per socket */ if (memory[socket] > 0) { /* to prevent icc errors */ requested = (unsigned) (internal_config.socket_mem[socket] / 0x100000); available = requested - ((unsigned) (memory[socket] / 0x100000)); RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! " "Requested: %uMB, available: %uMB\n", socket, requested, available); return -1; } } /* if we didn't satisfy total memory requirements */ if (total_mem > 0) { requested = (unsigned) (internal_config.memory / 0x100000); available = requested - (unsigned) (total_mem / 0x100000); RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB," " available: %uMB\n", requested, available); return -1; } return total_num_pages; } /* * Prepare physical memory mapping: fill configuration structure with * these infos, return 0 on success. * 1. map N huge pages in separate files in hugetlbfs * 2. find associated physical addr * 3. find associated NUMA socket ID * 4. sort all huge pages by physical address * 5. remap these N huge pages in the correct order * 6. unmap the first mapping * 7. fill memsegs in configuration with contiguous zones */ static int rte_eal_hugepage_init(void) { struct rte_mem_config *mcfg; struct hugepage_file *hugepage, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; uint64_t memory[RTE_MAX_NUMA_NODES]; unsigned hp_offset; int i, j, new_memseg; int nr_hugefiles, nr_hugepages = 0; void *addr; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS int new_pages_count[MAX_HUGEPAGE_SIZES]; #endif memset(used_hp, 0, sizeof(used_hp)); /* get pointer to global configuration */ mcfg = rte_eal_get_configuration()->mem_config; /* hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); if (addr == MAP_FAILED) { RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, strerror(errno)); return -1; } mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; mcfg->memseg[0].addr = addr; mcfg->memseg[0].len = internal_config.memory; mcfg->memseg[0].socket_id = SOCKET_ID_ANY; return 0; } /* check if app runs on Xen Dom0 */ if (internal_config.xen_dom0_support) { #ifdef RTE_LIBRTE_XEN_DOM0 /* use dom0_mm kernel driver to init memory */ if (rte_xen_dom0_memory_init() < 0) return -1; else return 0; #endif } /* calculate total number of hugepages available. at this point we haven't * yet started sorting them so they all are on socket 0 */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; nr_hugepages += internal_config.hugepage_info[i].num_pages[0]; } /* * allocate a memory area for hugepage table. * this isn't shared memory yet. due to the fact that we need some * processing done on these pages, shared memory will be created * at a later stage. */ tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); if (tmp_hp == NULL) goto fail; memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); hp_offset = 0; /* where we start the current page size entries */ /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ struct hugepage_info *hpi; /* * we don't yet mark hugepages as used at this stage, so * we just map all hugepages available to the system * all hugepages are still located on socket 0 */ hpi = &internal_config.hugepage_info[i]; if (hpi->num_pages[0] == 0) continue; /* map all hugepages available */ if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } /* find physical addresses and sockets for each hugepage */ if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0) goto fail; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS /* remap all hugepages into single file segments */ new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi); if (new_pages_count[i] < 0){ RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } /* we have processed a num of hugepages of this size, so inc offset */ hp_offset += new_pages_count[i]; #else /* remap all hugepages */ if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } /* unmap original mappings */ if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0) goto fail; /* we have processed a num of hugepages of this size, so inc offset */ hp_offset += hpi->num_pages[0]; #endif } #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS nr_hugefiles = 0; for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { nr_hugefiles += new_pages_count[i]; } #else nr_hugefiles = nr_hugepages; #endif /* clean out the numbers of pages */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) for (j = 0; j < RTE_MAX_NUMA_NODES; j++) internal_config.hugepage_info[i].num_pages[j] = 0; /* get hugepages for each socket */ for (i = 0; i < nr_hugefiles; i++) { int socket = tmp_hp[i].socket_id; /* find a hugepage info with right size and increment num_pages */ const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, (int)internal_config.num_hugepage_sizes); for (j = 0; j < nb_hpsizes; j++) { if (tmp_hp[i].size == internal_config.hugepage_info[j].hugepage_sz) { #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS internal_config.hugepage_info[j].num_pages[socket] += tmp_hp[i].repeated; #else internal_config.hugepage_info[j].num_pages[socket]++; #endif } } } /* make a copy of socket_mem, needed for number of pages calculation */ for (i = 0; i < RTE_MAX_NUMA_NODES; i++) memory[i] = internal_config.socket_mem[i]; /* calculate final number of pages */ nr_hugepages = calc_num_pages_per_socket(memory, internal_config.hugepage_info, used_hp, internal_config.num_hugepage_sizes); /* error if not enough memory available */ if (nr_hugepages < 0) goto fail; /* reporting in! */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { if (used_hp[i].num_pages[j] > 0) { RTE_LOG(INFO, EAL, "Requesting %u pages of size %uMB" " from socket %i\n", used_hp[i].num_pages[j], (unsigned) (used_hp[i].hugepage_sz / 0x100000), j); } } } /* create shared memory */ hugepage = create_shared_memory(eal_hugepage_info_path(), nr_hugefiles * sizeof(struct hugepage_file)); if (hugepage == NULL) { RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); goto fail; } memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); /* * unmap pages that we won't need (looks at used_hp). * also, sets final_va to NULL on pages that were unmapped. */ if (unmap_unneeded_hugepages(tmp_hp, used_hp, internal_config.num_hugepage_sizes) < 0) { RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); goto fail; } /* * copy stuff from malloc'd hugepage* to the actual shared memory. * this procedure only copies those hugepages that have final_va * not NULL. has overflow protection. */ if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, tmp_hp, nr_hugefiles) < 0) { RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); goto fail; } /* free the temporary hugepage table */ free(tmp_hp); tmp_hp = NULL; /* find earliest free memseg - this is needed because in case of IVSHMEM, * segments might have already been initialized */ for (j = 0; j < RTE_MAX_MEMSEG; j++) if (mcfg->memseg[j].addr == NULL) { /* move to previous segment and exit loop */ j--; break; } for (i = 0; i < nr_hugefiles; i++) { new_memseg = 0; /* if this is a new section, create a new memseg */ if (i == 0) new_memseg = 1; else if (hugepage[i].socket_id != hugepage[i-1].socket_id) new_memseg = 1; else if (hugepage[i].size != hugepage[i-1].size) new_memseg = 1; #ifdef RTE_ARCH_PPC_64 /* On PPC64 architecture, the mmap always start from higher * virtual address to lower address. Here, both the physical * address and virtual address are in descending order */ else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) != hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i-1].final_va - (unsigned long)hugepage[i].final_va) != hugepage[i].size) new_memseg = 1; #else else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i].final_va - (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) new_memseg = 1; #endif if (new_memseg) { j += 1; if (j == RTE_MAX_MEMSEG) break; mcfg->memseg[j].phys_addr = hugepage[i].physaddr; mcfg->memseg[j].addr = hugepage[i].final_va; #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated; #else mcfg->memseg[j].len = hugepage[i].size; #endif mcfg->memseg[j].socket_id = hugepage[i].socket_id; mcfg->memseg[j].hugepage_sz = hugepage[i].size; } /* continuation of previous memseg */ else { #ifdef RTE_ARCH_PPC_64 /* Use the phy and virt address of the last page as segment * address for IBM Power architecture */ mcfg->memseg[j].phys_addr = hugepage[i].physaddr; mcfg->memseg[j].addr = hugepage[i].final_va; #endif mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz; } hugepage[i].memseg_id = j; } if (i < nr_hugefiles) { RTE_LOG(ERR, EAL, "Can only reserve %d pages " "from %d requested\n" "Current %s=%d is not enough\n" "Please either increase it or request less amount " "of memory.\n", i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG), RTE_MAX_MEMSEG); return -ENOMEM; } return 0; fail: if (tmp_hp) free(tmp_hp); return -1; } /* * uses fstat to report the size of a file on disk */ static off_t getFileSize(int fd) { struct stat st; if (fstat(fd, &st) < 0) return 0; return st.st_size; } /* * This creates the memory mappings in the secondary process to match that of * the server process. It goes through each memory segment in the DPDK runtime * configuration and finds the hugepages which form that segment, mapping them * in order to form a contiguous block in the virtual memory space */ static int rte_eal_hugepage_attach(void) { const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; const struct hugepage_file *hp = NULL; unsigned num_hp = 0; unsigned i, s = 0; /* s used to track the segment number */ off_t size; int fd, fd_zero = -1, fd_hugepage = -1; if (aslr_enabled() > 0) { RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization " "(ASLR) is enabled in the kernel.\n"); RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory " "into secondary processes\n"); } if (internal_config.xen_dom0_support) { #ifdef RTE_LIBRTE_XEN_DOM0 if (rte_xen_dom0_memory_attach() < 0) { RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay " "process\n"); return -1; } return 0; #endif } fd_zero = open("/dev/zero", O_RDONLY); if (fd_zero < 0) { RTE_LOG(ERR, EAL, "Could not open /dev/zero\n"); goto error; } fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY); if (fd_hugepage < 0) { RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path()); goto error; } /* map all segments into memory to make sure we get the addrs */ for (s = 0; s < RTE_MAX_MEMSEG; ++s) { void *base_addr; /* * the first memory segment with len==0 is the one that * follows the last valid segment. */ if (mcfg->memseg[s].len == 0) break; #ifdef RTE_LIBRTE_IVSHMEM /* * if segment has ioremap address set, it's an IVSHMEM segment and * doesn't need mapping as it was already mapped earlier */ if (mcfg->memseg[s].ioremap_addr != 0) continue; #endif /* * fdzero is mmapped to get a contiguous block of virtual * addresses of the appropriate memseg size. * use mmap to get identical addresses as the primary process. */ base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, PROT_READ, MAP_PRIVATE, fd_zero, 0); if (base_addr == MAP_FAILED || base_addr != mcfg->memseg[s].addr) { RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " "in /dev/zero to requested address [%p]: '%s'\n", (unsigned long long)mcfg->memseg[s].len, mcfg->memseg[s].addr, strerror(errno)); if (aslr_enabled() > 0) { RTE_LOG(ERR, EAL, "It is recommended to " "disable ASLR in the kernel " "and retry running both primary " "and secondary processes\n"); } goto error; } } size = getFileSize(fd_hugepage); hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); if (hp == NULL) { RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path()); goto error; } num_hp = size / sizeof(struct hugepage_file); RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp); s = 0; while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){ void *addr, *base_addr; uintptr_t offset = 0; size_t mapping_size; #ifdef RTE_LIBRTE_IVSHMEM /* * if segment has ioremap address set, it's an IVSHMEM segment and * doesn't need mapping as it was already mapped earlier */ if (mcfg->memseg[s].ioremap_addr != 0) { s++; continue; } #endif /* * free previously mapped memory so we can map the * hugepages into the space */ base_addr = mcfg->memseg[s].addr; munmap(base_addr, mcfg->memseg[s].len); /* find the hugepages for this segment and map them * we don't need to worry about order, as the server sorted the * entries before it did the second mmap of them */ for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){ if (hp[i].memseg_id == (int)s){ fd = open(hp[i].filepath, O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "Could not open %s\n", hp[i].filepath); goto error; } #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS mapping_size = hp[i].size * hp[i].repeated; #else mapping_size = hp[i].size; #endif addr = mmap(RTE_PTR_ADD(base_addr, offset), mapping_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); close(fd); /* close file both on success and on failure */ if (addr == MAP_FAILED || addr != RTE_PTR_ADD(base_addr, offset)) { RTE_LOG(ERR, EAL, "Could not mmap %s\n", hp[i].filepath); goto error; } offset+=mapping_size; } } RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s, (unsigned long long)mcfg->memseg[s].len); s++; } /* unmap the hugepage config file, since we are done using it */ munmap((void *)(uintptr_t)hp, size); close(fd_zero); close(fd_hugepage); return 0; error: if (fd_zero >= 0) close(fd_zero); if (fd_hugepage >= 0) close(fd_hugepage); return -1; } static int rte_eal_memdevice_init(void) { struct rte_config *config; if (rte_eal_process_type() == RTE_PROC_SECONDARY) return 0; config = rte_eal_get_configuration(); config->mem_config->nchannel = internal_config.force_nchannel; config->mem_config->nrank = internal_config.force_nrank; return 0; } /* init memory subsystem */ int rte_eal_memory_init(void) { RTE_LOG(INFO, EAL, "Setting up memory...\n"); const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? rte_eal_hugepage_init() : rte_eal_hugepage_attach(); if (retval < 0) return -1; if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0) return -1; return 0; }