/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include "rte_aesni_mb_pmd_private.h" static uint8_t cryptodev_driver_id; typedef void (*hash_one_block_t)(const void *data, void *digest); typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys); /** * Calculate the authentication pre-computes * * @param one_block_hash Function pointer to calculate digest on ipad/opad * @param ipad Inner pad output byte array * @param opad Outer pad output byte array * @param hkey Authentication key * @param hkey_len Authentication key length * @param blocksize Block size of selected hash algo */ static void calculate_auth_precomputes(hash_one_block_t one_block_hash, uint8_t *ipad, uint8_t *opad, uint8_t *hkey, uint16_t hkey_len, uint16_t blocksize) { unsigned i, length; uint8_t ipad_buf[blocksize] __rte_aligned(16); uint8_t opad_buf[blocksize] __rte_aligned(16); /* Setup inner and outer pads */ memset(ipad_buf, HMAC_IPAD_VALUE, blocksize); memset(opad_buf, HMAC_OPAD_VALUE, blocksize); /* XOR hash key with inner and outer pads */ length = hkey_len > blocksize ? blocksize : hkey_len; for (i = 0; i < length; i++) { ipad_buf[i] ^= hkey[i]; opad_buf[i] ^= hkey[i]; } /* Compute partial hashes */ (*one_block_hash)(ipad_buf, ipad); (*one_block_hash)(opad_buf, opad); /* Clean up stack */ memset(ipad_buf, 0, blocksize); memset(opad_buf, 0, blocksize); } /** Get xform chain order */ static enum aesni_mb_operation aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform) { if (xform == NULL) return AESNI_MB_OP_NOT_SUPPORTED; if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) return AESNI_MB_OP_CIPHER_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) return AESNI_MB_OP_CIPHER_HASH; } if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) return AESNI_MB_OP_HASH_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return AESNI_MB_OP_HASH_CIPHER; } if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) { if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) return AESNI_MB_OP_AEAD_CIPHER_HASH; else return AESNI_MB_OP_AEAD_HASH_CIPHER; } } return AESNI_MB_OP_NOT_SUPPORTED; } /** Set session authentication parameters */ static int aesni_mb_set_session_auth_parameters(const struct aesni_mb_op_fns *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { hash_one_block_t hash_oneblock_fn; if (xform == NULL) { sess->auth.algo = NULL_HASH; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { MB_LOG_ERR("Crypto xform struct not of type auth"); return -1; } /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; /* Set Authentication Parameters */ if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) { sess->auth.algo = AES_XCBC; (*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data, sess->auth.xcbc.k1_expanded, sess->auth.xcbc.k2, sess->auth.xcbc.k3); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) { sess->auth.algo = AES_CMAC; (*mb_ops->aux.keyexp.aes_cmac_expkey)(xform->auth.key.data, sess->auth.cmac.expkey); (*mb_ops->aux.keyexp.aes_cmac_subkey)(sess->auth.cmac.expkey, sess->auth.cmac.skey1, sess->auth.cmac.skey2); return 0; } switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5_HMAC: sess->auth.algo = MD5; hash_oneblock_fn = mb_ops->aux.one_block.md5; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: sess->auth.algo = SHA1; hash_oneblock_fn = mb_ops->aux.one_block.sha1; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: sess->auth.algo = SHA_224; hash_oneblock_fn = mb_ops->aux.one_block.sha224; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: sess->auth.algo = SHA_256; hash_oneblock_fn = mb_ops->aux.one_block.sha256; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: sess->auth.algo = SHA_384; hash_oneblock_fn = mb_ops->aux.one_block.sha384; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.algo = SHA_512; hash_oneblock_fn = mb_ops->aux.one_block.sha512; break; default: MB_LOG_ERR("Unsupported authentication algorithm selection"); return -ENOTSUP; } /* Calculate Authentication precomputes */ calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, xform->auth.key.data, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); return 0; } /** Set session cipher parameters */ static int aesni_mb_set_session_cipher_parameters(const struct aesni_mb_op_fns *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { uint8_t is_aes = 0; aes_keyexp_t aes_keyexp_fn; if (xform == NULL) { sess->cipher.mode = NULL_CIPHER; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { MB_LOG_ERR("Crypto xform struct not of type cipher"); return -EINVAL; } /* Select cipher direction */ switch (xform->cipher.op) { case RTE_CRYPTO_CIPHER_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; break; case RTE_CRYPTO_CIPHER_OP_DECRYPT: sess->cipher.direction = DECRYPT; break; default: MB_LOG_ERR("Invalid cipher operation parameter"); return -EINVAL; } /* Select cipher mode */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_AES_CBC: sess->cipher.mode = CBC; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = CNTR; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_DOCSISBPI: sess->cipher.mode = DOCSIS_SEC_BPI; is_aes = 1; break; case RTE_CRYPTO_CIPHER_DES_CBC: sess->cipher.mode = DES; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: sess->cipher.mode = DOCSIS_DES; break; default: MB_LOG_ERR("Unsupported cipher mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; /* Check key length and choose key expansion function for AES */ if (is_aes) { switch (xform->cipher.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes128; break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes192; break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes256; break; default: MB_LOG_ERR("Invalid cipher key length"); return -EINVAL; } /* Expanded cipher keys */ (*aes_keyexp_fn)(xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); } else { if (xform->cipher.key.length != 8) { MB_LOG_ERR("Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 8; des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.encode, xform->cipher.key.data); des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.decode, xform->cipher.key.data); } return 0; } static int aesni_mb_set_session_aead_parameters(const struct aesni_mb_op_fns *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { aes_keyexp_t aes_keyexp_fn; switch (xform->aead.op) { case RTE_CRYPTO_AEAD_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; break; case RTE_CRYPTO_AEAD_OP_DECRYPT: sess->cipher.direction = DECRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; break; default: MB_LOG_ERR("Invalid aead operation parameter"); return -EINVAL; } switch (xform->aead.algo) { case RTE_CRYPTO_AEAD_AES_CCM: sess->cipher.mode = CCM; sess->auth.algo = AES_CCM; break; default: MB_LOG_ERR("Unsupported aead mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->aead.iv.offset; sess->iv.length = xform->aead.iv.length; /* Check key length and choose key expansion function for AES */ switch (xform->aead.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes128; break; default: MB_LOG_ERR("Invalid cipher key length"); return -EINVAL; } /* Expanded cipher keys */ (*aes_keyexp_fn)(xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); return 0; } /** Parse crypto xform chain and set private session parameters */ int aesni_mb_set_session_parameters(const struct aesni_mb_op_fns *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; int ret; /* Select Crypto operation - hash then cipher / cipher then hash */ switch (aesni_mb_get_chain_order(xform)) { case AESNI_MB_OP_HASH_CIPHER: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = xform->next; sess->auth.digest_len = xform->auth.digest_length; break; case AESNI_MB_OP_CIPHER_HASH: sess->chain_order = CIPHER_HASH; auth_xform = xform->next; cipher_xform = xform; sess->auth.digest_len = xform->auth.digest_length; break; case AESNI_MB_OP_HASH_ONLY: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = NULL; sess->auth.digest_len = xform->auth.digest_length; break; case AESNI_MB_OP_CIPHER_ONLY: /* * Multi buffer library operates only at two modes, * CIPHER_HASH and HASH_CIPHER. When doing ciphering only, * chain order depends on cipher operation: encryption is always * the first operation and decryption the last one. */ if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->chain_order = CIPHER_HASH; else sess->chain_order = HASH_CIPHER; auth_xform = NULL; cipher_xform = xform; break; case AESNI_MB_OP_AEAD_CIPHER_HASH: sess->chain_order = CIPHER_HASH; sess->aead.aad_len = xform->aead.aad_length; sess->auth.digest_len = xform->aead.digest_length; aead_xform = xform; break; case AESNI_MB_OP_AEAD_HASH_CIPHER: sess->chain_order = HASH_CIPHER; sess->aead.aad_len = xform->aead.aad_length; sess->auth.digest_len = xform->aead.digest_length; aead_xform = xform; break; case AESNI_MB_OP_NOT_SUPPORTED: default: MB_LOG_ERR("Unsupported operation chain order parameter"); return -ENOTSUP; } /* Default IV length = 0 */ sess->iv.length = 0; ret = aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform); if (ret != 0) { MB_LOG_ERR("Invalid/unsupported authentication parameters"); return ret; } ret = aesni_mb_set_session_cipher_parameters(mb_ops, sess, cipher_xform); if (ret != 0) { MB_LOG_ERR("Invalid/unsupported cipher parameters"); return ret; } if (aead_xform) { ret = aesni_mb_set_session_aead_parameters(mb_ops, sess, aead_xform); if (ret != 0) { MB_LOG_ERR("Invalid/unsupported aead parameters"); return ret; } } return 0; } /** * burst enqueue, place crypto operations on ingress queue for processing. * * @param __qp Queue Pair to process * @param ops Crypto operations for processing * @param nb_ops Number of crypto operations for processing * * @return * - Number of crypto operations enqueued */ static uint16_t aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = __qp; unsigned int nb_enqueued; nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue, (void **)ops, nb_ops, NULL); qp->stats.enqueued_count += nb_enqueued; return nb_enqueued; } /** Get multi buffer session */ static inline struct aesni_mb_session * get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op) { struct aesni_mb_session *sess = NULL; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(op->sym->session != NULL)) sess = (struct aesni_mb_session *) get_session_private_data( op->sym->session, cryptodev_driver_id); } else { void *_sess = NULL; void *_sess_private_data = NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) return NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data)) return NULL; sess = (struct aesni_mb_session *)_sess_private_data; if (unlikely(aesni_mb_set_session_parameters(qp->op_fns, sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp, _sess_private_data); sess = NULL; } op->sym->session = (struct rte_cryptodev_sym_session *)_sess; set_session_private_data(op->sym->session, cryptodev_driver_id, _sess_private_data); } if (unlikely(sess == NULL)) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } /** * Process a crypto operation and complete a JOB_AES_HMAC job structure for * submission to the multi buffer library for processing. * * @param qp queue pair * @param job JOB_AES_HMAC structure to fill * @param m mbuf to process * * @return * - Completed JOB_AES_HMAC structure pointer on success * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible */ static inline int set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx) { struct rte_mbuf *m_src = op->sym->m_src, *m_dst; struct aesni_mb_session *session; uint16_t m_offset = 0; session = get_session(qp, op); if (session == NULL) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; /* Set authentication parameters */ job->hash_alg = session->auth.algo; if (job->hash_alg == AES_XCBC) { job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; } else if (job->hash_alg == AES_CCM) { job->u.CCM.aad = op->sym->aead.aad.data + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; } else if (job->hash_alg == AES_CMAC) { job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; } else { job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; } /* Mutable crypto operation parameters */ if (op->sym->m_dst) { m_src = m_dst = op->sym->m_dst; /* append space for output data to mbuf */ char *odata = rte_pktmbuf_append(m_dst, rte_pktmbuf_data_len(op->sym->m_src)); if (odata == NULL) { MB_LOG_ERR("failed to allocate space in destination " "mbuf for source data"); op->status = RTE_CRYPTO_OP_STATUS_ERROR; return -1; } memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*), rte_pktmbuf_data_len(op->sym->m_src)); } else { m_dst = m_src; if (job->hash_alg == AES_CCM) m_offset = op->sym->aead.data.offset; else m_offset = op->sym->cipher.data.offset; } /* Set digest output location */ if (job->hash_alg != NULL_HASH && session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; } else { if (job->hash_alg == AES_CCM) job->auth_tag_output = op->sym->aead.digest.data; else job->auth_tag_output = op->sym->auth.digest.data; } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ if (job->hash_alg != AES_CCM && job->hash_alg != AES_CMAC) job->auth_tag_output_len_in_bytes = get_truncated_digest_byte_length(job->hash_alg); else job->auth_tag_output_len_in_bytes = session->auth.digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameter */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset); if (job->hash_alg == AES_CCM) { job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset + 1); } else { job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length; job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset; job->msg_len_to_hash_in_bytes = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); } /* Set user data to be crypto operation data struct */ job->user_data = op; return 0; } static inline void verify_digest(struct aesni_mb_qp *qp __rte_unused, JOB_AES_HMAC *job, struct rte_crypto_op *op) { /* Verify digest if required */ if (job->hash_alg == AES_CCM) { if (memcmp(job->auth_tag_output, op->sym->aead.digest.data, job->auth_tag_output_len_in_bytes) != 0) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } else { if (memcmp(job->auth_tag_output, op->sym->auth.digest.data, job->auth_tag_output_len_in_bytes) != 0) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } } /** * Process a completed job and return rte_mbuf which job processed * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job to process * * @return * - Returns processed crypto operation. * - Returns NULL on invalid job */ static inline struct rte_crypto_op * post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job) { struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data; struct aesni_mb_session *sess = get_session_private_data( op->sym->session, cryptodev_driver_id); if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) { switch (job->status) { case STS_COMPLETED: op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if (job->hash_alg != NULL_HASH) { if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) verify_digest(qp, job, op); } break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; } } /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sess, 0, sizeof(struct aesni_mb_session)); memset(op->sym->session, 0, rte_cryptodev_get_header_session_size()); rte_mempool_put(qp->sess_mp, sess); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } return op; } /** * Process a completed JOB_AES_HMAC job and keep processing jobs until * get_completed_job return NULL * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job * * @return * - Number of processed jobs */ static unsigned handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *op = NULL; unsigned processed_jobs = 0; while (job != NULL) { op = post_process_mb_job(qp, job); if (op) { ops[processed_jobs++] = op; qp->stats.dequeued_count++; } else { qp->stats.dequeue_err_count++; break; } if (processed_jobs == nb_ops) break; job = (*qp->op_fns->job.get_completed_job)(&qp->mb_mgr); } return processed_jobs; } static inline uint16_t flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { int processed_ops = 0; /* Flush the remaining jobs */ JOB_AES_HMAC *job = (*qp->op_fns->job.flush_job)(&qp->mb_mgr); if (job) processed_ops += handle_completed_jobs(qp, job, &ops[processed_ops], nb_ops - processed_ops); return processed_ops; } static inline JOB_AES_HMAC * set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op) { job->chain_order = HASH_CIPHER; job->cipher_mode = NULL_CIPHER; job->hash_alg = NULL_HASH; job->cipher_direction = DECRYPT; /* Set user data to be crypto operation data struct */ job->user_data = op; return job; } static uint16_t aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = queue_pair; struct rte_crypto_op *op; JOB_AES_HMAC *job; int retval, processed_jobs = 0; if (unlikely(nb_ops == 0)) return 0; uint8_t digest_idx = qp->digest_idx; do { /* Get next operation to process from ingress queue */ retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op); if (retval < 0) break; /* Get next free mb job struct from mb manager */ job = (*qp->op_fns->job.get_next)(&qp->mb_mgr); if (unlikely(job == NULL)) { /* if no free mb job structs we need to flush mb_mgr */ processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], (nb_ops - processed_jobs) - 1); job = (*qp->op_fns->job.get_next)(&qp->mb_mgr); } retval = set_mb_job_params(job, qp, op, &digest_idx); if (unlikely(retval != 0)) { qp->stats.dequeue_err_count++; set_job_null_op(job, op); } /* Submit job to multi-buffer for processing */ job = (*qp->op_fns->job.submit)(&qp->mb_mgr); /* * If submit returns a processed job then handle it, * before submitting subsequent jobs */ if (job) processed_jobs += handle_completed_jobs(qp, job, &ops[processed_jobs], nb_ops - processed_jobs); } while (processed_jobs < nb_ops); qp->digest_idx = digest_idx; if (processed_jobs < 1) processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], nb_ops - processed_jobs); return processed_jobs; } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev); static int cryptodev_aesni_mb_create(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct aesni_mb_private *internals; enum aesni_mb_vector_mode vector_mode; /* Check CPU for support for AES instruction set */ if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) { MB_LOG_ERR("AES instructions not supported by CPU"); return -EFAULT; } dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { MB_LOG_ERR("failed to create cryptodev vdev"); return -ENODEV; } /* Check CPU for supported vector instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F)) vector_mode = RTE_AESNI_MB_AVX512; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) vector_mode = RTE_AESNI_MB_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) vector_mode = RTE_AESNI_MB_AVX; else vector_mode = RTE_AESNI_MB_SSE; dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_aesni_mb_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = aesni_mb_pmd_dequeue_burst; dev->enqueue_burst = aesni_mb_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_CPU_AESNI; switch (vector_mode) { case RTE_AESNI_MB_SSE: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE; break; case RTE_AESNI_MB_AVX: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX; break; case RTE_AESNI_MB_AVX2: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2; break; case RTE_AESNI_MB_AVX512: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512; break; default: break; } /* Set vector instructions mode supported */ internals = dev->data->dev_private; internals->vector_mode = vector_mode; internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; internals->max_nb_sessions = init_params->max_nb_sessions; return 0; } static int cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct aesni_mb_private), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS, RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_SESSIONS }; const char *name, *args; int retval; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; args = rte_vdev_device_args(vdev); retval = rte_cryptodev_pmd_parse_input_args(&init_params, args); if (retval) { MB_LOG_ERR("Failed to parse initialisation arguments[%s]\n", args); return -EINVAL; } return cryptodev_aesni_mb_create(name, vdev, &init_params); } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = { .probe = cryptodev_aesni_mb_probe, .remove = cryptodev_aesni_mb_remove }; static struct cryptodev_driver aesni_mb_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD, "max_nb_queue_pairs= " "max_nb_sessions= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv, cryptodev_aesni_mb_pmd_drv.driver, cryptodev_driver_id);