/*- * BSD LICENSE * * Copyright(c) 2010-2012 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef __INCLUDE_RTE_IPV4_FRAG_H__ #define __INCLUDE_RTE_IPV4_FRAG_H__ #include /** * @file * RTE IPv4 Fragmentation * * Implementation of IPv4 fragmentation. * */ /* * Default byte size for the IPv4 Maximum Transfer Unit (MTU). * This value includes the size of IPv4 header. */ #define IPV4_MTU_DEFAULT ETHER_MTU /* * Default payload in bytes for the IPv4 packet. */ #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) /* * MAX number of fragments per packet allowed. */ #define IPV4_MAX_FRAGS_PER_PACKET 0x80 /* Debug on/off */ #ifdef RTE_IPV4_FRAG_DEBUG #define RTE_IPV4_FRAG_ASSERT(exp) \ if (!(exp)) { \ rte_panic("function %s, line%d\tassert \"" #exp "\" failed\n", \ __func__, __LINE__); \ } #else /*RTE_IPV4_FRAG_DEBUG*/ #define RTE_IPV4_FRAG_ASSERT(exp) do { } while(0) #endif /*RTE_IPV4_FRAG_DEBUG*/ /* Fragment Offset */ #define IPV4_HDR_DF_SHIFT 14 #define IPV4_HDR_MF_SHIFT 13 #define IPV4_HDR_FO_SHIFT 3 #define IPV4_HDR_DF_MASK (1 << IPV4_HDR_DF_SHIFT) #define IPV4_HDR_MF_MASK (1 << IPV4_HDR_MF_SHIFT) #define IPV4_HDR_FO_MASK ((1 << IPV4_HDR_FO_SHIFT) - 1) static inline void __fill_ipv4hdr_frag(struct ipv4_hdr *dst, const struct ipv4_hdr *src, uint16_t len, uint16_t fofs, uint16_t dofs, uint32_t mf) { rte_memcpy(dst, src, sizeof(*dst)); fofs = (uint16_t)(fofs + (dofs >> IPV4_HDR_FO_SHIFT)); fofs = (uint16_t)(fofs | mf << IPV4_HDR_MF_SHIFT); dst->fragment_offset = rte_cpu_to_be_16(fofs); dst->total_length = rte_cpu_to_be_16(len); dst->hdr_checksum = 0; } static inline void __free_fragments(struct rte_mbuf *mb[], uint32_t num) { uint32_t i; for (i = 0; i != num; i++) rte_pktmbuf_free(mb[i]); } /** * IPv4 fragmentation. * * This function implements the fragmentation of IPv4 packets. * * @param pkt_in * The input packet. * @param pkts_out * Array storing the output fragments. * @param mtu_size * Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4 * datagrams. This value includes the size of the IPv4 header. * @param pool_direct * MBUF pool used for allocating direct buffers for the output fragments. * @param pool_indirect * MBUF pool used for allocating indirect buffers for the output fragments. * @return * Upon successful completion - number of output fragments placed * in the pkts_out array. * Otherwise - (-1) * . */ static inline int32_t rte_ipv4_fragmentation(struct rte_mbuf *pkt_in, struct rte_mbuf **pkts_out, uint16_t nb_pkts_out, uint16_t mtu_size, struct rte_mempool *pool_direct, struct rte_mempool *pool_indirect) { struct rte_mbuf *in_seg = NULL; struct ipv4_hdr *in_hdr; uint32_t out_pkt_pos, in_seg_data_pos; uint32_t more_in_segs; uint16_t fragment_offset, flag_offset, frag_size; frag_size = (uint16_t)(mtu_size - sizeof(struct ipv4_hdr)); /* Fragment size should be a multiply of 8. */ RTE_IPV4_FRAG_ASSERT((frag_size & IPV4_HDR_FO_MASK) == 0); /* Fragment size should be a multiply of 8. */ RTE_IPV4_FRAG_ASSERT(IPV4_MAX_FRAGS_PER_PACKET * frag_size >= (uint16_t)(pkt_in->pkt.pkt_len - sizeof (struct ipv4_hdr))); in_hdr = (struct ipv4_hdr*) pkt_in->pkt.data; flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset); /* If Don't Fragment flag is set */ if (unlikely ((flag_offset & IPV4_HDR_DF_MASK) != 0)) return (-ENOTSUP); /* Check that pkts_out is big enough to hold all fragments */ if (unlikely (frag_size * nb_pkts_out < (uint16_t)(pkt_in->pkt.pkt_len - sizeof (struct ipv4_hdr)))) return (-EINVAL); in_seg = pkt_in; in_seg_data_pos = sizeof(struct ipv4_hdr); out_pkt_pos = 0; fragment_offset = 0; more_in_segs = 1; while (likely(more_in_segs)) { struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL; uint32_t more_out_segs; struct ipv4_hdr *out_hdr; /* Allocate direct buffer */ out_pkt = rte_pktmbuf_alloc(pool_direct); if (unlikely(out_pkt == NULL)) { __free_fragments(pkts_out, out_pkt_pos); return (-ENOMEM); } /* Reserve space for the IP header that will be built later */ out_pkt->pkt.data_len = sizeof(struct ipv4_hdr); out_pkt->pkt.pkt_len = sizeof(struct ipv4_hdr); out_seg_prev = out_pkt; more_out_segs = 1; while (likely(more_out_segs && more_in_segs)) { struct rte_mbuf *out_seg = NULL; uint32_t len; /* Allocate indirect buffer */ out_seg = rte_pktmbuf_alloc(pool_indirect); if (unlikely(out_seg == NULL)) { rte_pktmbuf_free(out_pkt); __free_fragments(pkts_out, out_pkt_pos); return (-ENOMEM); } out_seg_prev->pkt.next = out_seg; out_seg_prev = out_seg; /* Prepare indirect buffer */ rte_pktmbuf_attach(out_seg, in_seg); len = mtu_size - out_pkt->pkt.pkt_len; if (len > (in_seg->pkt.data_len - in_seg_data_pos)) { len = in_seg->pkt.data_len - in_seg_data_pos; } out_seg->pkt.data = (char*) in_seg->pkt.data + (uint16_t)in_seg_data_pos; out_seg->pkt.data_len = (uint16_t)len; out_pkt->pkt.pkt_len = (uint16_t)(len + out_pkt->pkt.pkt_len); out_pkt->pkt.nb_segs += 1; in_seg_data_pos += len; /* Current output packet (i.e. fragment) done ? */ if (unlikely(out_pkt->pkt.pkt_len >= mtu_size)) { more_out_segs = 0; } /* Current input segment done ? */ if (unlikely(in_seg_data_pos == in_seg->pkt.data_len)) { in_seg = in_seg->pkt.next; in_seg_data_pos = 0; if (unlikely(in_seg == NULL)) { more_in_segs = 0; } } } /* Build the IP header */ out_hdr = (struct ipv4_hdr*) out_pkt->pkt.data; __fill_ipv4hdr_frag(out_hdr, in_hdr, (uint16_t)out_pkt->pkt.pkt_len, flag_offset, fragment_offset, more_in_segs); fragment_offset = (uint16_t)(fragment_offset + out_pkt->pkt.pkt_len - sizeof(struct ipv4_hdr)); out_pkt->ol_flags |= PKT_TX_IP_CKSUM; out_pkt->pkt.vlan_macip.f.l3_len = sizeof(struct ipv4_hdr); /* Write the fragment to the output list */ pkts_out[out_pkt_pos] = out_pkt; out_pkt_pos ++; } return (out_pkt_pos); } #endif