/*- * BSD LICENSE * * Copyright(c) 2016 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipsec.h" #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1 #define MAX_JUMBO_PKT_LEN 9600 #define MEMPOOL_CACHE_SIZE 256 #define NB_MBUF (32000) #define CDEV_MAP_ENTRIES 1024 #define CDEV_MP_NB_OBJS 2048 #define CDEV_MP_CACHE_SZ 64 #define MAX_QUEUE_PAIRS 1 #define OPTION_CONFIG "config" #define OPTION_SINGLE_SA "single-sa" #define OPTION_EP0 "ep0" #define OPTION_EP1 "ep1" #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define NB_SOCKETS 4 /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_LCORE_PARAMS 1024 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid)) /* * Configurable number of RX/TX ring descriptors */ #define IPSEC_SECGW_RX_DESC_DEFAULT 128 #define IPSEC_SECGW_TX_DESC_DEFAULT 512 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT; static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT; #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ (((uint64_t)((a) & 0xff) << 56) | \ ((uint64_t)((b) & 0xff) << 48) | \ ((uint64_t)((c) & 0xff) << 40) | \ ((uint64_t)((d) & 0xff) << 32) | \ ((uint64_t)((e) & 0xff) << 24) | \ ((uint64_t)((f) & 0xff) << 16) | \ ((uint64_t)((g) & 0xff) << 8) | \ ((uint64_t)(h) & 0xff)) #else #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ (((uint64_t)((h) & 0xff) << 56) | \ ((uint64_t)((g) & 0xff) << 48) | \ ((uint64_t)((f) & 0xff) << 40) | \ ((uint64_t)((e) & 0xff) << 32) | \ ((uint64_t)((d) & 0xff) << 24) | \ ((uint64_t)((c) & 0xff) << 16) | \ ((uint64_t)((b) & 0xff) << 8) | \ ((uint64_t)(a) & 0xff)) #endif #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0)) #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \ addr.addr_bytes[0], addr.addr_bytes[1], \ addr.addr_bytes[2], addr.addr_bytes[3], \ addr.addr_bytes[4], addr.addr_bytes[5], \ 0, 0) /* port/source ethernet addr and destination ethernet addr */ struct ethaddr_info { uint64_t src, dst; }; struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = { { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) } }; /* mask of enabled ports */ static uint32_t enabled_port_mask; static uint32_t unprotected_port_mask; static int32_t promiscuous_on = 1; static int32_t numa_on = 1; /**< NUMA is enabled by default. */ static int32_t ep = -1; /**< Endpoint configuration (0 or 1) */ static uint32_t nb_lcores; static uint32_t single_sa; static uint32_t single_sa_idx; struct lcore_rx_queue { uint8_t port_id; uint8_t queue_id; } __rte_cache_aligned; struct lcore_params { uint8_t port_id; uint8_t queue_id; uint8_t lcore_id; } __rte_cache_aligned; static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; static struct lcore_params *lcore_params; static uint16_t nb_lcore_params; static struct rte_hash *cdev_map_in; static struct rte_hash *cdev_map_out; struct buffer { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *)); }; struct lcore_conf { uint16_t nb_rx_queue; struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct buffer tx_mbufs[RTE_MAX_ETHPORTS]; struct ipsec_ctx inbound; struct ipsec_ctx outbound; struct rt_ctx *rt_ctx; } __rte_cache_aligned; static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = ETHER_MAX_LEN, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 1, /**< IP checksum offload enabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 0, /**< CRC stripped by hardware */ }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP | ETH_RSS_UDP | ETH_RSS_TCP | ETH_RSS_SCTP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; static struct socket_ctx socket_ctx[NB_SOCKETS]; struct traffic_type { const uint8_t *data[MAX_PKT_BURST * 2]; struct rte_mbuf *pkts[MAX_PKT_BURST * 2]; uint32_t res[MAX_PKT_BURST * 2]; uint32_t num; }; struct ipsec_traffic { struct traffic_type ipsec4; struct traffic_type ipv4; }; static inline void prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t) { uint8_t *nlp; if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) { rte_pktmbuf_adj(pkt, ETHER_HDR_LEN); nlp = rte_pktmbuf_mtod_offset(pkt, uint8_t *, offsetof(struct ip, ip_p)); if (*nlp == IPPROTO_ESP) t->ipsec4.pkts[(t->ipsec4.num)++] = pkt; else { t->ipv4.data[t->ipv4.num] = nlp; t->ipv4.pkts[(t->ipv4.num)++] = pkt; } } else { /* Unknown/Unsupported type, drop the packet */ rte_pktmbuf_free(pkt); } } static inline void prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t, uint16_t nb_pkts) { int32_t i; t->ipsec4.num = 0; t->ipv4.num = 0; for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) { rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET], void *)); prepare_one_packet(pkts[i], t); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_one_packet(pkts[i], t); } static inline void prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port) { pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4; pkt->l3_len = sizeof(struct ip); pkt->l2_len = ETHER_HDR_LEN; struct ether_hdr *ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN); ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); memcpy(ðhdr->s_addr, ðaddr_tbl[port].src, sizeof(struct ether_addr)); memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst, sizeof(struct ether_addr)); } static inline void prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port) { int32_t i; const int32_t prefetch_offset = 2; for (i = 0; i < (nb_pkts - prefetch_offset); i++) { rte_prefetch0(pkts[i + prefetch_offset]->cacheline1); prepare_tx_pkt(pkts[i], port); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_tx_pkt(pkts[i], port); } /* Send burst of packets on an output interface */ static inline int32_t send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) { struct rte_mbuf **m_table; int32_t ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; prepare_tx_burst(m_table, n, port); ret = rte_eth_tx_burst(port, queueid, m_table, n); if (unlikely(ret < n)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < n); } return 0; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int32_t send_single_packet(struct rte_mbuf *m, uint8_t port) { uint32_t lcore_id; uint16_t len; struct lcore_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; len = qconf->tx_mbufs[port].len; qconf->tx_mbufs[port].m_table[len] = m; len++; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->tx_mbufs[port].len = len; return 0; } static inline void process_pkts_inbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint16_t idx, nb_pkts_in, i, j; uint32_t sa_idx, res; nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts, traffic->ipsec4.num, MAX_PKT_BURST); /* SP/ACL Inbound check ipsec and ipv4 */ for (i = 0; i < nb_pkts_in; i++) { idx = traffic->ipv4.num++; m = traffic->ipsec4.pkts[i]; traffic->ipv4.pkts[idx] = m; traffic->ipv4.data[idx] = rte_pktmbuf_mtod_offset(m, uint8_t *, offsetof(struct ip, ip_p)); } rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx, traffic->ipv4.data, traffic->ipv4.res, traffic->ipv4.num, DEFAULT_MAX_CATEGORIES); j = 0; for (i = 0; i < traffic->ipv4.num - nb_pkts_in; i++) { m = traffic->ipv4.pkts[i]; res = traffic->ipv4.res[i]; if (res & ~BYPASS) { rte_pktmbuf_free(m); continue; } traffic->ipv4.pkts[j++] = m; } /* Check return SA SPI matches pkt SPI */ for ( ; i < traffic->ipv4.num; i++) { m = traffic->ipv4.pkts[i]; sa_idx = traffic->ipv4.res[i] & PROTECT_MASK; if (sa_idx == 0 || !inbound_sa_check(ipsec_ctx->sa_ctx, m, sa_idx)) { rte_pktmbuf_free(m); continue; } traffic->ipv4.pkts[j++] = m; } traffic->ipv4.num = j; } static inline void process_pkts_outbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint16_t idx, nb_pkts_out, i, j; uint32_t sa_idx, res; rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx, traffic->ipv4.data, traffic->ipv4.res, traffic->ipv4.num, DEFAULT_MAX_CATEGORIES); /* Drop any IPsec traffic from protected ports */ for (i = 0; i < traffic->ipsec4.num; i++) rte_pktmbuf_free(traffic->ipsec4.pkts[i]); traffic->ipsec4.num = 0; j = 0; for (i = 0; i < traffic->ipv4.num; i++) { m = traffic->ipv4.pkts[i]; res = traffic->ipv4.res[i]; sa_idx = res & PROTECT_MASK; if ((res == 0) || (res & DISCARD)) rte_pktmbuf_free(m); else if (sa_idx != 0) { traffic->ipsec4.res[traffic->ipsec4.num] = sa_idx; traffic->ipsec4.pkts[traffic->ipsec4.num++] = m; } else /* BYPASS */ traffic->ipv4.pkts[j++] = m; } traffic->ipv4.num = j; nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec4.pkts, traffic->ipsec4.res, traffic->ipsec4.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_out; i++) { idx = traffic->ipv4.num++; m = traffic->ipsec4.pkts[i]; traffic->ipv4.pkts[idx] = m; } } static inline void process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { uint16_t nb_pkts_in, i; /* Drop any IPv4 traffic from unprotected ports */ for (i = 0; i < traffic->ipv4.num; i++) rte_pktmbuf_free(traffic->ipv4.pkts[i]); traffic->ipv4.num = 0; nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts, traffic->ipsec4.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_in; i++) traffic->ipv4.pkts[i] = traffic->ipsec4.pkts[i]; traffic->ipv4.num = nb_pkts_in; } static inline void process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { uint16_t nb_pkts_out, i; /* Drop any IPsec traffic from protected ports */ for (i = 0; i < traffic->ipsec4.num; i++) rte_pktmbuf_free(traffic->ipsec4.pkts[i]); traffic->ipsec4.num = 0; for (i = 0; i < traffic->ipv4.num; i++) traffic->ipv4.res[i] = single_sa_idx; nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipv4.pkts, traffic->ipv4.res, traffic->ipv4.num, MAX_PKT_BURST); traffic->ipv4.num = nb_pkts_out; } static inline void route_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) { uint32_t hop[MAX_PKT_BURST * 2]; uint32_t dst_ip[MAX_PKT_BURST * 2]; uint16_t i, offset; if (nb_pkts == 0) return; for (i = 0; i < nb_pkts; i++) { offset = offsetof(struct ip, ip_dst); dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i], uint32_t *, offset); dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]); } rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts); for (i = 0; i < nb_pkts; i++) { if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) { rte_pktmbuf_free(pkts[i]); continue; } send_single_packet(pkts[i], hop[i] & 0xff); } } static inline void process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts, uint8_t nb_pkts, uint8_t portid) { struct ipsec_traffic traffic; prepare_traffic(pkts, &traffic, nb_pkts); if (single_sa) { if (UNPROTECTED_PORT(portid)) process_pkts_inbound_nosp(&qconf->inbound, &traffic); else process_pkts_outbound_nosp(&qconf->outbound, &traffic); } else { if (UNPROTECTED_PORT(portid)) process_pkts_inbound(&qconf->inbound, &traffic); else process_pkts_outbound(&qconf->outbound, &traffic); } route_pkts(qconf->rt_ctx, traffic.ipv4.pkts, traffic.ipv4.num); } static inline void drain_buffers(struct lcore_conf *qconf) { struct buffer *buf; uint32_t portid; for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { buf = &qconf->tx_mbufs[portid]; if (buf->len == 0) continue; send_burst(qconf, buf->len, portid); buf->len = 0; } } /* main processing loop */ static int32_t main_loop(__attribute__((unused)) void *dummy) { struct rte_mbuf *pkts[MAX_PKT_BURST]; uint32_t lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int32_t i, nb_rx; uint8_t portid, queueid; struct lcore_conf *qconf; int32_t socket_id; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; struct lcore_rx_queue *rxql; prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; rxql = qconf->rx_queue_list; socket_id = rte_lcore_to_socket_id(lcore_id); qconf->rt_ctx = socket_ctx[socket_id].rt_ipv4; qconf->inbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_in; qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_in; qconf->inbound.cdev_map = cdev_map_in; qconf->outbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_out; qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_out; qconf->outbound.cdev_map = cdev_map_out; if (qconf->nb_rx_queue == 0) { RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->nb_rx_queue; i++) { portid = rxql[i].port_id; queueid = rxql[i].queue_id; RTE_LOG(INFO, IPSEC, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id, portid, queueid); } while (1) { cur_tsc = rte_rdtsc(); /* TX queue buffer drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { drain_buffers(qconf); prev_tsc = cur_tsc; } /* Read packet from RX queues */ for (i = 0; i < qconf->nb_rx_queue; ++i) { portid = rxql[i].port_id; queueid = rxql[i].queue_id; nb_rx = rte_eth_rx_burst(portid, queueid, pkts, MAX_PKT_BURST); if (nb_rx > 0) process_pkts(qconf, pkts, nb_rx, portid); } } } static int32_t check_params(void) { uint8_t lcore, portid, nb_ports; uint16_t i; int32_t socket_id; if (lcore_params == NULL) { printf("Error: No port/queue/core mappings\n"); return -1; } nb_ports = rte_eth_dev_count(); if (nb_ports > RTE_MAX_ETHPORTS) nb_ports = RTE_MAX_ETHPORTS; for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; if (!rte_lcore_is_enabled(lcore)) { printf("error: lcore %hhu is not enabled in " "lcore mask\n", lcore); return -1; } socket_id = rte_lcore_to_socket_id(lcore); if (socket_id != 0 && numa_on == 0) { printf("warning: lcore %hhu is on socket %d " "with numa off\n", lcore, socket_id); } portid = lcore_params[i].port_id; if ((enabled_port_mask & (1 << portid)) == 0) { printf("port %u is not enabled in port mask\n", portid); return -1; } if (portid >= nb_ports) { printf("port %u is not present on the board\n", portid); return -1; } } return 0; } static uint8_t get_port_nb_rx_queues(const uint8_t port) { int32_t queue = -1; uint16_t i; for (i = 0; i < nb_lcore_params; ++i) { if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue) queue = lcore_params[i].queue_id; } return (uint8_t)(++queue); } static int32_t init_lcore_rx_queues(void) { uint16_t i, nb_rx_queue; uint8_t lcore; for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; nb_rx_queue = lcore_conf[lcore].nb_rx_queue; if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { printf("error: too many queues (%u) for lcore: %u\n", nb_rx_queue + 1, lcore); return -1; } lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = lcore_params[i].port_id; lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = lcore_params[i].queue_id; lcore_conf[lcore].nb_rx_queue++; } return 0; } /* display usage */ static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK" " --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]" " --single-sa SAIDX --ep0|--ep1\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -P : enable promiscuous mode\n" " -u PORTMASK: hexadecimal bitmask of unprotected ports\n" " --"OPTION_CONFIG": (port,queue,lcore): " "rx queues configuration\n" " --single-sa SAIDX: use single SA index for outbound, " "bypassing the SP\n" " --ep0: Configure as Endpoint 0\n" " --ep1: Configure as Endpoint 1\n", prgname); } static int32_t parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if ((pm == 0) && errno) return -1; return pm; } static int32_t parse_decimal(const char *str) { char *end = NULL; unsigned long num; num = strtoul(str, &end, 10); if ((str[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; return num; } static int32_t parse_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, _NUM_FLD }; int long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int32_t i; uint32_t size; nb_lcore_params = 0; while ((p = strchr(p0, '(')) != NULL) { ++p; p0 = strchr(p, ')'); if (p0 == NULL) return -1; size = p0 - p; if (size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++) { errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_lcore_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of lcore params: %hu\n", nb_lcore_params); return -1; } lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT]; lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE]; lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; ++nb_lcore_params; } lcore_params = lcore_params_array; return 0; } #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt))) static int32_t parse_args_long_options(struct option *lgopts, int32_t option_index) { int32_t ret = -1; const char *optname = lgopts[option_index].name; if (__STRNCMP(optname, OPTION_CONFIG)) { ret = parse_config(optarg); if (ret) printf("invalid config\n"); } if (__STRNCMP(optname, OPTION_SINGLE_SA)) { ret = parse_decimal(optarg); if (ret != -1) { single_sa = 1; single_sa_idx = ret; printf("Configured with single SA index %u\n", single_sa_idx); ret = 0; } } if (__STRNCMP(optname, OPTION_EP0)) { printf("endpoint 0\n"); ep = 0; ret = 0; } if (__STRNCMP(optname, OPTION_EP1)) { printf("endpoint 1\n"); ep = 1; ret = 0; } return ret; } #undef __STRNCMP static int32_t parse_args(int32_t argc, char **argv) { int32_t opt, ret; char **argvopt; int32_t option_index; char *prgname = argv[0]; static struct option lgopts[] = { {OPTION_CONFIG, 1, 0, 0}, {OPTION_SINGLE_SA, 1, 0, 0}, {OPTION_EP0, 0, 0, 0}, {OPTION_EP1, 0, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:Pu:", lgopts, &option_index)) != EOF) { switch (opt) { case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; case 'P': printf("Promiscuous mode selected\n"); promiscuous_on = 1; break; case 'u': unprotected_port_mask = parse_portmask(optarg); if (unprotected_port_mask == 0) { printf("invalid unprotected portmask\n"); print_usage(prgname); return -1; } break; case 0: if (parse_args_long_options(lgopts, option_index)) { print_usage(prgname); return -1; } break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 0; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, const struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint8_t portid, count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf("Port %d Link Up - speed %u " "Mbps - %s\n", (uint8_t)portid, (uint32_t)link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", (uint8_t)portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == 0) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } static int32_t add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id, uint16_t qp, struct lcore_params *params, struct ipsec_ctx *ipsec_ctx, const struct rte_cryptodev_capabilities *cipher, const struct rte_cryptodev_capabilities *auth) { int32_t ret = 0; unsigned long i; struct cdev_key key = { 0 }; key.lcore_id = params->lcore_id; if (cipher) key.cipher_algo = cipher->sym.cipher.algo; if (auth) key.auth_algo = auth->sym.auth.algo; ret = rte_hash_lookup(map, &key); if (ret != -ENOENT) return 0; for (i = 0; i < ipsec_ctx->nb_qps; i++) if (ipsec_ctx->tbl[i].id == cdev_id) break; if (i == ipsec_ctx->nb_qps) { if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) { printf("Maximum number of crypto devices assigned to " "a core, increase MAX_QP_PER_LCORE value\n"); return 0; } ipsec_ctx->tbl[i].id = cdev_id; ipsec_ctx->tbl[i].qp = qp; ipsec_ctx->nb_qps++; printf("%s cdev mapping: lcore %u using cdev %u qp %u " "(cdev_id_qp %lu)\n", str, key.lcore_id, cdev_id, qp, i); } ret = rte_hash_add_key_data(map, &key, (void *)i); if (ret < 0) { printf("Faled to insert cdev mapping for (lcore %u, " "cdev %u, qp %u), errno %d\n", key.lcore_id, ipsec_ctx->tbl[i].id, ipsec_ctx->tbl[i].qp, ret); return 0; } return 1; } static int32_t add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id, uint16_t qp, struct lcore_params *params) { int32_t ret = 0; const struct rte_cryptodev_capabilities *i, *j; struct rte_hash *map; struct lcore_conf *qconf; struct ipsec_ctx *ipsec_ctx; const char *str; qconf = &lcore_conf[params->lcore_id]; if ((unprotected_port_mask & (1 << params->port_id)) == 0) { map = cdev_map_out; ipsec_ctx = &qconf->outbound; str = "Outbound"; } else { map = cdev_map_in; ipsec_ctx = &qconf->inbound; str = "Inbound"; } /* Required cryptodevs with operation chainning */ if (!(dev_info->feature_flags & RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING)) return ret; for (i = dev_info->capabilities; i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) { if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER) continue; for (j = dev_info->capabilities; j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) { if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH) continue; ret |= add_mapping(map, str, cdev_id, qp, params, ipsec_ctx, i, j); } } return ret; } static int32_t cryptodevs_init(void) { struct rte_cryptodev_config dev_conf; struct rte_cryptodev_qp_conf qp_conf; uint16_t idx, max_nb_qps, qp, i; int16_t cdev_id; struct rte_hash_parameters params = { 0 }; params.entries = CDEV_MAP_ENTRIES; params.key_len = sizeof(struct cdev_key); params.hash_func = rte_jhash; params.hash_func_init_val = 0; params.socket_id = rte_socket_id(); params.name = "cdev_map_in"; cdev_map_in = rte_hash_create(¶ms); if (cdev_map_in == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); params.name = "cdev_map_out"; cdev_map_out = rte_hash_create(¶ms); if (cdev_map_out == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); printf("lcore/cryptodev/qp mappings:\n"); idx = 0; /* Start from last cdev id to give HW priority */ for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) { struct rte_cryptodev_info cdev_info; rte_cryptodev_info_get(cdev_id, &cdev_info); if (nb_lcore_params > cdev_info.max_nb_queue_pairs) max_nb_qps = cdev_info.max_nb_queue_pairs; else max_nb_qps = nb_lcore_params; qp = 0; i = 0; while (qp < max_nb_qps && i < nb_lcore_params) { if (add_cdev_mapping(&cdev_info, cdev_id, qp, &lcore_params[idx])) qp++; idx++; idx = idx % nb_lcore_params; i++; } if (qp == 0) continue; dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id); dev_conf.nb_queue_pairs = qp; dev_conf.session_mp.nb_objs = CDEV_MP_NB_OBJS; dev_conf.session_mp.cache_size = CDEV_MP_CACHE_SZ; if (rte_cryptodev_configure(cdev_id, &dev_conf)) rte_panic("Failed to initialize crypodev %u\n", cdev_id); qp_conf.nb_descriptors = CDEV_MP_NB_OBJS; for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++) if (rte_cryptodev_queue_pair_setup(cdev_id, qp, &qp_conf, dev_conf.socket_id)) rte_panic("Failed to setup queue %u for " "cdev_id %u\n", 0, cdev_id); } printf("\n"); return 0; } static void port_init(uint8_t portid) { struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; uint16_t nb_tx_queue, nb_rx_queue; uint16_t tx_queueid, rx_queueid, queue, lcore_id; int32_t ret, socket_id; struct lcore_conf *qconf; struct ether_addr ethaddr; rte_eth_dev_info_get(portid, &dev_info); printf("Configuring device port %u:\n", portid); rte_eth_macaddr_get(portid, ðaddr); ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr); print_ethaddr("Address: ", ðaddr); printf("\n"); nb_rx_queue = get_port_nb_rx_queues(portid); nb_tx_queue = nb_lcores; if (nb_rx_queue > dev_info.max_rx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max rx queue is %u)\n", nb_rx_queue, dev_info.max_rx_queues); if (nb_tx_queue > dev_info.max_tx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max tx queue is %u)\n", nb_tx_queue, dev_info.max_tx_queues); printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n", nb_rx_queue, nb_tx_queue); ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue, &port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: " "err=%d, port=%d\n", ret, portid); /* init one TX queue per lcore */ tx_queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; /* init TX queue */ printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id); txconf = &dev_info.default_txconf; txconf->txq_flags = 0; ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd, socket_id, txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " "err=%d, port=%d\n", ret, portid); qconf = &lcore_conf[lcore_id]; qconf->tx_queue_id[portid] = tx_queueid; tx_queueid++; /* init RX queues */ for (queue = 0; queue < qconf->nb_rx_queue; ++queue) { if (portid != qconf->rx_queue_list[queue].port_id) continue; rx_queueid = qconf->rx_queue_list[queue].queue_id; printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid, socket_id); ret = rte_eth_rx_queue_setup(portid, rx_queueid, nb_rxd, socket_id, NULL, socket_ctx[socket_id].mbuf_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, " "port=%d\n", ret, portid); } } printf("\n"); } static void pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf) { char s[64]; snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id); ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf, MEMPOOL_CACHE_SIZE, ipsec_metadata_size(), RTE_MBUF_DEFAULT_BUF_SIZE, socket_id); if (ctx->mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", socket_id); else printf("Allocated mbuf pool on socket %d\n", socket_id); } int32_t main(int32_t argc, char **argv) { int32_t ret; uint32_t lcore_id, nb_ports; uint8_t portid, socket_id; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid parameters\n"); if (ep < 0) rte_exit(EXIT_FAILURE, "need to choose either EP0 or EP1\n"); if ((unprotected_port_mask & enabled_port_mask) != unprotected_port_mask) rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n", unprotected_port_mask); nb_ports = rte_eth_dev_count(); if (nb_ports > RTE_MAX_ETHPORTS) nb_ports = RTE_MAX_ETHPORTS; if (check_params() < 0) rte_exit(EXIT_FAILURE, "check_params failed\n"); ret = init_lcore_rx_queues(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); nb_lcores = rte_lcore_count(); /* Replicate each contex per socket */ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; if (socket_ctx[socket_id].mbuf_pool) continue; sa_init(&socket_ctx[socket_id], socket_id, ep); sp_init(&socket_ctx[socket_id], socket_id, ep); rt_init(&socket_ctx[socket_id], socket_id, ep); pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF); } for (portid = 0; portid < nb_ports; portid++) { if ((enabled_port_mask & (1 << portid)) == 0) continue; port_init(portid); } cryptodevs_init(); /* start ports */ for (portid = 0; portid < nb_ports; portid++) { if ((enabled_port_mask & (1 << portid)) == 0) continue; /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: " "err=%d, port=%d\n", ret, portid); /* * If enabled, put device in promiscuous mode. * This allows IO forwarding mode to forward packets * to itself through 2 cross-connected ports of the * target machine. */ if (promiscuous_on) rte_eth_promiscuous_enable(portid); } check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }