/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2017 Intel Corporation */ #include #include #include #include #include #ifdef RTE_LIBRTE_VHOST_NUMA #include #include #endif #include #include #include #include #include #include #include #include #include "iotlb.h" #include "vhost.h" #include "vhost_user.h" struct virtio_net *vhost_devices[MAX_VHOST_DEVICE]; pthread_mutex_t vhost_dev_lock = PTHREAD_MUTEX_INITIALIZER; /* Called with iotlb_lock read-locked */ uint64_t __vhost_iova_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t iova, uint64_t *size, uint8_t perm) { uint64_t vva, tmp_size; if (unlikely(!*size)) return 0; tmp_size = *size; vva = vhost_user_iotlb_cache_find(vq, iova, &tmp_size, perm); if (tmp_size == *size) return vva; iova += tmp_size; if (!vhost_user_iotlb_pending_miss(vq, iova, perm)) { /* * iotlb_lock is read-locked for a full burst, * but it only protects the iotlb cache. * In case of IOTLB miss, we might block on the socket, * which could cause a deadlock with QEMU if an IOTLB update * is being handled. We can safely unlock here to avoid it. */ vhost_user_iotlb_rd_unlock(vq); vhost_user_iotlb_pending_insert(vq, iova, perm); if (vhost_user_iotlb_miss(dev, iova, perm)) { VHOST_LOG_CONFIG(ERR, "IOTLB miss req failed for IOVA 0x%" PRIx64 "\n", iova); vhost_user_iotlb_pending_remove(vq, iova, 1, perm); } vhost_user_iotlb_rd_lock(vq); } return 0; } #define VHOST_LOG_PAGE 4096 /* * Atomically set a bit in memory. */ static __rte_always_inline void vhost_set_bit(unsigned int nr, volatile uint8_t *addr) { #if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100) /* * __sync_ built-ins are deprecated, but __atomic_ ones * are sub-optimized in older GCC versions. */ __sync_fetch_and_or_1(addr, (1U << nr)); #else __atomic_fetch_or(addr, (1U << nr), __ATOMIC_RELAXED); #endif } static __rte_always_inline void vhost_log_page(uint8_t *log_base, uint64_t page) { vhost_set_bit(page % 8, &log_base[page / 8]); } void __vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len) { uint64_t page; if (unlikely(!dev->log_base || !len)) return; if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8))) return; /* To make sure guest memory updates are committed before logging */ rte_atomic_thread_fence(__ATOMIC_RELEASE); page = addr / VHOST_LOG_PAGE; while (page * VHOST_LOG_PAGE < addr + len) { vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page); page += 1; } } void __vhost_log_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t iova, uint64_t len) { uint64_t hva, gpa, map_len; map_len = len; hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW); if (map_len != len) { VHOST_LOG_DATA(ERR, "Failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n", iova); return; } gpa = hva_to_gpa(dev, hva, len); if (gpa) __vhost_log_write(dev, gpa, len); } void __vhost_log_cache_sync(struct virtio_net *dev, struct vhost_virtqueue *vq) { unsigned long *log_base; int i; if (unlikely(!dev->log_base)) return; /* No cache, nothing to sync */ if (unlikely(!vq->log_cache)) return; rte_atomic_thread_fence(__ATOMIC_RELEASE); log_base = (unsigned long *)(uintptr_t)dev->log_base; for (i = 0; i < vq->log_cache_nb_elem; i++) { struct log_cache_entry *elem = vq->log_cache + i; #if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100) /* * '__sync' builtins are deprecated, but '__atomic' ones * are sub-optimized in older GCC versions. */ __sync_fetch_and_or(log_base + elem->offset, elem->val); #else __atomic_fetch_or(log_base + elem->offset, elem->val, __ATOMIC_RELAXED); #endif } rte_atomic_thread_fence(__ATOMIC_RELEASE); vq->log_cache_nb_elem = 0; } static __rte_always_inline void vhost_log_cache_page(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t page) { uint32_t bit_nr = page % (sizeof(unsigned long) << 3); uint32_t offset = page / (sizeof(unsigned long) << 3); int i; if (unlikely(!vq->log_cache)) { /* No logging cache allocated, write dirty log map directly */ rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page); return; } for (i = 0; i < vq->log_cache_nb_elem; i++) { struct log_cache_entry *elem = vq->log_cache + i; if (elem->offset == offset) { elem->val |= (1UL << bit_nr); return; } } if (unlikely(i >= VHOST_LOG_CACHE_NR)) { /* * No more room for a new log cache entry, * so write the dirty log map directly. */ rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page); return; } vq->log_cache[i].offset = offset; vq->log_cache[i].val = (1UL << bit_nr); vq->log_cache_nb_elem++; } void __vhost_log_cache_write(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t addr, uint64_t len) { uint64_t page; if (unlikely(!dev->log_base || !len)) return; if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8))) return; page = addr / VHOST_LOG_PAGE; while (page * VHOST_LOG_PAGE < addr + len) { vhost_log_cache_page(dev, vq, page); page += 1; } } void __vhost_log_cache_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t iova, uint64_t len) { uint64_t hva, gpa, map_len; map_len = len; hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW); if (map_len != len) { VHOST_LOG_DATA(ERR, "Failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n", iova); return; } gpa = hva_to_gpa(dev, hva, len); if (gpa) __vhost_log_cache_write(dev, vq, gpa, len); } void * vhost_alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t desc_addr, uint64_t desc_len) { void *idesc; uint64_t src, dst; uint64_t len, remain = desc_len; idesc = rte_malloc_socket(__func__, desc_len, 0, vq->numa_node); if (unlikely(!idesc)) return NULL; dst = (uint64_t)(uintptr_t)idesc; while (remain) { len = remain; src = vhost_iova_to_vva(dev, vq, desc_addr, &len, VHOST_ACCESS_RO); if (unlikely(!src || !len)) { rte_free(idesc); return NULL; } rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); remain -= len; dst += len; desc_addr += len; } return idesc; } void cleanup_vq(struct vhost_virtqueue *vq, int destroy) { if ((vq->callfd >= 0) && (destroy != 0)) close(vq->callfd); if (vq->kickfd >= 0) close(vq->kickfd); } void cleanup_vq_inflight(struct virtio_net *dev, struct vhost_virtqueue *vq) { if (!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))) return; if (vq_is_packed(dev)) { if (vq->inflight_packed) vq->inflight_packed = NULL; } else { if (vq->inflight_split) vq->inflight_split = NULL; } if (vq->resubmit_inflight) { if (vq->resubmit_inflight->resubmit_list) { rte_free(vq->resubmit_inflight->resubmit_list); vq->resubmit_inflight->resubmit_list = NULL; } rte_free(vq->resubmit_inflight); vq->resubmit_inflight = NULL; } } /* * Unmap any memory, close any file descriptors and * free any memory owned by a device. */ void cleanup_device(struct virtio_net *dev, int destroy) { uint32_t i; vhost_backend_cleanup(dev); for (i = 0; i < dev->nr_vring; i++) { cleanup_vq(dev->virtqueue[i], destroy); cleanup_vq_inflight(dev, dev->virtqueue[i]); } } static void vhost_free_async_mem(struct vhost_virtqueue *vq) { rte_free(vq->async_pkts_info); rte_free(vq->async_buffers_packed); vq->async_buffers_packed = NULL; rte_free(vq->async_descs_split); vq->async_descs_split = NULL; rte_free(vq->it_pool); rte_free(vq->vec_pool); vq->async_pkts_info = NULL; vq->it_pool = NULL; vq->vec_pool = NULL; } void free_vq(struct virtio_net *dev, struct vhost_virtqueue *vq) { if (vq_is_packed(dev)) rte_free(vq->shadow_used_packed); else rte_free(vq->shadow_used_split); vhost_free_async_mem(vq); rte_free(vq->batch_copy_elems); rte_mempool_free(vq->iotlb_pool); rte_free(vq->log_cache); rte_free(vq); } /* * Release virtqueues and device memory. */ static void free_device(struct virtio_net *dev) { uint32_t i; for (i = 0; i < dev->nr_vring; i++) free_vq(dev, dev->virtqueue[i]); rte_free(dev); } static __rte_always_inline int log_translate(struct virtio_net *dev, struct vhost_virtqueue *vq) { if (likely(!(vq->ring_addrs.flags & (1 << VHOST_VRING_F_LOG)))) return 0; vq->log_guest_addr = translate_log_addr(dev, vq, vq->ring_addrs.log_guest_addr); if (vq->log_guest_addr == 0) return -1; return 0; } /* * Converts vring log address to GPA * If IOMMU is enabled, the log address is IOVA * If IOMMU not enabled, the log address is already GPA * * Caller should have iotlb_lock read-locked */ uint64_t translate_log_addr(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t log_addr) { if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) { const uint64_t exp_size = sizeof(uint64_t); uint64_t hva, gpa; uint64_t size = exp_size; hva = vhost_iova_to_vva(dev, vq, log_addr, &size, VHOST_ACCESS_RW); if (size != exp_size) return 0; gpa = hva_to_gpa(dev, hva, exp_size); if (!gpa) { VHOST_LOG_CONFIG(ERR, "VQ: Failed to find GPA for log_addr: 0x%" PRIx64 " hva: 0x%" PRIx64 "\n", log_addr, hva); return 0; } return gpa; } else return log_addr; } /* Caller should have iotlb_lock read-locked */ static int vring_translate_split(struct virtio_net *dev, struct vhost_virtqueue *vq) { uint64_t req_size, size; req_size = sizeof(struct vring_desc) * vq->size; size = req_size; vq->desc = (struct vring_desc *)(uintptr_t)vhost_iova_to_vva(dev, vq, vq->ring_addrs.desc_user_addr, &size, VHOST_ACCESS_RW); if (!vq->desc || size != req_size) return -1; req_size = sizeof(struct vring_avail); req_size += sizeof(uint16_t) * vq->size; if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) req_size += sizeof(uint16_t); size = req_size; vq->avail = (struct vring_avail *)(uintptr_t)vhost_iova_to_vva(dev, vq, vq->ring_addrs.avail_user_addr, &size, VHOST_ACCESS_RW); if (!vq->avail || size != req_size) return -1; req_size = sizeof(struct vring_used); req_size += sizeof(struct vring_used_elem) * vq->size; if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) req_size += sizeof(uint16_t); size = req_size; vq->used = (struct vring_used *)(uintptr_t)vhost_iova_to_vva(dev, vq, vq->ring_addrs.used_user_addr, &size, VHOST_ACCESS_RW); if (!vq->used || size != req_size) return -1; return 0; } /* Caller should have iotlb_lock read-locked */ static int vring_translate_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { uint64_t req_size, size; req_size = sizeof(struct vring_packed_desc) * vq->size; size = req_size; vq->desc_packed = (struct vring_packed_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->ring_addrs.desc_user_addr, &size, VHOST_ACCESS_RW); if (!vq->desc_packed || size != req_size) return -1; req_size = sizeof(struct vring_packed_desc_event); size = req_size; vq->driver_event = (struct vring_packed_desc_event *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->ring_addrs.avail_user_addr, &size, VHOST_ACCESS_RW); if (!vq->driver_event || size != req_size) return -1; req_size = sizeof(struct vring_packed_desc_event); size = req_size; vq->device_event = (struct vring_packed_desc_event *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->ring_addrs.used_user_addr, &size, VHOST_ACCESS_RW); if (!vq->device_event || size != req_size) return -1; return 0; } int vring_translate(struct virtio_net *dev, struct vhost_virtqueue *vq) { if (!(dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))) return -1; if (vq_is_packed(dev)) { if (vring_translate_packed(dev, vq) < 0) return -1; } else { if (vring_translate_split(dev, vq) < 0) return -1; } if (log_translate(dev, vq) < 0) return -1; vq->access_ok = true; return 0; } void vring_invalidate(struct virtio_net *dev, struct vhost_virtqueue *vq) { if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_wr_lock(vq); vq->access_ok = false; vq->desc = NULL; vq->avail = NULL; vq->used = NULL; vq->log_guest_addr = 0; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_wr_unlock(vq); } static void init_vring_queue(struct virtio_net *dev, uint32_t vring_idx) { struct vhost_virtqueue *vq; int numa_node = SOCKET_ID_ANY; if (vring_idx >= VHOST_MAX_VRING) { VHOST_LOG_CONFIG(ERR, "Failed not init vring, out of bound (%d)\n", vring_idx); return; } vq = dev->virtqueue[vring_idx]; if (!vq) { VHOST_LOG_CONFIG(ERR, "Virtqueue not allocated (%d)\n", vring_idx); return; } memset(vq, 0, sizeof(struct vhost_virtqueue)); vq->kickfd = VIRTIO_UNINITIALIZED_EVENTFD; vq->callfd = VIRTIO_UNINITIALIZED_EVENTFD; vq->notif_enable = VIRTIO_UNINITIALIZED_NOTIF; #ifdef RTE_LIBRTE_VHOST_NUMA if (get_mempolicy(&numa_node, NULL, 0, vq, MPOL_F_NODE | MPOL_F_ADDR)) { VHOST_LOG_CONFIG(ERR, "(%d) failed to query numa node: %s\n", dev->vid, rte_strerror(errno)); numa_node = SOCKET_ID_ANY; } #endif vq->numa_node = numa_node; vhost_user_iotlb_init(dev, vring_idx); } static void reset_vring_queue(struct virtio_net *dev, uint32_t vring_idx) { struct vhost_virtqueue *vq; int callfd; if (vring_idx >= VHOST_MAX_VRING) { VHOST_LOG_CONFIG(ERR, "Failed not init vring, out of bound (%d)\n", vring_idx); return; } vq = dev->virtqueue[vring_idx]; if (!vq) { VHOST_LOG_CONFIG(ERR, "Virtqueue not allocated (%d)\n", vring_idx); return; } callfd = vq->callfd; init_vring_queue(dev, vring_idx); vq->callfd = callfd; } int alloc_vring_queue(struct virtio_net *dev, uint32_t vring_idx) { struct vhost_virtqueue *vq; uint32_t i; /* Also allocate holes, if any, up to requested vring index. */ for (i = 0; i <= vring_idx; i++) { if (dev->virtqueue[i]) continue; vq = rte_zmalloc(NULL, sizeof(struct vhost_virtqueue), 0); if (vq == NULL) { VHOST_LOG_CONFIG(ERR, "Failed to allocate memory for vring:%u.\n", i); return -1; } dev->virtqueue[i] = vq; init_vring_queue(dev, i); rte_spinlock_init(&vq->access_lock); vq->avail_wrap_counter = 1; vq->used_wrap_counter = 1; vq->signalled_used_valid = false; } dev->nr_vring = RTE_MAX(dev->nr_vring, vring_idx + 1); return 0; } /* * Reset some variables in device structure, while keeping few * others untouched, such as vid, ifname, nr_vring: they * should be same unless the device is removed. */ void reset_device(struct virtio_net *dev) { uint32_t i; dev->features = 0; dev->protocol_features = 0; dev->flags &= VIRTIO_DEV_BUILTIN_VIRTIO_NET; for (i = 0; i < dev->nr_vring; i++) reset_vring_queue(dev, i); } /* * Invoked when there is a new vhost-user connection established (when * there is a new virtio device being attached). */ int vhost_new_device(void) { struct virtio_net *dev; int i; pthread_mutex_lock(&vhost_dev_lock); for (i = 0; i < MAX_VHOST_DEVICE; i++) { if (vhost_devices[i] == NULL) break; } if (i == MAX_VHOST_DEVICE) { VHOST_LOG_CONFIG(ERR, "Failed to find a free slot for new device.\n"); pthread_mutex_unlock(&vhost_dev_lock); return -1; } dev = rte_zmalloc(NULL, sizeof(struct virtio_net), 0); if (dev == NULL) { VHOST_LOG_CONFIG(ERR, "Failed to allocate memory for new dev.\n"); pthread_mutex_unlock(&vhost_dev_lock); return -1; } vhost_devices[i] = dev; pthread_mutex_unlock(&vhost_dev_lock); dev->vid = i; dev->flags = VIRTIO_DEV_BUILTIN_VIRTIO_NET; dev->slave_req_fd = -1; dev->postcopy_ufd = -1; rte_spinlock_init(&dev->slave_req_lock); return i; } void vhost_destroy_device_notify(struct virtio_net *dev) { struct rte_vdpa_device *vdpa_dev; if (dev->flags & VIRTIO_DEV_RUNNING) { vdpa_dev = dev->vdpa_dev; if (vdpa_dev) vdpa_dev->ops->dev_close(dev->vid); dev->flags &= ~VIRTIO_DEV_RUNNING; dev->notify_ops->destroy_device(dev->vid); } } /* * Invoked when there is the vhost-user connection is broken (when * the virtio device is being detached). */ void vhost_destroy_device(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; vhost_destroy_device_notify(dev); cleanup_device(dev, 1); free_device(dev); vhost_devices[vid] = NULL; } void vhost_attach_vdpa_device(int vid, struct rte_vdpa_device *vdpa_dev) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; dev->vdpa_dev = vdpa_dev; } void vhost_set_ifname(int vid, const char *if_name, unsigned int if_len) { struct virtio_net *dev; unsigned int len; dev = get_device(vid); if (dev == NULL) return; len = if_len > sizeof(dev->ifname) ? sizeof(dev->ifname) : if_len; strncpy(dev->ifname, if_name, len); dev->ifname[sizeof(dev->ifname) - 1] = '\0'; } void vhost_setup_virtio_net(int vid, bool enable, bool compliant_ol_flags) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; if (enable) dev->flags |= VIRTIO_DEV_BUILTIN_VIRTIO_NET; else dev->flags &= ~VIRTIO_DEV_BUILTIN_VIRTIO_NET; if (!compliant_ol_flags) dev->flags |= VIRTIO_DEV_LEGACY_OL_FLAGS; else dev->flags &= ~VIRTIO_DEV_LEGACY_OL_FLAGS; } void vhost_enable_extbuf(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; dev->extbuf = 1; } void vhost_enable_linearbuf(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; dev->linearbuf = 1; } int rte_vhost_get_mtu(int vid, uint16_t *mtu) { struct virtio_net *dev = get_device(vid); if (dev == NULL || mtu == NULL) return -ENODEV; if (!(dev->flags & VIRTIO_DEV_READY)) return -EAGAIN; if (!(dev->features & (1ULL << VIRTIO_NET_F_MTU))) return -ENOTSUP; *mtu = dev->mtu; return 0; } int rte_vhost_get_numa_node(int vid) { #ifdef RTE_LIBRTE_VHOST_NUMA struct virtio_net *dev = get_device(vid); int numa_node; int ret; if (dev == NULL || numa_available() != 0) return -1; ret = get_mempolicy(&numa_node, NULL, 0, dev, MPOL_F_NODE | MPOL_F_ADDR); if (ret < 0) { VHOST_LOG_CONFIG(ERR, "(%d) failed to query numa node: %s\n", vid, rte_strerror(errno)); return -1; } return numa_node; #else RTE_SET_USED(vid); return -1; #endif } uint32_t rte_vhost_get_queue_num(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return 0; return dev->nr_vring / 2; } uint16_t rte_vhost_get_vring_num(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return 0; return dev->nr_vring; } int rte_vhost_get_ifname(int vid, char *buf, size_t len) { struct virtio_net *dev = get_device(vid); if (dev == NULL || buf == NULL) return -1; len = RTE_MIN(len, sizeof(dev->ifname)); strncpy(buf, dev->ifname, len); buf[len - 1] = '\0'; return 0; } int rte_vhost_get_negotiated_features(int vid, uint64_t *features) { struct virtio_net *dev; dev = get_device(vid); if (dev == NULL || features == NULL) return -1; *features = dev->features; return 0; } int rte_vhost_get_negotiated_protocol_features(int vid, uint64_t *protocol_features) { struct virtio_net *dev; dev = get_device(vid); if (dev == NULL || protocol_features == NULL) return -1; *protocol_features = dev->protocol_features; return 0; } int rte_vhost_get_mem_table(int vid, struct rte_vhost_memory **mem) { struct virtio_net *dev; struct rte_vhost_memory *m; size_t size; dev = get_device(vid); if (dev == NULL || mem == NULL) return -1; size = dev->mem->nregions * sizeof(struct rte_vhost_mem_region); m = malloc(sizeof(struct rte_vhost_memory) + size); if (!m) return -1; m->nregions = dev->mem->nregions; memcpy(m->regions, dev->mem->regions, size); *mem = m; return 0; } int rte_vhost_get_vhost_vring(int vid, uint16_t vring_idx, struct rte_vhost_vring *vring) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (dev == NULL || vring == NULL) return -1; if (vring_idx >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[vring_idx]; if (!vq) return -1; if (vq_is_packed(dev)) { vring->desc_packed = vq->desc_packed; vring->driver_event = vq->driver_event; vring->device_event = vq->device_event; } else { vring->desc = vq->desc; vring->avail = vq->avail; vring->used = vq->used; } vring->log_guest_addr = vq->log_guest_addr; vring->callfd = vq->callfd; vring->kickfd = vq->kickfd; vring->size = vq->size; return 0; } int rte_vhost_get_vhost_ring_inflight(int vid, uint16_t vring_idx, struct rte_vhost_ring_inflight *vring) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (unlikely(!dev)) return -1; if (vring_idx >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; if (vq_is_packed(dev)) { if (unlikely(!vq->inflight_packed)) return -1; vring->inflight_packed = vq->inflight_packed; } else { if (unlikely(!vq->inflight_split)) return -1; vring->inflight_split = vq->inflight_split; } vring->resubmit_inflight = vq->resubmit_inflight; return 0; } int rte_vhost_set_inflight_desc_split(int vid, uint16_t vring_idx, uint16_t idx) { struct vhost_virtqueue *vq; struct virtio_net *dev; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; if (unlikely(!vq->inflight_split)) return -1; if (unlikely(idx >= vq->size)) return -1; vq->inflight_split->desc[idx].counter = vq->global_counter++; vq->inflight_split->desc[idx].inflight = 1; return 0; } int rte_vhost_set_inflight_desc_packed(int vid, uint16_t vring_idx, uint16_t head, uint16_t last, uint16_t *inflight_entry) { struct rte_vhost_inflight_info_packed *inflight_info; struct virtio_net *dev; struct vhost_virtqueue *vq; struct vring_packed_desc *desc; uint16_t old_free_head, free_head; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(!vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; inflight_info = vq->inflight_packed; if (unlikely(!inflight_info)) return -1; if (unlikely(head >= vq->size)) return -1; desc = vq->desc_packed; old_free_head = inflight_info->old_free_head; if (unlikely(old_free_head >= vq->size)) return -1; free_head = old_free_head; /* init header descriptor */ inflight_info->desc[old_free_head].num = 0; inflight_info->desc[old_free_head].counter = vq->global_counter++; inflight_info->desc[old_free_head].inflight = 1; /* save desc entry in flight entry */ while (head != ((last + 1) % vq->size)) { inflight_info->desc[old_free_head].num++; inflight_info->desc[free_head].addr = desc[head].addr; inflight_info->desc[free_head].len = desc[head].len; inflight_info->desc[free_head].flags = desc[head].flags; inflight_info->desc[free_head].id = desc[head].id; inflight_info->desc[old_free_head].last = free_head; free_head = inflight_info->desc[free_head].next; inflight_info->free_head = free_head; head = (head + 1) % vq->size; } inflight_info->old_free_head = free_head; *inflight_entry = old_free_head; return 0; } int rte_vhost_clr_inflight_desc_split(int vid, uint16_t vring_idx, uint16_t last_used_idx, uint16_t idx) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; if (unlikely(!vq->inflight_split)) return -1; if (unlikely(idx >= vq->size)) return -1; rte_atomic_thread_fence(__ATOMIC_SEQ_CST); vq->inflight_split->desc[idx].inflight = 0; rte_atomic_thread_fence(__ATOMIC_SEQ_CST); vq->inflight_split->used_idx = last_used_idx; return 0; } int rte_vhost_clr_inflight_desc_packed(int vid, uint16_t vring_idx, uint16_t head) { struct rte_vhost_inflight_info_packed *inflight_info; struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(!vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; inflight_info = vq->inflight_packed; if (unlikely(!inflight_info)) return -1; if (unlikely(head >= vq->size)) return -1; rte_atomic_thread_fence(__ATOMIC_SEQ_CST); inflight_info->desc[head].inflight = 0; rte_atomic_thread_fence(__ATOMIC_SEQ_CST); inflight_info->old_free_head = inflight_info->free_head; inflight_info->old_used_idx = inflight_info->used_idx; inflight_info->old_used_wrap_counter = inflight_info->used_wrap_counter; return 0; } int rte_vhost_set_last_inflight_io_split(int vid, uint16_t vring_idx, uint16_t idx) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; if (unlikely(!vq->inflight_split)) return -1; vq->inflight_split->last_inflight_io = idx; return 0; } int rte_vhost_set_last_inflight_io_packed(int vid, uint16_t vring_idx, uint16_t head) { struct rte_vhost_inflight_info_packed *inflight_info; struct virtio_net *dev; struct vhost_virtqueue *vq; uint16_t last; dev = get_device(vid); if (unlikely(!dev)) return -1; if (unlikely(!(dev->protocol_features & (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))) return 0; if (unlikely(!vq_is_packed(dev))) return -1; if (unlikely(vring_idx >= VHOST_MAX_VRING)) return -1; vq = dev->virtqueue[vring_idx]; if (unlikely(!vq)) return -1; inflight_info = vq->inflight_packed; if (unlikely(!inflight_info)) return -1; if (unlikely(head >= vq->size)) return -1; last = inflight_info->desc[head].last; if (unlikely(last >= vq->size)) return -1; inflight_info->desc[last].next = inflight_info->free_head; inflight_info->free_head = head; inflight_info->used_idx += inflight_info->desc[head].num; if (inflight_info->used_idx >= inflight_info->desc_num) { inflight_info->used_idx -= inflight_info->desc_num; inflight_info->used_wrap_counter = !inflight_info->used_wrap_counter; } return 0; } int rte_vhost_vring_call(int vid, uint16_t vring_idx) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (!dev) return -1; if (vring_idx >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[vring_idx]; if (!vq) return -1; if (vq_is_packed(dev)) vhost_vring_call_packed(dev, vq); else vhost_vring_call_split(dev, vq); return 0; } uint16_t rte_vhost_avail_entries(int vid, uint16_t queue_id) { struct virtio_net *dev; struct vhost_virtqueue *vq; uint16_t ret = 0; dev = get_device(vid); if (!dev) return 0; if (queue_id >= VHOST_MAX_VRING) return 0; vq = dev->virtqueue[queue_id]; if (!vq) return 0; rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled || vq->avail == NULL)) goto out; ret = *(volatile uint16_t *)&vq->avail->idx - vq->last_used_idx; out: rte_spinlock_unlock(&vq->access_lock); return ret; } static inline int vhost_enable_notify_split(struct virtio_net *dev, struct vhost_virtqueue *vq, int enable) { if (vq->used == NULL) return -1; if (!(dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))) { if (enable) vq->used->flags &= ~VRING_USED_F_NO_NOTIFY; else vq->used->flags |= VRING_USED_F_NO_NOTIFY; } else { if (enable) vhost_avail_event(vq) = vq->last_avail_idx; } return 0; } static inline int vhost_enable_notify_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, int enable) { uint16_t flags; if (vq->device_event == NULL) return -1; if (!enable) { vq->device_event->flags = VRING_EVENT_F_DISABLE; return 0; } flags = VRING_EVENT_F_ENABLE; if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) { flags = VRING_EVENT_F_DESC; vq->device_event->off_wrap = vq->last_avail_idx | vq->avail_wrap_counter << 15; } rte_atomic_thread_fence(__ATOMIC_RELEASE); vq->device_event->flags = flags; return 0; } int vhost_enable_guest_notification(struct virtio_net *dev, struct vhost_virtqueue *vq, int enable) { /* * If the virtqueue is not ready yet, it will be applied * when it will become ready. */ if (!vq->ready) return 0; if (vq_is_packed(dev)) return vhost_enable_notify_packed(dev, vq, enable); else return vhost_enable_notify_split(dev, vq, enable); } int rte_vhost_enable_guest_notification(int vid, uint16_t queue_id, int enable) { struct virtio_net *dev = get_device(vid); struct vhost_virtqueue *vq; int ret; if (!dev) return -1; if (queue_id >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[queue_id]; if (!vq) return -1; rte_spinlock_lock(&vq->access_lock); vq->notif_enable = enable; ret = vhost_enable_guest_notification(dev, vq, enable); rte_spinlock_unlock(&vq->access_lock); return ret; } void rte_vhost_log_write(int vid, uint64_t addr, uint64_t len) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return; vhost_log_write(dev, addr, len); } void rte_vhost_log_used_vring(int vid, uint16_t vring_idx, uint64_t offset, uint64_t len) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(vid); if (dev == NULL) return; if (vring_idx >= VHOST_MAX_VRING) return; vq = dev->virtqueue[vring_idx]; if (!vq) return; vhost_log_used_vring(dev, vq, offset, len); } uint32_t rte_vhost_rx_queue_count(int vid, uint16_t qid) { struct virtio_net *dev; struct vhost_virtqueue *vq; uint32_t ret = 0; dev = get_device(vid); if (dev == NULL) return 0; if (unlikely(qid >= dev->nr_vring || (qid & 1) == 0)) { VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, qid); return 0; } vq = dev->virtqueue[qid]; if (vq == NULL) return 0; rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled || vq->avail == NULL)) goto out; ret = *((volatile uint16_t *)&vq->avail->idx) - vq->last_avail_idx; out: rte_spinlock_unlock(&vq->access_lock); return ret; } struct rte_vdpa_device * rte_vhost_get_vdpa_device(int vid) { struct virtio_net *dev = get_device(vid); if (dev == NULL) return NULL; return dev->vdpa_dev; } int rte_vhost_get_log_base(int vid, uint64_t *log_base, uint64_t *log_size) { struct virtio_net *dev = get_device(vid); if (dev == NULL || log_base == NULL || log_size == NULL) return -1; *log_base = dev->log_base; *log_size = dev->log_size; return 0; } int rte_vhost_get_vring_base(int vid, uint16_t queue_id, uint16_t *last_avail_idx, uint16_t *last_used_idx) { struct vhost_virtqueue *vq; struct virtio_net *dev = get_device(vid); if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL) return -1; if (queue_id >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[queue_id]; if (!vq) return -1; if (vq_is_packed(dev)) { *last_avail_idx = (vq->avail_wrap_counter << 15) | vq->last_avail_idx; *last_used_idx = (vq->used_wrap_counter << 15) | vq->last_used_idx; } else { *last_avail_idx = vq->last_avail_idx; *last_used_idx = vq->last_used_idx; } return 0; } int rte_vhost_set_vring_base(int vid, uint16_t queue_id, uint16_t last_avail_idx, uint16_t last_used_idx) { struct vhost_virtqueue *vq; struct virtio_net *dev = get_device(vid); if (!dev) return -1; if (queue_id >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[queue_id]; if (!vq) return -1; if (vq_is_packed(dev)) { vq->last_avail_idx = last_avail_idx & 0x7fff; vq->avail_wrap_counter = !!(last_avail_idx & (1 << 15)); vq->last_used_idx = last_used_idx & 0x7fff; vq->used_wrap_counter = !!(last_used_idx & (1 << 15)); } else { vq->last_avail_idx = last_avail_idx; vq->last_used_idx = last_used_idx; } return 0; } int rte_vhost_get_vring_base_from_inflight(int vid, uint16_t queue_id, uint16_t *last_avail_idx, uint16_t *last_used_idx) { struct rte_vhost_inflight_info_packed *inflight_info; struct vhost_virtqueue *vq; struct virtio_net *dev = get_device(vid); if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL) return -1; if (queue_id >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[queue_id]; if (!vq) return -1; if (!vq_is_packed(dev)) return -1; inflight_info = vq->inflight_packed; if (!inflight_info) return -1; *last_avail_idx = (inflight_info->old_used_wrap_counter << 15) | inflight_info->old_used_idx; *last_used_idx = *last_avail_idx; return 0; } int rte_vhost_extern_callback_register(int vid, struct rte_vhost_user_extern_ops const * const ops, void *ctx) { struct virtio_net *dev = get_device(vid); if (dev == NULL || ops == NULL) return -1; dev->extern_ops = *ops; dev->extern_data = ctx; return 0; } int rte_vhost_async_channel_register(int vid, uint16_t queue_id, uint32_t features, struct rte_vhost_async_channel_ops *ops) { struct vhost_virtqueue *vq; struct virtio_net *dev = get_device(vid); struct rte_vhost_async_features f; if (dev == NULL || ops == NULL) return -1; f.intval = features; if (queue_id >= VHOST_MAX_VRING) return -1; vq = dev->virtqueue[queue_id]; if (unlikely(vq == NULL || !dev->async_copy)) return -1; if (unlikely(!f.async_inorder)) { VHOST_LOG_CONFIG(ERR, "async copy is not supported on non-inorder mode " "(vid %d, qid: %d)\n", vid, queue_id); return -1; } if (unlikely(ops->check_completed_copies == NULL || ops->transfer_data == NULL)) return -1; rte_spinlock_lock(&vq->access_lock); if (unlikely(vq->async_registered)) { VHOST_LOG_CONFIG(ERR, "async register failed: channel already registered " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } vq->async_pkts_info = rte_malloc_socket(NULL, vq->size * sizeof(struct async_inflight_info), RTE_CACHE_LINE_SIZE, vq->numa_node); if (!vq->async_pkts_info) { vhost_free_async_mem(vq); VHOST_LOG_CONFIG(ERR, "async register failed: cannot allocate memory for async_pkts_info " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } vq->it_pool = rte_malloc_socket(NULL, VHOST_MAX_ASYNC_IT * sizeof(struct rte_vhost_iov_iter), RTE_CACHE_LINE_SIZE, vq->numa_node); if (!vq->it_pool) { vhost_free_async_mem(vq); VHOST_LOG_CONFIG(ERR, "async register failed: cannot allocate memory for it_pool " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } vq->vec_pool = rte_malloc_socket(NULL, VHOST_MAX_ASYNC_VEC * sizeof(struct iovec), RTE_CACHE_LINE_SIZE, vq->numa_node); if (!vq->vec_pool) { vhost_free_async_mem(vq); VHOST_LOG_CONFIG(ERR, "async register failed: cannot allocate memory for vec_pool " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } if (vq_is_packed(dev)) { vq->async_buffers_packed = rte_malloc_socket(NULL, vq->size * sizeof(struct vring_used_elem_packed), RTE_CACHE_LINE_SIZE, vq->numa_node); if (!vq->async_buffers_packed) { vhost_free_async_mem(vq); VHOST_LOG_CONFIG(ERR, "async register failed: cannot allocate memory for async buffers " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } } else { vq->async_descs_split = rte_malloc_socket(NULL, vq->size * sizeof(struct vring_used_elem), RTE_CACHE_LINE_SIZE, vq->numa_node); if (!vq->async_descs_split) { vhost_free_async_mem(vq); VHOST_LOG_CONFIG(ERR, "async register failed: cannot allocate memory for async descs " "(vid %d, qid: %d)\n", vid, queue_id); goto reg_out; } } vq->async_ops.check_completed_copies = ops->check_completed_copies; vq->async_ops.transfer_data = ops->transfer_data; vq->async_inorder = f.async_inorder; vq->async_threshold = f.async_threshold; vq->async_registered = true; reg_out: rte_spinlock_unlock(&vq->access_lock); return 0; } int rte_vhost_async_channel_unregister(int vid, uint16_t queue_id) { struct vhost_virtqueue *vq; struct virtio_net *dev = get_device(vid); int ret = -1; if (dev == NULL) return ret; if (queue_id >= VHOST_MAX_VRING) return ret; vq = dev->virtqueue[queue_id]; if (vq == NULL) return ret; ret = 0; if (!vq->async_registered) return ret; if (!rte_spinlock_trylock(&vq->access_lock)) { VHOST_LOG_CONFIG(ERR, "Failed to unregister async channel. " "virt queue busy.\n"); return -1; } if (vq->async_pkts_inflight_n) { VHOST_LOG_CONFIG(ERR, "Failed to unregister async channel. " "async inflight packets must be completed before unregistration.\n"); ret = -1; goto out; } vhost_free_async_mem(vq); vq->async_ops.transfer_data = NULL; vq->async_ops.check_completed_copies = NULL; vq->async_registered = false; out: rte_spinlock_unlock(&vq->access_lock); return ret; } RTE_LOG_REGISTER_SUFFIX(vhost_config_log_level, config, INFO); RTE_LOG_REGISTER_SUFFIX(vhost_data_log_level, data, WARNING);