/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox Technologies, Ltd */ #ifndef RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_ #define RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_ #include #include #include #include #include #include #include #include #include "mlx5_defs.h" #include "mlx5.h" #include "mlx5_utils.h" #include "mlx5_rxtx.h" #include "mlx5_rxtx_vec.h" #include "mlx5_autoconf.h" #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #pragma GCC diagnostic ignored "-Wstrict-aliasing" #endif /** * Store free buffers to RX SW ring. * * @param elts * Pointer to SW ring to be filled. * @param pkts * Pointer to array of packets to be stored. * @param pkts_n * Number of packets to be stored. */ static inline void rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n) { unsigned int pos; uint16_t p = n & -2; for (pos = 0; pos < p; pos += 2) { __vector unsigned char mbp; mbp = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&elts[pos]); *(__vector unsigned char *)&pkts[pos] = mbp; } if (n & 1) pkts[pos] = elts[pos]; } /** * Decompress a compressed completion and fill in mbufs in RX SW ring with data * extracted from the title completion descriptor. * * @param rxq * Pointer to RX queue structure. * @param cq * Pointer to completion array having a compressed completion at first. * @param elts * Pointer to SW ring to be filled. The first mbuf has to be pre-built from * the title completion descriptor to be copied to the rest of mbufs. * * @return * Number of mini-CQEs successfully decompressed. */ static inline uint16_t rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq, struct rte_mbuf **elts) { volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info; struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */ const __vector unsigned char zero = (__vector unsigned char){0}; /* Mask to shuffle from extracted mini CQE to mbuf. */ const __vector unsigned char shuf_mask1 = (__vector unsigned char){ -1, -1, -1, -1, /* skip packet_type */ 7, 6, -1, -1, /* bswap16, pkt_len */ 7, 6, /* bswap16, data_len */ -1, -1, /* skip vlan_tci */ 3, 2, 1, 0}; /* bswap32, rss */ const __vector unsigned char shuf_mask2 = (__vector unsigned char){ -1, -1, -1, -1, /* skip packet_type */ 15, 14, -1, -1, /* bswap16, pkt_len */ 15, 14, /* data_len, bswap16 */ -1, -1, /* skip vlan_tci */ 11, 10, 9, 8}; /* bswap32, rss */ /* Restore the compressed count. Must be 16 bits. */ const uint16_t mcqe_n = t_pkt->data_len + (rxq->crc_present * RTE_ETHER_CRC_LEN); const __vector unsigned char rearm = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&t_pkt->rearm_data); const __vector unsigned char rxdf = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&t_pkt->rx_descriptor_fields1); const __vector unsigned char crc_adj = (__vector unsigned char)(__vector unsigned short){ 0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0}; const __vector unsigned short rxdf_sel_mask = (__vector unsigned short){ 0xffff, 0xffff, 0, 0, 0, 0xffff, 0, 0}; __vector unsigned char ol_flags = (__vector unsigned char){0}; __vector unsigned char ol_flags_mask = (__vector unsigned char){0}; unsigned int pos; unsigned int i; unsigned int inv = 0; #ifdef MLX5_PMD_SOFT_COUNTERS const __vector unsigned char ones = vec_splat_u8(-1); uint32_t rcvd_byte = 0; /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ const __vector unsigned char len_shuf_mask = (__vector unsigned char){ 3, 2, 11, 10, 7, 6, 15, 14, -1, -1, -1, -1, -1, -1, -1, -1}; #endif /* * A. load mCQEs into a 128bit register. * B. store rearm data to mbuf. * C. combine data from mCQEs with rx_descriptor_fields1. * D. store rx_descriptor_fields1. * E. store flow tag (rte_flow mark). */ for (pos = 0; pos < mcqe_n; ) { __vector unsigned char mcqe1, mcqe2; __vector unsigned char rxdf1, rxdf2; #ifdef MLX5_PMD_SOFT_COUNTERS const __vector unsigned short mcqe_sel_mask = (__vector unsigned short){0, 0, 0xffff, 0xffff, 0, 0, 0xfff, 0xffff}; const __vector unsigned char lower_half = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}; const __vector unsigned char upper_half = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}; __vector unsigned short left, right; __vector unsigned char byte_cnt, invalid_mask; __vector unsigned long lshift; __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) unsigned long long shmask; const __vector unsigned long shmax = {64, 64}; #endif for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i) if (likely(pos + i < mcqe_n)) rte_prefetch0((void *)(cq + pos + i)); /* A.1 load mCQEs into a 128bit register. */ mcqe1 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&mcq[pos % 8]); mcqe2 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&mcq[pos % 8 + 2]); /* B.1 store rearm data to mbuf. */ *(__vector unsigned char *) &elts[pos]->rearm_data = rearm; *(__vector unsigned char *) &elts[pos + 1]->rearm_data = rearm; /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ rxdf1 = vec_perm(mcqe1, zero, shuf_mask1); rxdf2 = vec_perm(mcqe1, zero, shuf_mask2); rxdf1 = (__vector unsigned char) ((__vector unsigned short)rxdf1 - (__vector unsigned short)crc_adj); rxdf2 = (__vector unsigned char) ((__vector unsigned short)rxdf2 - (__vector unsigned short)crc_adj); rxdf1 = (__vector unsigned char) vec_sel((__vector unsigned short)rxdf1, (__vector unsigned short)rxdf, rxdf_sel_mask); rxdf2 = (__vector unsigned char) vec_sel((__vector unsigned short)rxdf2, (__vector unsigned short)rxdf, rxdf_sel_mask); /* D.1 store rx_descriptor_fields1. */ *(__vector unsigned char *) &elts[pos]->rx_descriptor_fields1 = rxdf1; *(__vector unsigned char *) &elts[pos + 1]->rx_descriptor_fields1 = rxdf2; /* B.1 store rearm data to mbuf. */ *(__vector unsigned char *) &elts[pos + 2]->rearm_data = rearm; *(__vector unsigned char *) &elts[pos + 3]->rearm_data = rearm; /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ rxdf1 = vec_perm(mcqe2, zero, shuf_mask1); rxdf2 = vec_perm(mcqe2, zero, shuf_mask2); rxdf1 = (__vector unsigned char) ((__vector unsigned short)rxdf1 - (__vector unsigned short)crc_adj); rxdf2 = (__vector unsigned char) ((__vector unsigned short)rxdf2 - (__vector unsigned short)crc_adj); rxdf1 = (__vector unsigned char) vec_sel((__vector unsigned short)rxdf1, (__vector unsigned short)rxdf, rxdf_sel_mask); rxdf2 = (__vector unsigned char) vec_sel((__vector unsigned short)rxdf2, (__vector unsigned short)rxdf, rxdf_sel_mask); /* D.1 store rx_descriptor_fields1. */ *(__vector unsigned char *) &elts[pos + 2]->rx_descriptor_fields1 = rxdf1; *(__vector unsigned char *) &elts[pos + 3]->rx_descriptor_fields1 = rxdf2; #ifdef MLX5_PMD_SOFT_COUNTERS invalid_mask = (__vector unsigned char)(__vector unsigned long){ (mcqe_n - pos) * sizeof(uint16_t) * 8, 0}; lshift = vec_splat((__vector unsigned long)invalid_mask, 0); shmask = vec_cmpgt(shmax, lshift); invalid_mask = (__vector unsigned char) vec_sl((__vector unsigned long)ones, lshift); invalid_mask = (__vector unsigned char) vec_sel((__vector unsigned long)shmask, (__vector unsigned long)invalid_mask, shmask); byte_cnt = (__vector unsigned char) vec_sel((__vector unsigned short) vec_sro((__vector unsigned short)mcqe1, (__vector unsigned char){32}), (__vector unsigned short)mcqe2, mcqe_sel_mask); byte_cnt = vec_perm(byte_cnt, zero, len_shuf_mask); byte_cnt = (__vector unsigned char) vec_andc((__vector unsigned long)byte_cnt, (__vector unsigned long)invalid_mask); left = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, lower_half); right = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, upper_half); byte_cnt = (__vector unsigned char)vec_add(left, right); left = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, lower_half); right = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, upper_half); byte_cnt = (__vector unsigned char)vec_add(left, right); rcvd_byte += ((__vector unsigned long)byte_cnt)[0]; #endif if (rxq->mark) { if (rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) { const uint32_t flow_tag = t_pkt->hash.fdir.hi; /* E.1 store flow tag (rte_flow mark). */ elts[pos]->hash.fdir.hi = flow_tag; elts[pos + 1]->hash.fdir.hi = flow_tag; elts[pos + 2]->hash.fdir.hi = flow_tag; elts[pos + 3]->hash.fdir.hi = flow_tag; } else { const __vector unsigned char flow_mark_adj = (__vector unsigned char) (__vector unsigned int){ -1, -1, -1, -1}; const __vector unsigned char flow_mark_shuf = (__vector unsigned char){ -1, -1, -1, -1, -1, -1, -1, -1, 12, 8, 9, -1, 4, 0, 1, -1}; const __vector unsigned char ft_mask = (__vector unsigned char) (__vector unsigned int){ 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00}; const __vector unsigned char fdir_flags = (__vector unsigned char) (__vector unsigned int){ RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR}; const __vector unsigned char fdir_all_flags = (__vector unsigned char) (__vector unsigned int){ RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID}; __vector unsigned char fdir_id_flags = (__vector unsigned char) (__vector unsigned int){ RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID}; /* Extract flow_tag field. */ __vector unsigned char ftag0 = vec_perm(mcqe1, zero, flow_mark_shuf); __vector unsigned char ftag1 = vec_perm(mcqe2, zero, flow_mark_shuf); __vector unsigned char ftag = (__vector unsigned char) vec_mergel((__vector unsigned int)ftag0, (__vector unsigned int)ftag1); __vector unsigned char invalid_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)ftag, (__vector unsigned int)zero); ol_flags_mask = (__vector unsigned char) vec_or((__vector unsigned long) ol_flags_mask, (__vector unsigned long)fdir_all_flags); /* Set RTE_MBUF_F_RX_FDIR if flow tag is non-zero. */ invalid_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)ftag, (__vector unsigned int)zero); ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_andc((__vector unsigned long) fdir_flags, (__vector unsigned long)invalid_mask)); ol_flags_mask = (__vector unsigned char) vec_or((__vector unsigned long) ol_flags_mask, (__vector unsigned long)fdir_flags); /* Mask out invalid entries. */ fdir_id_flags = (__vector unsigned char) vec_andc((__vector unsigned long) fdir_id_flags, (__vector unsigned long)invalid_mask); /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */ ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_andc((__vector unsigned long) fdir_id_flags, (__vector unsigned long) vec_cmpeq((__vector unsigned int)ftag, (__vector unsigned int)ft_mask))); ftag = (__vector unsigned char) ((__vector unsigned int)ftag + (__vector unsigned int)flow_mark_adj); elts[pos]->hash.fdir.hi = ((__vector unsigned int)ftag)[0]; elts[pos + 1]->hash.fdir.hi = ((__vector unsigned int)ftag)[1]; elts[pos + 2]->hash.fdir.hi = ((__vector unsigned int)ftag)[2]; elts[pos + 3]->hash.fdir.hi = ((__vector unsigned int)ftag)[3]; } } if (unlikely(rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)) { if (rxq->mcqe_format == MLX5_CQE_RESP_FORMAT_L34H_STRIDX) { const uint8_t pkt_info = (cq->pkt_info & 0x3) << 6; const uint8_t pkt_hdr0 = mcq[pos % 8].hdr_type; const uint8_t pkt_hdr1 = mcq[pos % 8 + 1].hdr_type; const uint8_t pkt_hdr2 = mcq[pos % 8 + 2].hdr_type; const uint8_t pkt_hdr3 = mcq[pos % 8 + 3].hdr_type; const __vector unsigned char vlan_mask = (__vector unsigned char) (__vector unsigned int) { (RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED), (RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED), (RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED), (RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED)}; const __vector unsigned char cv_mask = (__vector unsigned char) (__vector unsigned int) { MLX5_CQE_VLAN_STRIPPED, MLX5_CQE_VLAN_STRIPPED, MLX5_CQE_VLAN_STRIPPED, MLX5_CQE_VLAN_STRIPPED}; __vector unsigned char pkt_cv = (__vector unsigned char) (__vector unsigned int) { pkt_hdr0 & 0x1, pkt_hdr1 & 0x1, pkt_hdr2 & 0x1, pkt_hdr3 & 0x1}; ol_flags_mask = (__vector unsigned char) vec_or((__vector unsigned long) ol_flags_mask, (__vector unsigned long)vlan_mask); ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_and((__vector unsigned long)vlan_mask, (__vector unsigned long) vec_cmpeq((__vector unsigned int)pkt_cv, (__vector unsigned int)cv_mask))); elts[pos]->packet_type = mlx5_ptype_table[(pkt_hdr0 >> 2) | pkt_info]; elts[pos + 1]->packet_type = mlx5_ptype_table[(pkt_hdr1 >> 2) | pkt_info]; elts[pos + 2]->packet_type = mlx5_ptype_table[(pkt_hdr2 >> 2) | pkt_info]; elts[pos + 3]->packet_type = mlx5_ptype_table[(pkt_hdr3 >> 2) | pkt_info]; if (rxq->tunnel) { elts[pos]->packet_type |= !!(((pkt_hdr0 >> 2) | pkt_info) & (1 << 6)); elts[pos + 1]->packet_type |= !!(((pkt_hdr1 >> 2) | pkt_info) & (1 << 6)); elts[pos + 2]->packet_type |= !!(((pkt_hdr2 >> 2) | pkt_info) & (1 << 6)); elts[pos + 3]->packet_type |= !!(((pkt_hdr3 >> 2) | pkt_info) & (1 << 6)); } } const __vector unsigned char hash_mask = (__vector unsigned char)(__vector unsigned int) { RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH}; const __vector unsigned char rearm_flags = (__vector unsigned char)(__vector unsigned int) { (uint32_t)t_pkt->ol_flags, (uint32_t)t_pkt->ol_flags, (uint32_t)t_pkt->ol_flags, (uint32_t)t_pkt->ol_flags}; ol_flags_mask = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags_mask, (__vector unsigned long)hash_mask); ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_andc((__vector unsigned long)rearm_flags, (__vector unsigned long)ol_flags_mask)); elts[pos]->ol_flags = ((__vector unsigned int)ol_flags)[0]; elts[pos + 1]->ol_flags = ((__vector unsigned int)ol_flags)[1]; elts[pos + 2]->ol_flags = ((__vector unsigned int)ol_flags)[2]; elts[pos + 3]->ol_flags = ((__vector unsigned int)ol_flags)[3]; elts[pos]->hash.rss = 0; elts[pos + 1]->hash.rss = 0; elts[pos + 2]->hash.rss = 0; elts[pos + 3]->hash.rss = 0; } if (rxq->dynf_meta) { int32_t offs = rxq->flow_meta_offset; const uint32_t meta = *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *); /* Check if title packet has valid metadata. */ if (meta) { MLX5_ASSERT(t_pkt->ol_flags & rxq->flow_meta_mask); *RTE_MBUF_DYNFIELD(elts[pos], offs, uint32_t *) = meta; *RTE_MBUF_DYNFIELD(elts[pos + 1], offs, uint32_t *) = meta; *RTE_MBUF_DYNFIELD(elts[pos + 2], offs, uint32_t *) = meta; *RTE_MBUF_DYNFIELD(elts[pos + 3], offs, uint32_t *) = meta; } } pos += MLX5_VPMD_DESCS_PER_LOOP; /* Move to next CQE and invalidate consumed CQEs. */ if (!(pos & 0x7) && pos < mcqe_n) { if (pos + 8 < mcqe_n) rte_prefetch0((void *)(cq + pos + 8)); mcq = (void *)&(cq + pos)->pkt_info; for (i = 0; i < 8; ++i) cq[inv++].op_own = MLX5_CQE_INVALIDATE; } } /* Invalidate the rest of CQEs. */ for (; inv < mcqe_n; ++inv) cq[inv].op_own = MLX5_CQE_INVALIDATE; #ifdef MLX5_PMD_SOFT_COUNTERS rxq->stats.ipackets += mcqe_n; rxq->stats.ibytes += rcvd_byte; #endif return mcqe_n; } /** * Calculate packet type and offload flag for mbuf and store it. * * @param rxq * Pointer to RX queue structure. * @param cqes[4] * Array of four 16bytes completions extracted from the original completion * descriptor. * @param op_err * Opcode vector having responder error status. Each field is 4B. * @param pkts * Pointer to array of packets to be filled. */ static inline void rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __vector unsigned char cqes[4], __vector unsigned char op_err, struct rte_mbuf **pkts) { __vector unsigned char pinfo0, pinfo1; __vector unsigned char pinfo, ptype; __vector unsigned char ol_flags = (__vector unsigned char) (__vector unsigned int){ rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH | rxq->hw_timestamp * rxq->timestamp_rx_flag, rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH | rxq->hw_timestamp * rxq->timestamp_rx_flag, rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH | rxq->hw_timestamp * rxq->timestamp_rx_flag, rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH | rxq->hw_timestamp * rxq->timestamp_rx_flag}; __vector unsigned char cv_flags; const __vector unsigned char zero = (__vector unsigned char){0}; const __vector unsigned char ptype_mask = (__vector unsigned char)(__vector unsigned int){ 0x0000fd06, 0x0000fd06, 0x0000fd06, 0x0000fd06}; const __vector unsigned char ptype_ol_mask = (__vector unsigned char)(__vector unsigned int){ 0x00000106, 0x00000106, 0x00000106, 0x00000106}; const __vector unsigned char pinfo_mask = (__vector unsigned char)(__vector unsigned int){ 0x00000003, 0x00000003, 0x00000003, 0x00000003}; const __vector unsigned char cv_flag_sel = (__vector unsigned char){ 0, (uint8_t)(RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED), (uint8_t)(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), 0, (uint8_t)(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), 0, (uint8_t)((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1), 0, 0, 0, 0, 0, 0, 0, 0, 0}; const __vector unsigned char cv_mask = (__vector unsigned char)(__vector unsigned int){ RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED}; const __vector unsigned char mbuf_init = (__vector unsigned char)vec_vsx_ld (0, (__vector unsigned char *)&rxq->mbuf_initializer); const __vector unsigned short rearm_sel_mask = (__vector unsigned short){0, 0, 0, 0, 0xffff, 0xffff, 0, 0}; __vector unsigned char rearm0, rearm1, rearm2, rearm3; uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3; /* Extract pkt_info field. */ pinfo0 = (__vector unsigned char) vec_mergeh((__vector unsigned int)cqes[0], (__vector unsigned int)cqes[1]); pinfo1 = (__vector unsigned char) vec_mergeh((__vector unsigned int)cqes[2], (__vector unsigned int)cqes[3]); pinfo = (__vector unsigned char) vec_mergeh((__vector unsigned long)pinfo0, (__vector unsigned long)pinfo1); /* Extract hdr_type_etc field. */ pinfo0 = (__vector unsigned char) vec_mergel((__vector unsigned int)cqes[0], (__vector unsigned int)cqes[1]); pinfo1 = (__vector unsigned char) vec_mergel((__vector unsigned int)cqes[2], (__vector unsigned int)cqes[3]); ptype = (__vector unsigned char) vec_mergeh((__vector unsigned long)pinfo0, (__vector unsigned long)pinfo1); if (rxq->mark) { const __vector unsigned char pinfo_ft_mask = (__vector unsigned char)(__vector unsigned int){ 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00}; const __vector unsigned char fdir_flags = (__vector unsigned char)(__vector unsigned int){ RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR}; __vector unsigned char fdir_id_flags = (__vector unsigned char)(__vector unsigned int){ RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID}; __vector unsigned char flow_tag, invalid_mask; flow_tag = (__vector unsigned char) vec_and((__vector unsigned long)pinfo, (__vector unsigned long)pinfo_ft_mask); /* Check if flow tag is non-zero then set RTE_MBUF_F_RX_FDIR. */ invalid_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)flow_tag, (__vector unsigned int)zero); ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_andc((__vector unsigned long)fdir_flags, (__vector unsigned long)invalid_mask)); /* Mask out invalid entries. */ fdir_id_flags = (__vector unsigned char) vec_andc((__vector unsigned long)fdir_id_flags, (__vector unsigned long)invalid_mask); /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */ ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long) vec_andc((__vector unsigned long)fdir_id_flags, (__vector unsigned long) vec_cmpeq((__vector unsigned int)flow_tag, (__vector unsigned int)pinfo_ft_mask))); } /* * Merge the two fields to generate the following: * bit[1] = l3_ok * bit[2] = l4_ok * bit[8] = cv * bit[11:10] = l3_hdr_type * bit[14:12] = l4_hdr_type * bit[15] = ip_frag * bit[16] = tunneled * bit[17] = outer_l3_type */ ptype = (__vector unsigned char) vec_and((__vector unsigned long)ptype, (__vector unsigned long)ptype_mask); pinfo = (__vector unsigned char) vec_and((__vector unsigned long)pinfo, (__vector unsigned long)pinfo_mask); pinfo = (__vector unsigned char) vec_sl((__vector unsigned int)pinfo, (__vector unsigned int){16, 16, 16, 16}); /* Make pinfo has merged fields for ol_flags calculation. */ pinfo = (__vector unsigned char) vec_or((__vector unsigned long)ptype, (__vector unsigned long)pinfo); ptype = (__vector unsigned char) vec_sr((__vector unsigned int)pinfo, (__vector unsigned int){10, 10, 10, 10}); ptype = (__vector unsigned char) vec_packs((__vector unsigned int)ptype, (__vector unsigned int)zero); /* Errored packets will have RTE_PTYPE_ALL_MASK. */ op_err = (__vector unsigned char) vec_sr((__vector unsigned short)op_err, (__vector unsigned short){8, 8, 8, 8, 8, 8, 8, 8}); ptype = (__vector unsigned char) vec_or((__vector unsigned long)ptype, (__vector unsigned long)op_err); pt_idx0 = (uint8_t)((__vector unsigned char)ptype)[0]; pt_idx1 = (uint8_t)((__vector unsigned char)ptype)[2]; pt_idx2 = (uint8_t)((__vector unsigned char)ptype)[4]; pt_idx3 = (uint8_t)((__vector unsigned char)ptype)[6]; pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] | !!(pt_idx0 & (1 << 6)) * rxq->tunnel; pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] | !!(pt_idx1 & (1 << 6)) * rxq->tunnel; pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] | !!(pt_idx2 & (1 << 6)) * rxq->tunnel; pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] | !!(pt_idx3 & (1 << 6)) * rxq->tunnel; /* Fill flags for checksum and VLAN. */ pinfo = (__vector unsigned char) vec_and((__vector unsigned long)pinfo, (__vector unsigned long)ptype_ol_mask); pinfo = vec_perm(cv_flag_sel, zero, pinfo); /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */ cv_flags = (__vector unsigned char) vec_sl((__vector unsigned int)pinfo, (__vector unsigned int){9, 9, 9, 9}); cv_flags = (__vector unsigned char) vec_or((__vector unsigned long)pinfo, (__vector unsigned long)cv_flags); /* Move back flags to start from byte[0]. */ cv_flags = (__vector unsigned char) vec_sr((__vector unsigned int)cv_flags, (__vector unsigned int){8, 8, 8, 8}); /* Mask out garbage bits. */ cv_flags = (__vector unsigned char) vec_and((__vector unsigned long)cv_flags, (__vector unsigned long)cv_mask); /* Merge to ol_flags. */ ol_flags = (__vector unsigned char) vec_or((__vector unsigned long)ol_flags, (__vector unsigned long)cv_flags); /* Merge mbuf_init and ol_flags. */ rearm0 = (__vector unsigned char) vec_sel((__vector unsigned short)mbuf_init, (__vector unsigned short) vec_slo((__vector unsigned short)ol_flags, (__vector unsigned char){64}), rearm_sel_mask); rearm1 = (__vector unsigned char) vec_sel((__vector unsigned short)mbuf_init, (__vector unsigned short) vec_slo((__vector unsigned short)ol_flags, (__vector unsigned char){32}), rearm_sel_mask); rearm2 = (__vector unsigned char) vec_sel((__vector unsigned short)mbuf_init, (__vector unsigned short)ol_flags, rearm_sel_mask); rearm3 = (__vector unsigned char) vec_sel((__vector unsigned short)mbuf_init, (__vector unsigned short) vec_sro((__vector unsigned short)ol_flags, (__vector unsigned char){32}), rearm_sel_mask); /* Write 8B rearm_data and 8B ol_flags. */ vec_vsx_st(rearm0, 0, (__vector unsigned char *)&pkts[0]->rearm_data); vec_vsx_st(rearm1, 0, (__vector unsigned char *)&pkts[1]->rearm_data); vec_vsx_st(rearm2, 0, (__vector unsigned char *)&pkts[2]->rearm_data); vec_vsx_st(rearm3, 0, (__vector unsigned char *)&pkts[3]->rearm_data); } /** * Process a non-compressed completion and fill in mbufs in RX SW ring * with data extracted from the title completion descriptor. * * @param rxq * Pointer to RX queue structure. * @param cq * Pointer to completion array having a non-compressed completion at first. * @param elts * Pointer to SW ring to be filled. The first mbuf has to be pre-built from * the title completion descriptor to be copied to the rest of mbufs. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * @param[out] err * Pointer to a flag. Set non-zero value if pkts array has at least one error * packet to handle. * @param[out] comp * Pointer to a index. Set it to the first compressed completion if any. * * @return * Number of CQEs successfully processed. */ static inline uint16_t rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq, struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t pkts_n, uint64_t *err, uint64_t *comp) { const uint16_t q_n = 1 << rxq->cqe_n; const uint16_t q_mask = q_n - 1; unsigned int pos; uint64_t n = 0; uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP; uint16_t nocmp_n = 0; unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1)); const __vector unsigned char zero = (__vector unsigned char){0}; const __vector unsigned char ones = vec_splat_u8(-1); const __vector unsigned char owner_check = (__vector unsigned char)(__vector unsigned long){ 0x0100000001000000LL, 0x0100000001000000LL}; const __vector unsigned char opcode_check = (__vector unsigned char)(__vector unsigned long){ 0xf0000000f0000000LL, 0xf0000000f0000000LL}; const __vector unsigned char format_check = (__vector unsigned char)(__vector unsigned long){ 0x0c0000000c000000LL, 0x0c0000000c000000LL}; const __vector unsigned char resp_err_check = (__vector unsigned char)(__vector unsigned long){ 0xe0000000e0000000LL, 0xe0000000e0000000LL}; #ifdef MLX5_PMD_SOFT_COUNTERS uint32_t rcvd_byte = 0; /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ const __vector unsigned char len_shuf_mask = (__vector unsigned char){ 1, 0, 5, 4, 9, 8, 13, 12, -1, -1, -1, -1, -1, -1, -1, -1}; #endif /* Mask to shuffle from extracted CQE to mbuf. */ const __vector unsigned char shuf_mask = (__vector unsigned char){ 5, 4, /* bswap16, pkt_len */ -1, -1, /* zero out 2nd half of pkt_len */ 5, 4, /* bswap16, data_len */ 11, 10, /* bswap16, vlan+tci */ 15, 14, 13, 12, /* bswap32, rss */ 1, 2, 3, -1}; /* fdir.hi */ /* Mask to blend from the last Qword to the first DQword. */ /* Mask to blend from the last Qword to the first DQword. */ const __vector unsigned char blend_mask = (__vector unsigned char){ -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1}; const __vector unsigned char crc_adj = (__vector unsigned char)(__vector unsigned short){ rxq->crc_present * RTE_ETHER_CRC_LEN, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0}; const __vector unsigned char flow_mark_adj = (__vector unsigned char)(__vector unsigned int){ 0, 0, 0, rxq->mark * (-1)}; const __vector unsigned short cqe_sel_mask1 = (__vector unsigned short){0, 0, 0, 0, 0xffff, 0xffff, 0, 0}; const __vector unsigned short cqe_sel_mask2 = (__vector unsigned short){0, 0, 0xffff, 0, 0, 0, 0, 0}; /* * A. load first Qword (8bytes) in one loop. * B. copy 4 mbuf pointers from elts ring to returning pkts. * C. load remaining CQE data and extract necessary fields. * Final 16bytes cqes[] extracted from original 64bytes CQE has the * following structure: * struct { * uint8_t pkt_info; * uint8_t flow_tag[3]; * uint16_t byte_cnt; * uint8_t rsvd4; * uint8_t op_own; * uint16_t hdr_type_etc; * uint16_t vlan_info; * uint32_t rx_has_res; * } c; * D. fill in mbuf. * E. get valid CQEs. * F. find compressed CQE. */ for (pos = 0; pos < pkts_n; pos += MLX5_VPMD_DESCS_PER_LOOP) { __vector unsigned char cqes[MLX5_VPMD_DESCS_PER_LOOP]; __vector unsigned char cqe_tmp1, cqe_tmp2; __vector unsigned char pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3; __vector unsigned char op_own, op_own_tmp1, op_own_tmp2; __vector unsigned char opcode, owner_mask, invalid_mask; __vector unsigned char comp_mask; __vector unsigned char mask; #ifdef MLX5_PMD_SOFT_COUNTERS const __vector unsigned char lower_half = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}; const __vector unsigned char upper_half = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}; const __vector unsigned long shmax = {64, 64}; __vector unsigned char byte_cnt; __vector unsigned short left, right; __vector unsigned long lshift; __vector __attribute__((altivec(bool__))) unsigned long shmask; #endif __vector unsigned char mbp1, mbp2; __vector unsigned char p = (__vector unsigned char)(__vector unsigned short){ 0, 1, 2, 3, 0, 0, 0, 0}; unsigned int p1, p2, p3; /* Prefetch next 4 CQEs. */ if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) { rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]); } /* A.0 do not cross the end of CQ. */ mask = (__vector unsigned char)(__vector unsigned long){ (pkts_n - pos) * sizeof(uint16_t) * 8, 0}; { __vector unsigned long lshift; __vector __attribute__((altivec(bool__))) unsigned long shmask; const __vector unsigned long shmax = {64, 64}; lshift = vec_splat((__vector unsigned long)mask, 0); shmask = vec_cmpgt(shmax, lshift); mask = (__vector unsigned char) vec_sl((__vector unsigned long)ones, lshift); mask = (__vector unsigned char) vec_sel((__vector unsigned long)shmask, (__vector unsigned long)mask, shmask); } p = (__vector unsigned char) vec_andc((__vector unsigned long)p, (__vector unsigned long)mask); /* A.1 load cqes. */ p3 = (unsigned int)((__vector unsigned short)p)[3]; cqes[3] = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p3].sop_drop_qpn, 0LL}; rte_compiler_barrier(); p2 = (unsigned int)((__vector unsigned short)p)[2]; cqes[2] = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p2].sop_drop_qpn, 0LL}; rte_compiler_barrier(); /* B.1 load mbuf pointers. */ mbp1 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&elts[pos]); mbp2 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&elts[pos + 2]); /* A.1 load a block having op_own. */ p1 = (unsigned int)((__vector unsigned short)p)[1]; cqes[1] = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p1].sop_drop_qpn, 0LL}; rte_compiler_barrier(); cqes[0] = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos].sop_drop_qpn, 0LL}; rte_compiler_barrier(); /* B.2 copy mbuf pointers. */ *(__vector unsigned char *)&pkts[pos] = mbp1; *(__vector unsigned char *)&pkts[pos + 2] = mbp2; rte_io_rmb(); /* C.1 load remaining CQE data and extract necessary fields. */ cqe_tmp2 = *(__vector unsigned char *) &cq[pos + p3].pkt_info; cqe_tmp1 = *(__vector unsigned char *) &cq[pos + p2].pkt_info; cqes[3] = vec_sel(cqes[3], cqe_tmp2, blend_mask); cqes[2] = vec_sel(cqes[2], cqe_tmp1, blend_mask); cqe_tmp2 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&cq[pos + p3].csum); cqe_tmp1 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&cq[pos + p2].csum); cqes[3] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[3], (__vector unsigned short)cqe_tmp2, cqe_sel_mask1); cqes[2] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[2], (__vector unsigned short)cqe_tmp1, cqe_sel_mask1); cqe_tmp2 = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p3].rsvd4[2], 0LL}; cqe_tmp1 = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p2].rsvd4[2], 0LL}; cqes[3] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[3], (__vector unsigned short)cqe_tmp2, (__vector unsigned short)cqe_sel_mask2); cqes[2] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[2], (__vector unsigned short)cqe_tmp1, (__vector unsigned short)cqe_sel_mask2); /* C.2 generate final structure for mbuf with swapping bytes. */ pkt_mb3 = vec_perm(cqes[3], zero, shuf_mask); pkt_mb2 = vec_perm(cqes[2], zero, shuf_mask); /* C.3 adjust CRC length. */ pkt_mb3 = (__vector unsigned char) ((__vector unsigned short)pkt_mb3 - (__vector unsigned short)crc_adj); pkt_mb2 = (__vector unsigned char) ((__vector unsigned short)pkt_mb2 - (__vector unsigned short)crc_adj); /* C.4 adjust flow mark. */ pkt_mb3 = (__vector unsigned char) ((__vector unsigned int)pkt_mb3 + (__vector unsigned int)flow_mark_adj); pkt_mb2 = (__vector unsigned char) ((__vector unsigned int)pkt_mb2 + (__vector unsigned int)flow_mark_adj); /* D.1 fill in mbuf - rx_descriptor_fields1. */ *(__vector unsigned char *) &pkts[pos + 3]->pkt_len = pkt_mb3; *(__vector unsigned char *) &pkts[pos + 2]->pkt_len = pkt_mb2; /* E.1 extract op_own field. */ op_own_tmp2 = (__vector unsigned char) vec_mergeh((__vector unsigned int)cqes[2], (__vector unsigned int)cqes[3]); /* C.1 load remaining CQE data and extract necessary fields. */ cqe_tmp2 = *(__vector unsigned char *) &cq[pos + p1].pkt_info; cqe_tmp1 = *(__vector unsigned char *) &cq[pos].pkt_info; cqes[1] = vec_sel(cqes[1], cqe_tmp2, blend_mask); cqes[0] = vec_sel(cqes[0], cqe_tmp2, blend_mask); cqe_tmp2 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&cq[pos + p1].csum); cqe_tmp1 = (__vector unsigned char)vec_vsx_ld(0, (signed int const *)&cq[pos].csum); cqes[1] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[1], (__vector unsigned short)cqe_tmp2, cqe_sel_mask1); cqes[0] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[0], (__vector unsigned short)cqe_tmp1, cqe_sel_mask1); cqe_tmp2 = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos + p1].rsvd4[2], 0LL}; cqe_tmp1 = (__vector unsigned char)(__vector unsigned long){ *(__rte_aligned(8) unsigned long *) &cq[pos].rsvd4[2], 0LL}; cqes[1] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[1], (__vector unsigned short)cqe_tmp2, cqe_sel_mask2); cqes[0] = (__vector unsigned char) vec_sel((__vector unsigned short)cqes[0], (__vector unsigned short)cqe_tmp1, cqe_sel_mask2); /* C.2 generate final structure for mbuf with swapping bytes. */ pkt_mb1 = vec_perm(cqes[1], zero, shuf_mask); pkt_mb0 = vec_perm(cqes[0], zero, shuf_mask); /* C.3 adjust CRC length. */ pkt_mb1 = (__vector unsigned char) ((__vector unsigned short)pkt_mb1 - (__vector unsigned short)crc_adj); pkt_mb0 = (__vector unsigned char) ((__vector unsigned short)pkt_mb0 - (__vector unsigned short)crc_adj); /* C.4 adjust flow mark. */ pkt_mb1 = (__vector unsigned char) ((__vector unsigned int)pkt_mb1 + (__vector unsigned int)flow_mark_adj); pkt_mb0 = (__vector unsigned char) ((__vector unsigned int)pkt_mb0 + (__vector unsigned int)flow_mark_adj); /* E.1 extract op_own byte. */ op_own_tmp1 = (__vector unsigned char) vec_mergeh((__vector unsigned int)cqes[0], (__vector unsigned int)cqes[1]); op_own = (__vector unsigned char) vec_mergel((__vector unsigned long)op_own_tmp1, (__vector unsigned long)op_own_tmp2); /* D.1 fill in mbuf - rx_descriptor_fields1. */ *(__vector unsigned char *) &pkts[pos + 1]->pkt_len = pkt_mb1; *(__vector unsigned char *) &pkts[pos]->pkt_len = pkt_mb0; /* E.2 flip owner bit to mark CQEs from last round. */ owner_mask = (__vector unsigned char) vec_and((__vector unsigned long)op_own, (__vector unsigned long)owner_check); if (ownership) owner_mask = (__vector unsigned char) vec_xor((__vector unsigned long)owner_mask, (__vector unsigned long)owner_check); owner_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)owner_mask, (__vector unsigned int)owner_check); owner_mask = (__vector unsigned char) vec_packs((__vector unsigned int)owner_mask, (__vector unsigned int)zero); /* E.3 get mask for invalidated CQEs. */ opcode = (__vector unsigned char) vec_and((__vector unsigned long)op_own, (__vector unsigned long)opcode_check); invalid_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)opcode_check, (__vector unsigned int)opcode); invalid_mask = (__vector unsigned char) vec_packs((__vector unsigned int)invalid_mask, (__vector unsigned int)zero); /* E.4 mask out beyond boundary. */ invalid_mask = (__vector unsigned char) vec_or((__vector unsigned long)invalid_mask, (__vector unsigned long)mask); /* E.5 merge invalid_mask with invalid owner. */ invalid_mask = (__vector unsigned char) vec_or((__vector unsigned long)invalid_mask, (__vector unsigned long)owner_mask); /* F.1 find compressed CQE format. */ comp_mask = (__vector unsigned char) vec_and((__vector unsigned long)op_own, (__vector unsigned long)format_check); comp_mask = (__vector unsigned char) vec_cmpeq((__vector unsigned int)comp_mask, (__vector unsigned int)format_check); comp_mask = (__vector unsigned char) vec_packs((__vector unsigned int)comp_mask, (__vector unsigned int)zero); /* F.2 mask out invalid entries. */ comp_mask = (__vector unsigned char) vec_andc((__vector unsigned long)comp_mask, (__vector unsigned long)invalid_mask); comp_idx = ((__vector unsigned long)comp_mask)[0]; /* F.3 get the first compressed CQE. */ comp_idx = comp_idx ? __builtin_ctzll(comp_idx) / (sizeof(uint16_t) * 8) : MLX5_VPMD_DESCS_PER_LOOP; /* E.6 mask out entries after the compressed CQE. */ mask = (__vector unsigned char)(__vector unsigned long){ (comp_idx * sizeof(uint16_t) * 8), 0}; lshift = vec_splat((__vector unsigned long)mask, 0); shmask = vec_cmpgt(shmax, lshift); mask = (__vector unsigned char) vec_sl((__vector unsigned long)ones, lshift); mask = (__vector unsigned char) vec_sel((__vector unsigned long)shmask, (__vector unsigned long)mask, shmask); invalid_mask = (__vector unsigned char) vec_or((__vector unsigned long)invalid_mask, (__vector unsigned long)mask); /* E.7 count non-compressed valid CQEs. */ n = ((__vector unsigned long)invalid_mask)[0]; n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) : MLX5_VPMD_DESCS_PER_LOOP; nocmp_n += n; /* D.2 get the final invalid mask. */ mask = (__vector unsigned char)(__vector unsigned long){ (n * sizeof(uint16_t) * 8), 0}; lshift = vec_splat((__vector unsigned long)mask, 0); shmask = vec_cmpgt(shmax, lshift); mask = (__vector unsigned char) vec_sl((__vector unsigned long)ones, lshift); mask = (__vector unsigned char) vec_sel((__vector unsigned long)shmask, (__vector unsigned long)mask, shmask); invalid_mask = (__vector unsigned char) vec_or((__vector unsigned long)invalid_mask, (__vector unsigned long)mask); /* D.3 check error in opcode. */ opcode = (__vector unsigned char) vec_cmpeq((__vector unsigned int)resp_err_check, (__vector unsigned int)opcode); opcode = (__vector unsigned char) vec_packs((__vector unsigned int)opcode, (__vector unsigned int)zero); opcode = (__vector unsigned char) vec_andc((__vector unsigned long)opcode, (__vector unsigned long)invalid_mask); /* D.4 mark if any error is set */ *err |= ((__vector unsigned long)opcode)[0]; /* D.5 fill in mbuf - rearm_data and packet_type. */ rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]); if (unlikely(rxq->shared)) { pkts[pos]->port = cq[pos].user_index_low; pkts[pos + p1]->port = cq[pos + p1].user_index_low; pkts[pos + p2]->port = cq[pos + p2].user_index_low; pkts[pos + p3]->port = cq[pos + p3].user_index_low; } if (rxq->hw_timestamp) { int offset = rxq->timestamp_offset; if (rxq->rt_timestamp) { struct mlx5_dev_ctx_shared *sh = rxq->sh; uint64_t ts; ts = rte_be_to_cpu_64(cq[pos].timestamp); mlx5_timestamp_set(pkts[pos], offset, mlx5_txpp_convert_rx_ts(sh, ts)); ts = rte_be_to_cpu_64(cq[pos + p1].timestamp); mlx5_timestamp_set(pkts[pos + 1], offset, mlx5_txpp_convert_rx_ts(sh, ts)); ts = rte_be_to_cpu_64(cq[pos + p2].timestamp); mlx5_timestamp_set(pkts[pos + 2], offset, mlx5_txpp_convert_rx_ts(sh, ts)); ts = rte_be_to_cpu_64(cq[pos + p3].timestamp); mlx5_timestamp_set(pkts[pos + 3], offset, mlx5_txpp_convert_rx_ts(sh, ts)); } else { mlx5_timestamp_set(pkts[pos], offset, rte_be_to_cpu_64(cq[pos].timestamp)); mlx5_timestamp_set(pkts[pos + 1], offset, rte_be_to_cpu_64(cq[pos + p1].timestamp)); mlx5_timestamp_set(pkts[pos + 2], offset, rte_be_to_cpu_64(cq[pos + p2].timestamp)); mlx5_timestamp_set(pkts[pos + 3], offset, rte_be_to_cpu_64(cq[pos + p3].timestamp)); } } if (rxq->dynf_meta) { uint64_t flag = rxq->flow_meta_mask; int32_t offs = rxq->flow_meta_offset; uint32_t mask = rxq->flow_meta_port_mask; uint32_t metadata; /* This code is subject for further optimization. */ metadata = rte_be_to_cpu_32 (cq[pos].flow_table_metadata) & mask; *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) = metadata; pkts[pos]->ol_flags |= metadata ? flag : 0ULL; metadata = rte_be_to_cpu_32 (cq[pos + 1].flow_table_metadata) & mask; *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) = metadata; pkts[pos + 1]->ol_flags |= metadata ? flag : 0ULL; metadata = rte_be_to_cpu_32 (cq[pos + 2].flow_table_metadata) & mask; *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) = metadata; pkts[pos + 2]->ol_flags |= metadata ? flag : 0ULL; metadata = rte_be_to_cpu_32 (cq[pos + 3].flow_table_metadata) & mask; *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) = metadata; pkts[pos + 3]->ol_flags |= metadata ? flag : 0ULL; } #ifdef MLX5_PMD_SOFT_COUNTERS /* Add up received bytes count. */ byte_cnt = vec_perm(op_own, zero, len_shuf_mask); byte_cnt = (__vector unsigned char) vec_andc((__vector unsigned long)byte_cnt, (__vector unsigned long)invalid_mask); left = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, lower_half); right = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, upper_half); byte_cnt = (__vector unsigned char)vec_add(left, right); left = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, lower_half); right = vec_perm((__vector unsigned short)byte_cnt, (__vector unsigned short)zero, upper_half); byte_cnt = (__vector unsigned char)vec_add(left, right); rcvd_byte += ((__vector unsigned long)byte_cnt)[0]; #endif /* * Break the loop unless more valid CQE is expected, or if * there's a compressed CQE. */ if (n != MLX5_VPMD_DESCS_PER_LOOP) break; } #ifdef MLX5_PMD_SOFT_COUNTERS rxq->stats.ipackets += nocmp_n; rxq->stats.ibytes += rcvd_byte; #endif if (comp_idx == n) *comp = comp_idx; return nocmp_n; } #endif /* RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_ */