/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2015 Intel Corporation. */ #ifndef _RTE_JHASH_H #define _RTE_JHASH_H /** * @file * * jhash functions. */ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include /* jhash.h: Jenkins hash support. * * Copyright (C) 2006 Bob Jenkins (bob_jenkins@burtleburtle.net) * * http://burtleburtle.net/bob/hash/ * * These are the credits from Bob's sources: * * lookup3.c, by Bob Jenkins, May 2006, Public Domain. * * These are functions for producing 32-bit hashes for hash table lookup. * hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() * are externally useful functions. Routines to test the hash are included * if SELF_TEST is defined. You can use this free for any purpose. It's in * the public domain. It has no warranty. * * $FreeBSD$ */ #define rot(x, k) (((x) << (k)) | ((x) >> (32-(k)))) /** @internal Internal function. NOTE: Arguments are modified. */ #define __rte_jhash_mix(a, b, c) do { \ a -= c; a ^= rot(c, 4); c += b; \ b -= a; b ^= rot(a, 6); a += c; \ c -= b; c ^= rot(b, 8); b += a; \ a -= c; a ^= rot(c, 16); c += b; \ b -= a; b ^= rot(a, 19); a += c; \ c -= b; c ^= rot(b, 4); b += a; \ } while (0) #define __rte_jhash_final(a, b, c) do { \ c ^= b; c -= rot(b, 14); \ a ^= c; a -= rot(c, 11); \ b ^= a; b -= rot(a, 25); \ c ^= b; c -= rot(b, 16); \ a ^= c; a -= rot(c, 4); \ b ^= a; b -= rot(a, 14); \ c ^= b; c -= rot(b, 24); \ } while (0) /** The golden ratio: an arbitrary value. */ #define RTE_JHASH_GOLDEN_RATIO 0xdeadbeef #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define BIT_SHIFT(x, y, k) (((x) >> (k)) | ((uint64_t)(y) << (32-(k)))) #else #define BIT_SHIFT(x, y, k) (((uint64_t)(x) << (k)) | ((y) >> (32-(k)))) #endif #define LOWER8b_MASK rte_le_to_cpu_32(0xff) #define LOWER16b_MASK rte_le_to_cpu_32(0xffff) #define LOWER24b_MASK rte_le_to_cpu_32(0xffffff) static inline void __rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb, unsigned check_align) { uint32_t a, b, c; /* Set up the internal state */ a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + *pc; c += *pb; /* * Check key alignment. For x86 architecture, first case is always optimal * If check_align is not set, first case will be used */ #if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_I686) || defined(RTE_ARCH_X86_X32) const uint32_t *k = (const uint32_t *)key; const uint32_t s = 0; #else const uint32_t *k = (uint32_t *)((uintptr_t)key & (uintptr_t)~3); const uint32_t s = ((uintptr_t)key & 3) * CHAR_BIT; #endif if (!check_align || s == 0) { while (length > 12) { a += k[0]; b += k[1]; c += k[2]; __rte_jhash_mix(a, b, c); k += 3; length -= 12; } switch (length) { case 12: c += k[2]; b += k[1]; a += k[0]; break; case 11: c += k[2] & LOWER24b_MASK; b += k[1]; a += k[0]; break; case 10: c += k[2] & LOWER16b_MASK; b += k[1]; a += k[0]; break; case 9: c += k[2] & LOWER8b_MASK; b += k[1]; a += k[0]; break; case 8: b += k[1]; a += k[0]; break; case 7: b += k[1] & LOWER24b_MASK; a += k[0]; break; case 6: b += k[1] & LOWER16b_MASK; a += k[0]; break; case 5: b += k[1] & LOWER8b_MASK; a += k[0]; break; case 4: a += k[0]; break; case 3: a += k[0] & LOWER24b_MASK; break; case 2: a += k[0] & LOWER16b_MASK; break; case 1: a += k[0] & LOWER8b_MASK; break; /* zero length strings require no mixing */ case 0: *pc = c; *pb = b; return; }; } else { /* all but the last block: affect some 32 bits of (a, b, c) */ while (length > 12) { a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); c += BIT_SHIFT(k[2], k[3], s); __rte_jhash_mix(a, b, c); k += 3; length -= 12; } /* last block: affect all 32 bits of (c) */ switch (length) { case 12: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); c += BIT_SHIFT(k[2], k[3], s); break; case 11: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); c += BIT_SHIFT(k[2], k[3], s) & LOWER24b_MASK; break; case 10: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); c += BIT_SHIFT(k[2], k[3], s) & LOWER16b_MASK; break; case 9: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); c += BIT_SHIFT(k[2], k[3], s) & LOWER8b_MASK; break; case 8: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s); break; case 7: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s) & LOWER24b_MASK; break; case 6: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s) & LOWER16b_MASK; break; case 5: a += BIT_SHIFT(k[0], k[1], s); b += BIT_SHIFT(k[1], k[2], s) & LOWER8b_MASK; break; case 4: a += BIT_SHIFT(k[0], k[1], s); break; case 3: a += BIT_SHIFT(k[0], k[1], s) & LOWER24b_MASK; break; case 2: a += BIT_SHIFT(k[0], k[1], s) & LOWER16b_MASK; break; case 1: a += BIT_SHIFT(k[0], k[1], s) & LOWER8b_MASK; break; /* zero length strings require no mixing */ case 0: *pc = c; *pb = b; return; } } __rte_jhash_final(a, b, c); *pc = c; *pb = b; } /** * Same as rte_jhash, but takes two seeds and return two uint32_ts. * pc and pb must be non-null, and *pc and *pb must both be initialized * with seeds. If you pass in (*pb)=0, the output (*pc) will be * the same as the return value from rte_jhash. * * @param key * Key to calculate hash of. * @param length * Length of key in bytes. * @param pc * IN: seed OUT: primary hash value. * @param pb * IN: second seed OUT: secondary hash value. */ static inline void rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb) { __rte_jhash_2hashes(key, length, pc, pb, 1); } /** * Same as rte_jhash_32b, but takes two seeds and return two uint32_ts. * pc and pb must be non-null, and *pc and *pb must both be initialized * with seeds. If you pass in (*pb)=0, the output (*pc) will be * the same as the return value from rte_jhash_32b. * * @param k * Key to calculate hash of. * @param length * Length of key in units of 4 bytes. * @param pc * IN: seed OUT: primary hash value. * @param pb * IN: second seed OUT: secondary hash value. */ static inline void rte_jhash_32b_2hashes(const uint32_t *k, uint32_t length, uint32_t *pc, uint32_t *pb) { __rte_jhash_2hashes((const void *) k, (length << 2), pc, pb, 0); } /** * The most generic version, hashes an arbitrary sequence * of bytes. No alignment or length assumptions are made about * the input key. For keys not aligned to four byte boundaries * or a multiple of four bytes in length, the memory region * just after may be read (but not used in the computation). * This may cross a page boundary. * * @param key * Key to calculate hash of. * @param length * Length of key in bytes. * @param initval * Initialising value of hash. * @return * Calculated hash value. */ static inline uint32_t rte_jhash(const void *key, uint32_t length, uint32_t initval) { uint32_t initval2 = 0; rte_jhash_2hashes(key, length, &initval, &initval2); return initval; } /** * A special optimized version that handles 1 or more of uint32_ts. * The length parameter here is the number of uint32_ts in the key. * * @param k * Key to calculate hash of. * @param length * Length of key in units of 4 bytes. * @param initval * Initialising value of hash. * @return * Calculated hash value. */ static inline uint32_t rte_jhash_32b(const uint32_t *k, uint32_t length, uint32_t initval) { uint32_t initval2 = 0; rte_jhash_32b_2hashes(k, length, &initval, &initval2); return initval; } static inline uint32_t __rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval) { a += RTE_JHASH_GOLDEN_RATIO + initval; b += RTE_JHASH_GOLDEN_RATIO + initval; c += RTE_JHASH_GOLDEN_RATIO + initval; __rte_jhash_final(a, b, c); return c; } /** * A special ultra-optimized versions that knows it is hashing exactly * 3 words. * * @param a * First word to calculate hash of. * @param b * Second word to calculate hash of. * @param c * Third word to calculate hash of. * @param initval * Initialising value of hash. * @return * Calculated hash value. */ static inline uint32_t rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval) { return __rte_jhash_3words(a + 12, b + 12, c + 12, initval); } /** * A special ultra-optimized versions that knows it is hashing exactly * 2 words. * * @param a * First word to calculate hash of. * @param b * Second word to calculate hash of. * @param initval * Initialising value of hash. * @return * Calculated hash value. */ static inline uint32_t rte_jhash_2words(uint32_t a, uint32_t b, uint32_t initval) { return __rte_jhash_3words(a + 8, b + 8, 8, initval); } /** * A special ultra-optimized versions that knows it is hashing exactly * 1 word. * * @param a * Word to calculate hash of. * @param initval * Initialising value of hash. * @return * Calculated hash value. */ static inline uint32_t rte_jhash_1word(uint32_t a, uint32_t initval) { return __rte_jhash_3words(a + 4, 4, 4, initval); } #ifdef __cplusplus } #endif #endif /* _RTE_JHASH_H */