/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <arpa/inet.h> #include <getopt.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/virtio_net.h> #include <linux/virtio_ring.h> #include <signal.h> #include <stdint.h> #include <sys/eventfd.h> #include <sys/param.h> #include <unistd.h> #include <rte_atomic.h> #include <rte_cycles.h> #include <rte_ethdev.h> #include <rte_log.h> #include <rte_string_fns.h> #include <rte_pause.h> #include "main.h" #include "virtio-net.h" #include "xen_vhost.h" #define MAX_QUEUES 128 /* the maximum number of external ports supported */ #define MAX_SUP_PORTS 1 /* * Calculate the number of buffers needed per port */ #define NUM_MBUFS_PER_PORT ((MAX_QUEUES*RTE_TEST_RX_DESC_DEFAULT) + \ (num_switching_cores*MAX_PKT_BURST) + \ (num_switching_cores*RTE_TEST_TX_DESC_DEFAULT) +\ (num_switching_cores*MBUF_CACHE_SIZE)) #define MBUF_CACHE_SIZE 64 /* * RX and TX Prefetch, Host, and Write-back threshold values should be * carefully set for optimal performance. Consult the network * controller's datasheet and supporting DPDK documentation for guidance * on how these parameters should be set. */ #define RX_PTHRESH 8 /* Default values of RX prefetch threshold reg. */ #define RX_HTHRESH 8 /* Default values of RX host threshold reg. */ #define RX_WTHRESH 4 /* Default values of RX write-back threshold reg. */ /* * These default values are optimized for use with the Intel(R) 82599 10 GbE * Controller and the DPDK ixgbe PMD. Consider using other values for other * network controllers and/or network drivers. */ #define TX_PTHRESH 36 /* Default values of TX prefetch threshold reg. */ #define TX_HTHRESH 0 /* Default values of TX host threshold reg. */ #define TX_WTHRESH 0 /* Default values of TX write-back threshold reg. */ #define MAX_PKT_BURST 32 /* Max burst size for RX/TX */ #define MAX_MRG_PKT_BURST 16 /* Max burst for merge buffers. Set to 1 due to performance issue. */ #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* State of virtio device. */ #define DEVICE_NOT_READY 0 #define DEVICE_READY 1 #define DEVICE_SAFE_REMOVE 2 /* Config_core_flag status definitions. */ #define REQUEST_DEV_REMOVAL 1 #define ACK_DEV_REMOVAL 0 /* Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 #define INVALID_PORT_ID 0xFF /* Max number of devices. Limited by vmdq. */ #define MAX_DEVICES 64 /* Size of buffers used for snprintfs. */ #define MAX_PRINT_BUFF 6072 /* Maximum long option length for option parsing. */ #define MAX_LONG_OPT_SZ 64 /* Used to compare MAC addresses. */ #define MAC_ADDR_CMP 0xFFFFFFFFFFFF /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; /*Number of switching cores enabled*/ static uint32_t num_switching_cores = 0; /* number of devices/queues to support*/ static uint32_t num_queues = 0; uint32_t num_devices = 0; /* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */ static uint32_t enable_vm2vm = 1; /* Enable stats. */ static uint32_t enable_stats = 0; /* empty vmdq configuration structure. Filled in programatically */ static const struct rte_eth_conf vmdq_conf_default = { .rxmode = { .mq_mode = ETH_MQ_RX_VMDQ_ONLY, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 0, /**< IP checksum offload disabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ /* * It is necessary for 1G NIC such as I350, * this fixes bug of ipv4 forwarding in guest can't * forward pakets from one virtio dev to another virtio dev. */ .hw_vlan_strip = 1, /**< VLAN strip enabled. */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 1, /**< CRC stripped by hardware */ }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, .rx_adv_conf = { /* * should be overridden separately in code with * appropriate values */ .vmdq_rx_conf = { .nb_queue_pools = ETH_8_POOLS, .enable_default_pool = 0, .default_pool = 0, .nb_pool_maps = 0, .pool_map = {{0, 0},}, }, }, }; static unsigned lcore_ids[RTE_MAX_LCORE]; static uint8_t ports[RTE_MAX_ETHPORTS]; static unsigned num_ports = 0; /**< The number of ports specified in command line */ const uint16_t vlan_tags[] = { 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, }; /* ethernet addresses of ports */ static struct ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS]; /* heads for the main used and free linked lists for the data path. */ static struct virtio_net_data_ll *ll_root_used = NULL; static struct virtio_net_data_ll *ll_root_free = NULL; /* Array of data core structures containing information on individual core linked lists. */ static struct lcore_info lcore_info[RTE_MAX_LCORE]; /* Used for queueing bursts of TX packets. */ struct mbuf_table { unsigned len; unsigned txq_id; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; /* TX queue for each data core. */ struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE]; /* Vlan header struct used to insert vlan tags on TX. */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /* Header lengths. */ #define VLAN_HLEN 4 #define VLAN_ETH_HLEN 18 /* Per-device statistics struct */ struct device_statistics { uint64_t tx_total; rte_atomic64_t rx_total; uint64_t tx; rte_atomic64_t rx; } __rte_cache_aligned; struct device_statistics dev_statistics[MAX_DEVICES]; /* * Builds up the correct configuration for VMDQ VLAN pool map * according to the pool & queue limits. */ static inline int get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices) { struct rte_eth_vmdq_rx_conf conf; unsigned i; memset(&conf, 0, sizeof(conf)); conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices; conf.nb_pool_maps = num_devices; for (i = 0; i < conf.nb_pool_maps; i++) { conf.pool_map[i].vlan_id = vlan_tags[ i ]; conf.pool_map[i].pools = (1UL << i); } (void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf))); (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &conf, sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf))); return 0; } /* * Validate the device number according to the max pool number gotten form dev_info * If the device number is invalid, give the error message and return -1. * Each device must have its own pool. */ static inline int validate_num_devices(uint32_t max_nb_devices) { if (num_devices > max_nb_devices) { RTE_LOG(ERR, VHOST_PORT, "invalid number of devices\n"); return -1; } return 0; } /* * Initialises a given port using global settings and with the rx buffers * coming from the mbuf_pool passed as parameter */ static inline int port_init(uint8_t port, struct rte_mempool *mbuf_pool) { struct rte_eth_dev_info dev_info; struct rte_eth_rxconf *rxconf; struct rte_eth_conf port_conf; uint16_t rx_rings, tx_rings = (uint16_t)rte_lcore_count(); uint16_t rx_ring_size = RTE_TEST_RX_DESC_DEFAULT; uint16_t tx_ring_size = RTE_TEST_TX_DESC_DEFAULT; int retval; uint16_t q; /* The max pool number from dev_info will be used to validate the pool number specified in cmd line */ rte_eth_dev_info_get (port, &dev_info); /*configure the number of supported virtio devices based on VMDQ limits */ num_devices = dev_info.max_vmdq_pools; num_queues = dev_info.max_rx_queues; retval = validate_num_devices(MAX_DEVICES); if (retval < 0) return retval; /* Get port configuration. */ retval = get_eth_conf(&port_conf, num_devices); if (retval < 0) return retval; if (port >= rte_eth_dev_count()) return -1; rx_rings = (uint16_t)num_queues, /* Configure ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size, &tx_ring_size); if (retval != 0) return retval; if (rx_ring_size > RTE_TEST_RX_DESC_DEFAULT || tx_ring_size > RTE_TEST_TX_DESC_DEFAULT) { RTE_LOG(ERR, VHOST_PORT, "Mbuf pool has an insufficient size for " "port %u.\n", port); return -1; } rte_eth_dev_info_get(port, &dev_info); rxconf = &dev_info.default_rxconf; rxconf->rx_drop_en = 1; /* Setup the queues. */ for (q = 0; q < rx_rings; q ++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), rxconf, mbuf_pool); if (retval < 0) return retval; } for (q = 0; q < tx_rings; q ++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), NULL); if (retval < 0) return retval; } /* Start the device. */ retval = rte_eth_dev_start(port); if (retval < 0) return retval; rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]); RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices); RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8 " %02"PRIx8" %02"PRIx8" %02"PRIx8"\n", (unsigned)port, vmdq_ports_eth_addr[port].addr_bytes[0], vmdq_ports_eth_addr[port].addr_bytes[1], vmdq_ports_eth_addr[port].addr_bytes[2], vmdq_ports_eth_addr[port].addr_bytes[3], vmdq_ports_eth_addr[port].addr_bytes[4], vmdq_ports_eth_addr[port].addr_bytes[5]); return 0; } /* * Parse the portmask provided at run time. */ static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; errno = 0; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (pm == 0) return -1; return pm; } /* * Parse num options at run time. */ static int parse_num_opt(const char *q_arg, uint32_t max_valid_value) { char *end = NULL; unsigned long num; errno = 0; /* parse unsigned int string */ num = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (num > max_valid_value) return -1; return num; } /* * Display usage */ static void us_vhost_usage(const char *prgname) { RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK --vm2vm [0|1] --stats [0-N] --nb-devices ND\n" " -p PORTMASK: Set mask for ports to be used by application\n" " --vm2vm [0|1]: disable/enable(default) vm2vm comms\n" " --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n", prgname); } /* * Parse the arguments given in the command line of the application. */ static int us_vhost_parse_args(int argc, char **argv) { int opt, ret; int option_index; unsigned i; const char *prgname = argv[0]; static struct option long_option[] = { {"vm2vm", required_argument, NULL, 0}, {"stats", required_argument, NULL, 0}, {NULL, 0, 0, 0} }; /* Parse command line */ while ((opt = getopt_long(argc, argv, "p:",long_option, &option_index)) != EOF) { switch (opt) { /* Portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n"); us_vhost_usage(prgname); return -1; } break; case 0: /* Enable/disable vm2vm comms. */ if (!strncmp(long_option[option_index].name, "vm2vm", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for vm2vm [0|1]\n"); us_vhost_usage(prgname); return -1; } else { enable_vm2vm = ret; } } /* Enable/disable stats. */ if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for stats [0..N]\n"); us_vhost_usage(prgname); return -1; } else { enable_stats = ret; } } break; /* Invalid option - print options. */ default: us_vhost_usage(prgname); return -1; } } for (i = 0; i < RTE_MAX_ETHPORTS; i++) { if (enabled_port_mask & (1 << i)) ports[num_ports++] = (uint8_t)i; } if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } return 0; } /* * Update the global var NUM_PORTS and array PORTS according to system ports number * and return valid ports number */ static unsigned check_ports_num(unsigned nb_ports) { unsigned valid_num_ports = num_ports; unsigned portid; if (num_ports > nb_ports) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n", num_ports, nb_ports); num_ports = nb_ports; } for (portid = 0; portid < num_ports; portid ++) { if (ports[portid] >= nb_ports) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port ID(%u) exceeds max system port ID(%u)\n", ports[portid], (nb_ports - 1)); ports[portid] = INVALID_PORT_ID; valid_num_ports--; } } return valid_num_ports; } /* * Function to convert guest physical addresses to vhost virtual addresses. This * is used to convert virtio buffer addresses. */ static __rte_always_inline uint64_t gpa_to_vva(struct virtio_net *dev, uint64_t guest_pa) { struct virtio_memory_regions *region; uint32_t regionidx; uint64_t vhost_va = 0; for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) { region = &dev->mem->regions[regionidx]; if ((guest_pa >= region->guest_phys_address) && (guest_pa <= region->guest_phys_address_end)) { vhost_va = region->address_offset + guest_pa; break; } } RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") GPA %p| VVA %p\n", dev->device_fh, (void*)(uintptr_t)guest_pa, (void*)(uintptr_t)vhost_va); return vhost_va; } /* * This function adds buffers to the virtio devices RX virtqueue. Buffers can * be received from the physical port or from another virtio device. A packet * count is returned to indicate the number of packets that were successfully * added to the RX queue. */ static __rte_always_inline uint32_t virtio_dev_rx(struct virtio_net *dev, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; struct vring_desc *desc; struct rte_mbuf *buff; /* The virtio_hdr is initialised to 0. */ struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0,0,0,0,0,0},0}; uint64_t buff_addr = 0; uint64_t buff_hdr_addr = 0; uint32_t head[MAX_PKT_BURST], packet_len = 0; uint32_t head_idx, packet_success = 0; uint16_t avail_idx, res_cur_idx; uint16_t res_base_idx, res_end_idx; uint16_t free_entries; uint8_t success = 0; void *userdata; RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") virtio_dev_rx()\n", dev->device_fh); vq = dev->virtqueue_rx; count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count; /* As many data cores may want access to available buffers, they need to be reserved. */ do { res_base_idx = vq->last_used_idx_res; avail_idx = *((volatile uint16_t *)&vq->avail->idx); free_entries = (avail_idx - res_base_idx); /*check that we have enough buffers*/ if (unlikely(count > free_entries)) count = free_entries; if (count == 0) return 0; res_end_idx = res_base_idx + count; /* vq->last_used_idx_res is atomically updated. */ success = rte_atomic16_cmpset(&vq->last_used_idx_res, res_base_idx, res_end_idx); } while (unlikely(success == 0)); res_cur_idx = res_base_idx; RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") Current Index %d| End Index %d\n", dev->device_fh, res_cur_idx, res_end_idx); /* Prefetch available ring to retrieve indexes. */ rte_prefetch0(&vq->avail->ring[res_cur_idx & (vq->size - 1)]); /* Retrieve all of the head indexes first to avoid caching issues. */ for (head_idx = 0; head_idx < count; head_idx++) head[head_idx] = vq->avail->ring[(res_cur_idx + head_idx) & (vq->size - 1)]; /*Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); while (res_cur_idx != res_end_idx) { /* Get descriptor from available ring */ desc = &vq->desc[head[packet_success]]; /* Prefetch descriptor address. */ rte_prefetch0(desc); buff = pkts[packet_success]; /* Convert from gpa to vva (guest physical addr -> vhost virtual addr) */ buff_addr = gpa_to_vva(dev, desc->addr); /* Prefetch buffer address. */ rte_prefetch0((void*)(uintptr_t)buff_addr); { /* Copy virtio_hdr to packet and increment buffer address */ buff_hdr_addr = buff_addr; packet_len = rte_pktmbuf_data_len(buff) + vq->vhost_hlen; /* * If the descriptors are chained the header and data are placed in * separate buffers. */ if (desc->flags & VRING_DESC_F_NEXT) { desc->len = vq->vhost_hlen; desc = &vq->desc[desc->next]; /* Buffer address translation. */ buff_addr = gpa_to_vva(dev, desc->addr); desc->len = rte_pktmbuf_data_len(buff); } else { buff_addr += vq->vhost_hlen; desc->len = packet_len; } } /* Update used ring with desc information */ vq->used->ring[res_cur_idx & (vq->size - 1)].id = head[packet_success]; vq->used->ring[res_cur_idx & (vq->size - 1)].len = packet_len; /* Copy mbuf data to buffer */ userdata = rte_pktmbuf_mtod(buff, void *); rte_memcpy((void *)(uintptr_t)buff_addr, userdata, rte_pktmbuf_data_len(buff)); res_cur_idx++; packet_success++; /* mergeable is disabled then a header is required per buffer. */ rte_memcpy((void *)(uintptr_t)buff_hdr_addr, (const void *)&virtio_hdr, vq->vhost_hlen); if (res_cur_idx < res_end_idx) { /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); } } rte_compiler_barrier(); /* Wait until it's our turn to add our buffer to the used ring. */ while (unlikely(vq->last_used_idx != res_base_idx)) rte_pause(); *(volatile uint16_t *)&vq->used->idx += count; vq->last_used_idx = res_end_idx; return count; } /* * Compares a packet destination MAC address to a device MAC address. */ static __rte_always_inline int ether_addr_cmp(struct ether_addr *ea, struct ether_addr *eb) { return ((*(uint64_t *)ea ^ *(uint64_t *)eb) & MAC_ADDR_CMP) == 0; } /* * This function registers mac along with a * vlan tag to a VMDQ. */ static int link_vmdq(struct virtio_net *dev) { int ret; struct virtio_net_data_ll *dev_ll; dev_ll = ll_root_used; while (dev_ll != NULL) { if ((dev != dev_ll->dev) && ether_addr_cmp(&dev->mac_address, &dev_ll->dev->mac_address)) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") WARNING: This device is using an existing MAC address and has not been registered.\n", dev->device_fh); return -1; } dev_ll = dev_ll->next; } /* vlan_tag currently uses the device_id. */ dev->vlan_tag = vlan_tags[dev->device_fh]; dev->vmdq_rx_q = dev->device_fh * (num_queues/num_devices); /* Print out VMDQ registration info. */ RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VLAN_TAG %d registered\n", dev->device_fh, dev->mac_address.addr_bytes[0], dev->mac_address.addr_bytes[1], dev->mac_address.addr_bytes[2], dev->mac_address.addr_bytes[3], dev->mac_address.addr_bytes[4], dev->mac_address.addr_bytes[5], dev->vlan_tag); /* Register the MAC address. */ ret = rte_eth_dev_mac_addr_add(ports[0], &dev->mac_address, (uint32_t)dev->device_fh); if (ret) { RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Failed to add device MAC address to VMDQ\n", dev->device_fh); return -1; } /* Enable stripping of the vlan tag as we handle routing. */ rte_eth_dev_set_vlan_strip_on_queue(ports[0], dev->vmdq_rx_q, 1); rte_compiler_barrier(); /* Set device as ready for RX. */ dev->ready = DEVICE_READY; return 0; } /* * Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX * queue before disabling RX on the device. */ static inline void unlink_vmdq(struct virtio_net *dev) { unsigned i = 0; unsigned rx_count; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; if (dev->ready == DEVICE_READY) { /*clear MAC and VLAN settings*/ rte_eth_dev_mac_addr_remove(ports[0], &dev->mac_address); for (i = 0; i < 6; i++) dev->mac_address.addr_bytes[i] = 0; dev->vlan_tag = 0; /*Clear out the receive buffers*/ rx_count = rte_eth_rx_burst(ports[0], (uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); while (rx_count) { for (i = 0; i < rx_count; i++) rte_pktmbuf_free(pkts_burst[i]); rx_count = rte_eth_rx_burst(ports[0], (uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); } dev->ready = DEVICE_NOT_READY; } } /* * Check if the packet destination MAC address is for a local device. If so then put * the packet on that devices RX queue. If not then return. */ static __rte_always_inline unsigned virtio_tx_local(struct virtio_net *dev, struct rte_mbuf *m) { struct virtio_net_data_ll *dev_ll; struct ether_hdr *pkt_hdr; uint64_t ret = 0; pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); /*get the used devices list*/ dev_ll = ll_root_used; while (dev_ll != NULL) { if (likely(dev_ll->dev->ready == DEVICE_READY) && ether_addr_cmp(&(pkt_hdr->d_addr), &dev_ll->dev->mac_address)) { /* Drop the packet if the TX packet is destined for the TX device. */ if (dev_ll->dev->device_fh == dev->device_fh) { RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: " "Source and destination MAC addresses are the same. " "Dropping packet.\n", dev_ll->dev->device_fh); return 0; } RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: " "MAC address is local\n", dev_ll->dev->device_fh); if (dev_ll->dev->remove) { /*drop the packet if the device is marked for removal*/ RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") " "Device is marked for removal\n", dev_ll->dev->device_fh); } else { /*send the packet to the local virtio device*/ ret = virtio_dev_rx(dev_ll->dev, &m, 1); if (enable_stats) { rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx_total, 1); rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx, ret); dev_statistics[dev->device_fh].tx_total++; dev_statistics[dev->device_fh].tx += ret; } } return 0; } dev_ll = dev_ll->next; } return -1; } /* * This function routes the TX packet to the correct interface. This may be a local device * or the physical port. */ static __rte_always_inline void virtio_tx_route(struct virtio_net* dev, struct rte_mbuf *m, struct rte_mempool *mbuf_pool, uint16_t vlan_tag) { struct mbuf_table *tx_q; struct vlan_ethhdr *vlan_hdr; struct rte_mbuf **m_table; struct rte_mbuf *mbuf; unsigned len, ret; const uint16_t lcore_id = rte_lcore_id(); /*check if destination is local VM*/ if (enable_vm2vm && (virtio_tx_local(dev, m) == 0)) { return; } RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: " "MAC address is external\n", dev->device_fh); /*Add packet to the port tx queue*/ tx_q = &lcore_tx_queue[lcore_id]; len = tx_q->len; /* Allocate an mbuf and populate the structure. */ mbuf = rte_pktmbuf_alloc(mbuf_pool); if(!mbuf) return; mbuf->data_len = m->data_len + VLAN_HLEN; mbuf->pkt_len = mbuf->data_len; /* Copy ethernet header to mbuf. */ rte_memcpy(rte_pktmbuf_mtod(mbuf, void*), rte_pktmbuf_mtod(m, const void*), ETH_HLEN); /* Setup vlan header. Bytes need to be re-ordered for network with htons()*/ vlan_hdr = rte_pktmbuf_mtod(mbuf, struct vlan_ethhdr *); vlan_hdr->h_vlan_encapsulated_proto = vlan_hdr->h_vlan_proto; vlan_hdr->h_vlan_proto = htons(ETH_P_8021Q); vlan_hdr->h_vlan_TCI = htons(vlan_tag); /* Copy the remaining packet contents to the mbuf. */ rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, void *, VLAN_ETH_HLEN), rte_pktmbuf_mtod_offset(m, const void *, ETH_HLEN), (m->data_len - ETH_HLEN)); tx_q->m_table[len] = mbuf; len++; if (enable_stats) { dev_statistics[dev->device_fh].tx_total++; dev_statistics[dev->device_fh].tx++; } if (unlikely(len == MAX_PKT_BURST)) { m_table = (struct rte_mbuf **)tx_q->m_table; ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len); /* Free any buffers not handled by TX and update the port stats. */ if (unlikely(ret < len)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < len); } len = 0; } tx_q->len = len; return; } static __rte_always_inline void virtio_dev_tx(struct virtio_net* dev, struct rte_mempool *mbuf_pool) { struct rte_mbuf m; struct vhost_virtqueue *vq; struct vring_desc *desc; uint64_t buff_addr = 0; uint32_t head[MAX_PKT_BURST]; uint32_t used_idx; uint32_t i; uint16_t free_entries, packet_success = 0; uint16_t avail_idx; vq = dev->virtqueue_tx; avail_idx = *((volatile uint16_t *)&vq->avail->idx); /* If there are no available buffers then return. */ if (vq->last_used_idx == avail_idx) return; RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") virtio_dev_tx()\n", dev->device_fh); /* Prefetch available ring to retrieve head indexes. */ rte_prefetch0(&vq->avail->ring[vq->last_used_idx & (vq->size - 1)]); /*get the number of free entries in the ring*/ free_entries = avail_idx - vq->last_used_idx; free_entries = unlikely(free_entries < MAX_PKT_BURST) ? free_entries : MAX_PKT_BURST; RTE_LOG_DP(DEBUG, VHOST_DATA, "(%" PRIu64 ") Buffers available %d\n", dev->device_fh, free_entries); /* Retrieve all of the head indexes first to avoid caching issues. */ for (i = 0; i < free_entries; i++) head[i] = vq->avail->ring[(vq->last_used_idx + i) & (vq->size - 1)]; /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); while (packet_success < free_entries) { desc = &vq->desc[head[packet_success]]; /* Prefetch descriptor address. */ rte_prefetch0(desc); if (packet_success < (free_entries - 1)) { /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success+1]]); } /* Update used index buffer information. */ used_idx = vq->last_used_idx & (vq->size - 1); vq->used->ring[used_idx].id = head[packet_success]; vq->used->ring[used_idx].len = 0; /* Discard first buffer as it is the virtio header */ desc = &vq->desc[desc->next]; /* Buffer address translation. */ buff_addr = gpa_to_vva(dev, desc->addr); /* Prefetch buffer address. */ rte_prefetch0((void*)(uintptr_t)buff_addr); /* Setup dummy mbuf. This is copied to a real mbuf if transmitted out the physical port. */ m.data_len = desc->len; m.data_off = 0; m.nb_segs = 1; virtio_tx_route(dev, &m, mbuf_pool, 0); vq->last_used_idx++; packet_success++; } rte_compiler_barrier(); vq->used->idx += packet_success; /* Kick guest if required. */ } /* * This function is called by each data core. It handles all RX/TX registered with the * core. For TX the specific lcore linked list is used. For RX, MAC addresses are compared * with all devices in the main linked list. */ static int switch_worker(__attribute__((unused)) void *arg) { struct rte_mempool *mbuf_pool = arg; struct virtio_net *dev = NULL; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct virtio_net_data_ll *dev_ll; struct mbuf_table *tx_q; volatile struct lcore_ll_info *lcore_ll; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0; unsigned ret, i; const uint16_t lcore_id = rte_lcore_id(); const uint16_t num_cores = (uint16_t)rte_lcore_count(); uint16_t rx_count = 0; RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started \n", lcore_id); lcore_ll = lcore_info[lcore_id].lcore_ll; prev_tsc = 0; tx_q = &lcore_tx_queue[lcore_id]; for (i = 0; i < num_cores; i ++) { if (lcore_ids[i] == lcore_id) { tx_q->txq_id = i; break; } } while(1) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { if (tx_q->len) { RTE_LOG_DP(DEBUG, VHOST_DATA, "TX queue drained after timeout with burst size %u\n", tx_q->len); /*Tx any packets in the queue*/ ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, (struct rte_mbuf **)tx_q->m_table, (uint16_t)tx_q->len); if (unlikely(ret < tx_q->len)) { do { rte_pktmbuf_free(tx_q->m_table[ret]); } while (++ret < tx_q->len); } tx_q->len = 0; } prev_tsc = cur_tsc; } /* * Inform the configuration core that we have exited the linked list and that no devices are * in use if requested. */ if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL) lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL; /* * Process devices */ dev_ll = lcore_ll->ll_root_used; while (dev_ll != NULL) { /*get virtio device ID*/ dev = dev_ll->dev; if (unlikely(dev->remove)) { dev_ll = dev_ll->next; unlink_vmdq(dev); dev->ready = DEVICE_SAFE_REMOVE; continue; } if (likely(dev->ready == DEVICE_READY)) { /*Handle guest RX*/ rx_count = rte_eth_rx_burst(ports[0], (uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); if (rx_count) { ret_count = virtio_dev_rx(dev, pkts_burst, rx_count); if (enable_stats) { rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx_total, rx_count); rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx, ret_count); } while (likely(rx_count)) { rx_count--; rte_pktmbuf_free_seg(pkts_burst[rx_count]); } } } if (likely(!dev->remove)) /*Handle guest TX*/ virtio_dev_tx(dev, mbuf_pool); /*move to the next device in the list*/ dev_ll = dev_ll->next; } } return 0; } /* * Add an entry to a used linked list. A free entry must first be found in the free linked list * using get_data_ll_free_entry(); */ static void add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev) { struct virtio_net_data_ll *ll = *ll_root_addr; /* Set next as NULL and use a compiler barrier to avoid reordering. */ ll_dev->next = NULL; rte_compiler_barrier(); /* If ll == NULL then this is the first device. */ if (ll) { /* Increment to the tail of the linked list. */ while ((ll->next != NULL) ) ll = ll->next; ll->next = ll_dev; } else { *ll_root_addr = ll_dev; } } /* * Remove an entry from a used linked list. The entry must then be added to the free linked list * using put_data_ll_free_entry(). */ static void rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev, struct virtio_net_data_ll *ll_dev_last) { struct virtio_net_data_ll *ll = *ll_root_addr; if (ll_dev == ll) *ll_root_addr = ll_dev->next; else ll_dev_last->next = ll_dev->next; } /* * Find and return an entry from the free linked list. */ static struct virtio_net_data_ll * get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr) { struct virtio_net_data_ll *ll_free = *ll_root_addr; struct virtio_net_data_ll *ll_dev; if (ll_free == NULL) return NULL; ll_dev = ll_free; *ll_root_addr = ll_free->next; return ll_dev; } /* * Place an entry back on to the free linked list. */ static void put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev) { struct virtio_net_data_ll *ll_free = *ll_root_addr; ll_dev->next = ll_free; *ll_root_addr = ll_dev; } /* * Creates a linked list of a given size. */ static struct virtio_net_data_ll * alloc_data_ll(uint32_t size) { struct virtio_net_data_ll *ll_new; uint32_t i; /* Malloc and then chain the linked list. */ ll_new = malloc(size * sizeof(struct virtio_net_data_ll)); if (ll_new == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for ll_new.\n"); return NULL; } for (i = 0; i < size - 1; i++) { ll_new[i].dev = NULL; ll_new[i].next = &ll_new[i+1]; } ll_new[i].next = NULL; return ll_new; } /* * Create the main linked list along with each individual cores linked list. A used and a free list * are created to manage entries. */ static int init_data_ll (void) { int lcore; RTE_LCORE_FOREACH_SLAVE(lcore) { lcore_info[lcore].lcore_ll = malloc(sizeof(struct lcore_ll_info)); if (lcore_info[lcore].lcore_ll == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for lcore_ll.\n"); return -1; } lcore_info[lcore].lcore_ll->device_num = 0; lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL; lcore_info[lcore].lcore_ll->ll_root_used = NULL; if (num_devices % num_switching_cores) lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll((num_devices / num_switching_cores) + 1); else lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll(num_devices / num_switching_cores); } /* Allocate devices up to a maximum of MAX_DEVICES. */ ll_root_free = alloc_data_ll(MIN((num_devices), MAX_DEVICES)); return 0; } /* * Remove a device from the specific data core linked list and from the main linked list. The * rx/tx thread must be set the flag to indicate that it is safe to remove the device. * used. */ static void destroy_device (volatile struct virtio_net *dev) { struct virtio_net_data_ll *ll_lcore_dev_cur; struct virtio_net_data_ll *ll_main_dev_cur; struct virtio_net_data_ll *ll_lcore_dev_last = NULL; struct virtio_net_data_ll *ll_main_dev_last = NULL; int lcore; dev->flags &= ~VIRTIO_DEV_RUNNING; /*set the remove flag. */ dev->remove = 1; while(dev->ready != DEVICE_SAFE_REMOVE) { rte_pause(); } /* Search for entry to be removed from lcore ll */ ll_lcore_dev_cur = lcore_info[dev->coreid].lcore_ll->ll_root_used; while (ll_lcore_dev_cur != NULL) { if (ll_lcore_dev_cur->dev == dev) { break; } else { ll_lcore_dev_last = ll_lcore_dev_cur; ll_lcore_dev_cur = ll_lcore_dev_cur->next; } } /* Search for entry to be removed from main ll */ ll_main_dev_cur = ll_root_used; ll_main_dev_last = NULL; while (ll_main_dev_cur != NULL) { if (ll_main_dev_cur->dev == dev) { break; } else { ll_main_dev_last = ll_main_dev_cur; ll_main_dev_cur = ll_main_dev_cur->next; } } if (ll_lcore_dev_cur == NULL || ll_main_dev_cur == NULL) { RTE_LOG(ERR, XENHOST, "%s: could find device in per_cpu list or main_list\n", __func__); return; } /* Remove entries from the lcore and main ll. */ rm_data_ll_entry(&lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->ll_root_used, ll_lcore_dev_cur, ll_lcore_dev_last); rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last); /* Set the dev_removal_flag on each lcore. */ RTE_LCORE_FOREACH_SLAVE(lcore) { lcore_info[lcore].lcore_ll->dev_removal_flag = REQUEST_DEV_REMOVAL; } /* * Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL we can be sure that * they can no longer access the device removed from the linked lists and that the devices * are no longer in use. */ RTE_LCORE_FOREACH_SLAVE(lcore) { while (lcore_info[lcore].lcore_ll->dev_removal_flag != ACK_DEV_REMOVAL) { rte_pause(); } } /* Add the entries back to the lcore and main free ll.*/ put_data_ll_free_entry(&lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->ll_root_free, ll_lcore_dev_cur); put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur); /* Decrement number of device on the lcore. */ lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->device_num--; RTE_LOG(INFO, VHOST_DATA, " #####(%"PRIu64") Device has been removed from data core\n", dev->device_fh); } /* * A new device is added to a data core. First the device is added to the main linked list * and the allocated to a specific data core. */ static int new_device (struct virtio_net *dev) { struct virtio_net_data_ll *ll_dev; int lcore, core_add = 0; uint32_t device_num_min = num_devices; /* Add device to main ll */ ll_dev = get_data_ll_free_entry(&ll_root_free); if (ll_dev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") No free entry found in linked list. Device limit " "of %d devices per core has been reached\n", dev->device_fh, num_devices); return -1; } ll_dev->dev = dev; add_data_ll_entry(&ll_root_used, ll_dev); /*reset ready flag*/ dev->ready = DEVICE_NOT_READY; dev->remove = 0; /* Find a suitable lcore to add the device. */ RTE_LCORE_FOREACH_SLAVE(lcore) { if (lcore_info[lcore].lcore_ll->device_num < device_num_min) { device_num_min = lcore_info[lcore].lcore_ll->device_num; core_add = lcore; } } /* Add device to lcore ll */ ll_dev->dev->coreid = core_add; ll_dev = get_data_ll_free_entry(&lcore_info[ll_dev->dev->coreid].lcore_ll->ll_root_free); if (ll_dev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Failed to add device to data core\n", dev->device_fh); destroy_device(dev); return -1; } ll_dev->dev = dev; add_data_ll_entry(&lcore_info[ll_dev->dev->coreid].lcore_ll->ll_root_used, ll_dev); /* Initialize device stats */ memset(&dev_statistics[dev->device_fh], 0, sizeof(struct device_statistics)); lcore_info[ll_dev->dev->coreid].lcore_ll->device_num++; dev->flags |= VIRTIO_DEV_RUNNING; RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been added to data core %d\n", dev->device_fh, dev->coreid); link_vmdq(dev); return 0; } /* * These callback allow devices to be added to the data core when configuration * has been fully complete. */ static const struct virtio_net_device_ops virtio_net_device_ops = { .new_device = new_device, .destroy_device = destroy_device, }; /* * This is a thread will wake up after a period to print stats if the user has * enabled them. */ static void print_stats(void) { struct virtio_net_data_ll *dev_ll; uint64_t tx_dropped, rx_dropped; uint64_t tx, tx_total, rx, rx_total; uint32_t device_fh; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' }; while(1) { sleep(enable_stats); /* Clear screen and move to top left */ printf("%s%s", clr, top_left); printf("\nDevice statistics ===================================="); dev_ll = ll_root_used; while (dev_ll != NULL) { device_fh = (uint32_t)dev_ll->dev->device_fh; tx_total = dev_statistics[device_fh].tx_total; tx = dev_statistics[device_fh].tx; tx_dropped = tx_total - tx; rx_total = rte_atomic64_read(&dev_statistics[device_fh].rx_total); rx = rte_atomic64_read(&dev_statistics[device_fh].rx); rx_dropped = rx_total - rx; printf("\nStatistics for device %"PRIu32" ------------------------------" "\nTX total: %"PRIu64"" "\nTX dropped: %"PRIu64"" "\nTX successful: %"PRIu64"" "\nRX total: %"PRIu64"" "\nRX dropped: %"PRIu64"" "\nRX successful: %"PRIu64"", device_fh, tx_total, tx_dropped, tx, rx_total, rx_dropped, rx); dev_ll = dev_ll->next; } printf("\n======================================================\n"); } } int init_virtio_net(struct virtio_net_device_ops const * const ops); /* * Main function, does initialisation and calls the per-lcore functions. */ int main(int argc, char *argv[]) { struct rte_mempool *mbuf_pool; unsigned lcore_id, core_id = 0; unsigned nb_ports, valid_num_ports; int ret; uint8_t portid; static pthread_t tid; char thread_name[RTE_MAX_THREAD_NAME_LEN]; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); argc -= ret; argv += ret; /* parse app arguments */ ret = us_vhost_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid argument\n"); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++) if (rte_lcore_is_enabled(lcore_id)) lcore_ids[core_id ++] = lcore_id; if (rte_lcore_count() > RTE_MAX_LCORE) rte_exit(EXIT_FAILURE,"Not enough cores\n"); /*set the number of swithcing cores available*/ num_switching_cores = rte_lcore_count()-1; /* Get the number of physical ports. */ nb_ports = rte_eth_dev_count(); /* * Update the global var NUM_PORTS and global array PORTS * and get value of var VALID_NUM_PORTS according to system ports number */ valid_num_ports = check_ports_num(nb_ports); if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } /* Create the mbuf pool. */ mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS_PER_PORT * valid_num_ports, MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); /* initialize all ports */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { RTE_LOG(INFO, VHOST_PORT, "Skipping disabled port %d\n", portid); continue; } if (port_init(portid, mbuf_pool) != 0) rte_exit(EXIT_FAILURE, "Cannot initialize network ports\n"); } /* Initialise all linked lists. */ if (init_data_ll() == -1) rte_exit(EXIT_FAILURE, "Failed to initialize linked list\n"); /* Initialize device stats */ memset(&dev_statistics, 0, sizeof(dev_statistics)); /* Enable stats if the user option is set. */ if (enable_stats) { ret = pthread_create(&tid, NULL, (void *)print_stats, NULL); if (ret != 0) rte_exit(EXIT_FAILURE, "Cannot create print-stats thread\n"); /* Set thread_name for aid in debugging. */ snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN, "print-xen-stats"); ret = rte_thread_setname(tid, thread_name); if (ret != 0) RTE_LOG(DEBUG, VHOST_CONFIG, "Cannot set print-stats name\n"); } /* Launch all data cores. */ RTE_LCORE_FOREACH_SLAVE(lcore_id) { rte_eal_remote_launch(switch_worker, mbuf_pool, lcore_id); } init_virtio_xen(&virtio_net_device_ops); virtio_monitor_loop(); return 0; }