/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "test.h" /* * Memzone * ======= * * - Search for three reserved zones or reserve them if they do not exist: * * - One is on any socket id. * - The second is on socket 0. * - The last one is on socket 1 (if socket 1 exists). * * - Check that the zones exist. * * - Check that the zones are cache-aligned. * * - Check that zones do not overlap. * * - Check that the zones are on the correct socket id. * * - Check that a lookup of the first zone returns the same pointer. * * - Check that it is not possible to create another zone with the * same name as an existing zone. * * - Check flags for specific huge page size reservation */ /* Test if memory overlaps: return 1 if true, or 0 if false. */ static int is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2) { if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1) return 1; else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2) return 1; return 0; } static int test_memzone_invalid_alignment(void) { const struct rte_memzone * mz; mz = rte_memzone_lookup("invalid_alignment"); if (mz != NULL) { printf("Zone with invalid alignment has been reserved\n"); return -1; } mz = rte_memzone_reserve_aligned("invalid_alignment", 100, SOCKET_ID_ANY, 0, 100); if (mz != NULL) { printf("Zone with invalid alignment has been reserved\n"); return -1; } return 0; } static int test_memzone_reserving_zone_size_bigger_than_the_maximum(void) { const struct rte_memzone * mz; mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum"); if (mz != NULL) { printf("zone_size_bigger_than_the_maximum has been reserved\n"); return -1; } mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1, SOCKET_ID_ANY, 0); if (mz != NULL) { printf("It is impossible to reserve such big a memzone\n"); return -1; } return 0; } static int test_memzone_reserve_flags(void) { const struct rte_memzone *mz; const struct rte_memseg *ms; int hugepage_2MB_avail = 0; int hugepage_1GB_avail = 0; int hugepage_16MB_avail = 0; int hugepage_16GB_avail = 0; const size_t size = 100; int i = 0; ms = rte_eal_get_physmem_layout(); for (i = 0; i < RTE_MAX_MEMSEG; i++) { if (ms[i].hugepage_sz == RTE_PGSIZE_2M) hugepage_2MB_avail = 1; if (ms[i].hugepage_sz == RTE_PGSIZE_1G) hugepage_1GB_avail = 1; if (ms[i].hugepage_sz == RTE_PGSIZE_16M) hugepage_16MB_avail = 1; if (ms[i].hugepage_sz == RTE_PGSIZE_16G) hugepage_16GB_avail = 1; } /* Display the availability of 2MB ,1GB, 16MB, 16GB pages */ if (hugepage_2MB_avail) printf("2MB Huge pages available\n"); if (hugepage_1GB_avail) printf("1GB Huge pages available\n"); if (hugepage_16MB_avail) printf("16MB Huge pages available\n"); if (hugepage_16GB_avail) printf("16GB Huge pages available\n"); /* * If 2MB pages available, check that a small memzone is correctly * reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag. * Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an * available page size (i.e 1GB ) when 2MB pages are unavailable. */ if (hugepage_2MB_avail) { mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY, RTE_MEMZONE_2MB); if (mz == NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails unless * HINT flag is indicated */ if (!hugepage_1GB_avail) { mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 1GB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY, RTE_MEMZONE_1GB); if (mz != NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } } } /*As with 2MB tests above for 1GB huge page requests*/ if (hugepage_1GB_avail) { mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY, RTE_MEMZONE_1GB); if (mz == NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails unless * HINT flag is indicated */ if (!hugepage_2MB_avail) { mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL){ printf("MEMZONE FLAG 2MB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY, RTE_MEMZONE_2MB); if (mz != NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } } if (hugepage_2MB_avail && hugepage_1GB_avail) { mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_1GB); if (mz != NULL) { printf("BOTH SIZES SET\n"); return -1; } } } /* * This option is for IBM Power. If 16MB pages available, check * that a small memzone is correctly reserved from 16MB huge pages * when requested by the RTE_MEMZONE_16MB flag. Also check that * RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available * page size (i.e 16GB ) when 16MB pages are unavailable. */ if (hugepage_16MB_avail) { mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY, RTE_MEMZONE_16MB); if (mz == NULL) { printf("MEMZONE FLAG 16MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } mz = rte_memzone_reserve("flag_zone_16M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails * unless HINT flag is indicated */ if (!hugepage_16GB_avail) { mz = rte_memzone_reserve("flag_zone_16G_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16GB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY, RTE_MEMZONE_16GB); if (mz != NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } } } /*As with 16MB tests above for 16GB huge page requests*/ if (hugepage_16GB_avail) { mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY, RTE_MEMZONE_16GB); if (mz == NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } mz = rte_memzone_reserve("flag_zone_16G_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails * unless HINT flag is indicated */ if (!hugepage_16MB_avail) { mz = rte_memzone_reserve("flag_zone_16M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16MB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY, RTE_MEMZONE_16MB); if (mz != NULL) { printf("MEMZONE FLAG 16MB\n"); return -1; } } if (hugepage_16MB_avail && hugepage_16GB_avail) { mz = rte_memzone_reserve("flag_zone_16M_HINT", size, SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_16GB); if (mz != NULL) { printf("BOTH SIZES SET\n"); return -1; } } } return 0; } static int test_memzone_reserve_max(void) { const struct rte_memzone *mz; const struct rte_config *config; const struct rte_memseg *ms; int memseg_idx = 0; int memzone_idx = 0; size_t len = 0; void* last_addr; size_t maxlen = 0; /* get pointer to global configuration */ config = rte_eal_get_configuration(); ms = rte_eal_get_physmem_layout(); for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){ /* ignore smaller memsegs as they can only get smaller */ if (ms[memseg_idx].len < maxlen) continue; /* align everything */ last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, RTE_CACHE_LINE_SIZE); len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr); len &= ~((size_t) RTE_CACHE_LINE_MASK); /* cycle through all memzones */ for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) { /* stop when reaching last allocated memzone */ if (config->mem_config->memzone[memzone_idx].addr == NULL) break; /* check if the memzone is in our memseg and subtract length */ if ((config->mem_config->memzone[memzone_idx].addr >= ms[memseg_idx].addr) && (config->mem_config->memzone[memzone_idx].addr < (RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) { /* since the zones can now be aligned and occasionally skip * some space, we should calculate the length based on * reported length and start addresses difference. Addresses * are allocated sequentially so we don't need to worry about * them being in the right order. */ len -= RTE_PTR_DIFF( config->mem_config->memzone[memzone_idx].addr, last_addr); len -= config->mem_config->memzone[memzone_idx].len; last_addr = RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr, (size_t) config->mem_config->memzone[memzone_idx].len); } } /* we don't need to calculate offset here since length * is always cache-aligned */ if (len > maxlen) maxlen = len; } if (maxlen == 0) { printf("There is no space left!\n"); return 0; } mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0); if (mz == NULL){ printf("Failed to reserve a big chunk of memory\n"); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (mz->len != maxlen) { printf("Memzone reserve with 0 size did not return bigest block\n"); printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } return 0; } static int test_memzone_reserve_max_aligned(void) { const struct rte_memzone *mz; const struct rte_config *config; const struct rte_memseg *ms; int memseg_idx = 0; int memzone_idx = 0; uintptr_t addr_offset; size_t len = 0; void* last_addr; size_t maxlen = 0; /* random alignment */ rte_srand((unsigned)rte_rdtsc()); const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */ /* get pointer to global configuration */ config = rte_eal_get_configuration(); ms = rte_eal_get_physmem_layout(); addr_offset = 0; for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){ /* ignore smaller memsegs as they can only get smaller */ if (ms[memseg_idx].len < maxlen) continue; /* align everything */ last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, RTE_CACHE_LINE_SIZE); len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr); len &= ~((size_t) RTE_CACHE_LINE_MASK); /* cycle through all memzones */ for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) { /* stop when reaching last allocated memzone */ if (config->mem_config->memzone[memzone_idx].addr == NULL) break; /* check if the memzone is in our memseg and subtract length */ if ((config->mem_config->memzone[memzone_idx].addr >= ms[memseg_idx].addr) && (config->mem_config->memzone[memzone_idx].addr < (RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) { /* since the zones can now be aligned and occasionally skip * some space, we should calculate the length based on * reported length and start addresses difference. */ len -= (uintptr_t) RTE_PTR_SUB( config->mem_config->memzone[memzone_idx].addr, (uintptr_t) last_addr); len -= config->mem_config->memzone[memzone_idx].len; last_addr = RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr, (size_t) config->mem_config->memzone[memzone_idx].len); } } /* make sure we get the alignment offset */ if (len > maxlen) { addr_offset = RTE_PTR_ALIGN_CEIL((uintptr_t) last_addr, align) - (uintptr_t) last_addr; maxlen = len; } } if (maxlen == 0 || maxlen == addr_offset) { printf("There is no space left for biggest %u-aligned memzone!\n", align); return 0; } maxlen -= addr_offset; mz = rte_memzone_reserve_aligned("max_zone_aligned", 0, SOCKET_ID_ANY, 0, align); if (mz == NULL){ printf("Failed to reserve a big chunk of memory\n"); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (mz->len != maxlen) { printf("Memzone reserve with 0 size and alignment %u did not return" " bigest block\n", align); printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } return 0; } static int test_memzone_aligned(void) { const struct rte_memzone *memzone_aligned_32; const struct rte_memzone *memzone_aligned_128; const struct rte_memzone *memzone_aligned_256; const struct rte_memzone *memzone_aligned_512; const struct rte_memzone *memzone_aligned_1024; /* memzone that should automatically be adjusted to align on 64 bytes */ memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100, SOCKET_ID_ANY, 0, 32); /* memzone that is supposed to be aligned on a 128 byte boundary */ memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100, SOCKET_ID_ANY, 0, 128); /* memzone that is supposed to be aligned on a 256 byte boundary */ memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100, SOCKET_ID_ANY, 0, 256); /* memzone that is supposed to be aligned on a 512 byte boundary */ memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100, SOCKET_ID_ANY, 0, 512); /* memzone that is supposed to be aligned on a 1024 byte boundary */ memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100, SOCKET_ID_ANY, 0, 1024); printf("check alignments and lengths\n"); if (memzone_aligned_32 == NULL) { printf("Unable to reserve 64-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0) return -1; if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_128 == NULL) { printf("Unable to reserve 128-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_128->phys_addr & 127) != 0) return -1; if (((uintptr_t) memzone_aligned_128->addr & 127) != 0) return -1; if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_256 == NULL) { printf("Unable to reserve 256-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_256->phys_addr & 255) != 0) return -1; if (((uintptr_t) memzone_aligned_256->addr & 255) != 0) return -1; if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_512 == NULL) { printf("Unable to reserve 512-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_512->phys_addr & 511) != 0) return -1; if (((uintptr_t) memzone_aligned_512->addr & 511) != 0) return -1; if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_1024 == NULL) { printf("Unable to reserve 1024-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_1024->phys_addr & 1023) != 0) return -1; if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0) return -1; if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0) return -1; /* check that zones don't overlap */ printf("check overlapping\n"); if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len, memzone_aligned_128->phys_addr, memzone_aligned_128->len)) return -1; if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len, memzone_aligned_256->phys_addr, memzone_aligned_256->len)) return -1; if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len, memzone_aligned_512->phys_addr, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len, memzone_aligned_1024->phys_addr, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len, memzone_aligned_256->phys_addr, memzone_aligned_256->len)) return -1; if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len, memzone_aligned_512->phys_addr, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len, memzone_aligned_1024->phys_addr, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len, memzone_aligned_512->phys_addr, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len, memzone_aligned_1024->phys_addr, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len, memzone_aligned_1024->phys_addr, memzone_aligned_1024->len)) return -1; return 0; } static int check_memzone_bounded(const char *name, uint32_t len, uint32_t align, uint32_t bound) { const struct rte_memzone *mz; phys_addr_t bmask; bmask = ~((phys_addr_t)bound - 1); if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0, align, bound)) == NULL) { printf("%s(%s): memzone creation failed\n", __func__, name); return (-1); } if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) { printf("%s(%s): invalid phys addr alignment\n", __func__, mz->name); return (-1); } if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) { printf("%s(%s): invalid virtual addr alignment\n", __func__, mz->name); return (-1); } if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len || mz->len < RTE_CACHE_LINE_SIZE) { printf("%s(%s): invalid length\n", __func__, mz->name); return (-1); } if ((mz->phys_addr & bmask) != ((mz->phys_addr + mz->len - 1) & bmask)) { printf("%s(%s): invalid memzone boundary %u crossed\n", __func__, mz->name, bound); return (-1); } return (0); } static int test_memzone_bounded(void) { const struct rte_memzone *memzone_err; const char *name; int rc; /* should fail as boundary is not power of two */ name = "bounded_error_31"; if ((memzone_err = rte_memzone_reserve_bounded(name, 100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) { printf("%s(%s)created a memzone with invalid boundary " "conditions\n", __func__, memzone_err->name); return (-1); } /* should fail as len is greater then boundary */ name = "bounded_error_32"; if ((memzone_err = rte_memzone_reserve_bounded(name, 100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) { printf("%s(%s)created a memzone with invalid boundary " "conditions\n", __func__, memzone_err->name); return (-1); } if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0) return (rc); if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0) return (rc); if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0) return (rc); if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0) return (rc); return (0); } static int test_memzone_reserve_memory_in_smallest_segment(void) { const struct rte_memzone *mz; const struct rte_memseg *ms, *min_ms, *prev_min_ms; size_t min_len, prev_min_len; const struct rte_config *config; int i; config = rte_eal_get_configuration(); min_ms = NULL; /*< smallest segment */ prev_min_ms = NULL; /*< second smallest segment */ /* find two smallest segments */ for (i = 0; i < RTE_MAX_MEMSEG; i++) { ms = &config->mem_config->free_memseg[i]; if (ms->addr == NULL) break; if (ms->len == 0) continue; if (min_ms == NULL) min_ms = ms; else if (min_ms->len > ms->len) { /* set last smallest to second last */ prev_min_ms = min_ms; /* set new smallest */ min_ms = ms; } else if ((prev_min_ms == NULL) || (prev_min_ms->len > ms->len)) prev_min_ms = ms; } if (min_ms == NULL || prev_min_ms == NULL) { printf("Smallest segments not found!\n"); return -1; } min_len = min_ms->len; prev_min_len = prev_min_ms->len; /* try reserving a memzone in the smallest memseg */ mz = rte_memzone_reserve("smallest_mz", RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY, 0); if (mz == NULL) { printf("Failed to reserve memory from smallest memseg!\n"); return -1; } if (prev_min_ms->len != prev_min_len && min_ms->len != min_len - RTE_CACHE_LINE_SIZE) { printf("Reserved memory from wrong memseg!\n"); return -1; } return 0; } /* this test is a bit tricky, and thus warrants explanation. * * first, we find two smallest memsegs to conduct our experiments on. * * then, we bring them within alignment from each other: if second segment is * twice+ as big as the first, reserve memory from that segment; if second * segment is comparable in length to the first, then cut the first segment * down until it becomes less than half of second segment, and then cut down * the second segment to be within alignment of the first. * * then, we have to pass the following test: if segments are within alignment * of each other (that is, the difference is less than 256 bytes, which is what * our alignment will be), segment with smallest offset should be picked. * * we know that min_ms will be our smallest segment, so we need to make sure * that we adjust the alignments so that the bigger segment has smallest * alignment (in our case, smallest segment will have 64-byte alignment, while * bigger segment will have 128-byte alignment). */ static int test_memzone_reserve_memory_with_smallest_offset(void) { const struct rte_memseg *ms, *min_ms, *prev_min_ms; size_t len, min_len, prev_min_len; const struct rte_config *config; int i, align; config = rte_eal_get_configuration(); min_ms = NULL; /*< smallest segment */ prev_min_ms = NULL; /*< second smallest segment */ align = RTE_CACHE_LINE_SIZE * 4; /* find two smallest segments */ for (i = 0; i < RTE_MAX_MEMSEG; i++) { ms = &config->mem_config->free_memseg[i]; if (ms->addr == NULL) break; if (ms->len == 0) continue; if (min_ms == NULL) min_ms = ms; else if (min_ms->len > ms->len) { /* set last smallest to second last */ prev_min_ms = min_ms; /* set new smallest */ min_ms = ms; } else if ((prev_min_ms == NULL) || (prev_min_ms->len > ms->len)) { prev_min_ms = ms; } } if (min_ms == NULL || prev_min_ms == NULL) { printf("Smallest segments not found!\n"); return -1; } prev_min_len = prev_min_ms->len; min_len = min_ms->len; /* if smallest segment is bigger than half of bigger segment */ if (prev_min_ms->len - min_ms->len <= min_ms->len) { len = (min_ms->len * 2) - prev_min_ms->len; /* make sure final length is *not* aligned */ while (((min_ms->addr_64 + len) & (align-1)) == 0) len += RTE_CACHE_LINE_SIZE; if (rte_memzone_reserve("dummy_mz1", len, SOCKET_ID_ANY, 0) == NULL) { printf("Cannot reserve memory!\n"); return -1; } /* check if we got memory from correct segment */ if (min_ms->len != min_len - len) { printf("Reserved memory from wrong segment!\n"); return -1; } } /* if we don't need to touch smallest segment but it's aligned */ else if ((min_ms->addr_64 & (align-1)) == 0) { if (rte_memzone_reserve("align_mz1", RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY, 0) == NULL) { printf("Cannot reserve memory!\n"); return -1; } if (min_ms->len != min_len - RTE_CACHE_LINE_SIZE) { printf("Reserved memory from wrong segment!\n"); return -1; } } /* if smallest segment is less than half of bigger segment */ if (prev_min_ms->len - min_ms->len > min_ms->len) { len = prev_min_ms->len - min_ms->len - align; /* make sure final length is aligned */ while (((prev_min_ms->addr_64 + len) & (align-1)) != 0) len += RTE_CACHE_LINE_SIZE; if (rte_memzone_reserve("dummy_mz2", len, SOCKET_ID_ANY, 0) == NULL) { printf("Cannot reserve memory!\n"); return -1; } /* check if we got memory from correct segment */ if (prev_min_ms->len != prev_min_len - len) { printf("Reserved memory from wrong segment!\n"); return -1; } } len = RTE_CACHE_LINE_SIZE; prev_min_len = prev_min_ms->len; min_len = min_ms->len; if (min_len >= prev_min_len || prev_min_len - min_len > (unsigned) align) { printf("Segments are of wrong lengths!\n"); return -1; } /* try reserving from a bigger segment */ if (rte_memzone_reserve_aligned("smallest_offset", len, SOCKET_ID_ANY, 0, align) == NULL) { printf("Cannot reserve memory!\n"); return -1; } /* check if we got memory from correct segment */ if (min_ms->len != min_len && prev_min_ms->len != (prev_min_len - len)) { printf("Reserved memory from segment with smaller offset!\n"); return -1; } return 0; } static int test_memzone_reserve_remainder(void) { const struct rte_memzone *mz1, *mz2; const struct rte_memseg *ms, *min_ms = NULL; size_t min_len; const struct rte_config *config; int i, align; min_len = 0; align = RTE_CACHE_LINE_SIZE; config = rte_eal_get_configuration(); /* find minimum free contiguous length */ for (i = 0; i < RTE_MAX_MEMSEG; i++) { ms = &config->mem_config->free_memseg[i]; if (ms->addr == NULL) break; if (ms->len == 0) continue; if (min_len == 0 || ms->len < min_len) { min_len = ms->len; min_ms = ms; /* find maximum alignment this segment is able to hold */ align = RTE_CACHE_LINE_SIZE; while ((ms->addr_64 & (align-1)) == 0) { align <<= 1; } } } if (min_ms == NULL) { printf("Minimal sized segment not found!\n"); return -1; } /* try reserving min_len bytes with alignment - this should not affect our * memseg, the memory will be taken from a different one. */ mz1 = rte_memzone_reserve_aligned("reserve_remainder_1", min_len, SOCKET_ID_ANY, 0, align); if (mz1 == NULL) { printf("Failed to reserve %zu bytes aligned on %i bytes\n", min_len, align); return -1; } if (min_ms->len != min_len) { printf("Memseg memory should not have been reserved!\n"); return -1; } /* try reserving min_len bytes with less alignment - this should fill up * the segment. */ mz2 = rte_memzone_reserve("reserve_remainder_2", min_len, SOCKET_ID_ANY, 0); if (mz2 == NULL) { printf("Failed to reserve %zu bytes\n", min_len); return -1; } if (min_ms->len != 0) { printf("Memseg memory should have been reserved!\n"); return -1; } return 0; } static int test_memzone(void) { const struct rte_memzone *memzone1; const struct rte_memzone *memzone2; const struct rte_memzone *memzone3; const struct rte_memzone *memzone4; const struct rte_memzone *mz; memzone1 = rte_memzone_reserve("testzone1", 100, SOCKET_ID_ANY, 0); memzone2 = rte_memzone_reserve("testzone2", 1000, 0, 0); memzone3 = rte_memzone_reserve("testzone3", 1000, 1, 0); memzone4 = rte_memzone_reserve("testzone4", 1024, SOCKET_ID_ANY, 0); /* memzone3 may be NULL if we don't have NUMA */ if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL) return -1; rte_memzone_dump(stdout); /* check cache-line alignments */ printf("check alignments and lengths\n"); if ((memzone1->phys_addr & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone2->phys_addr & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone3 != NULL && (memzone3->phys_addr & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0) return -1; if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0) return -1; if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 || memzone3->len == 0)) return -1; if (memzone4->len != 1024) return -1; /* check that zones don't overlap */ printf("check overlapping\n"); if (is_memory_overlap(memzone1->phys_addr, memzone1->len, memzone2->phys_addr, memzone2->len)) return -1; if (memzone3 != NULL && is_memory_overlap(memzone1->phys_addr, memzone1->len, memzone3->phys_addr, memzone3->len)) return -1; if (memzone3 != NULL && is_memory_overlap(memzone2->phys_addr, memzone2->len, memzone3->phys_addr, memzone3->len)) return -1; printf("check socket ID\n"); /* memzone2 must be on socket id 0 and memzone3 on socket 1 */ if (memzone2->socket_id != 0) return -1; if (memzone3 != NULL && memzone3->socket_id != 1) return -1; printf("test zone lookup\n"); mz = rte_memzone_lookup("testzone1"); if (mz != memzone1) return -1; printf("test duplcate zone name\n"); mz = rte_memzone_reserve("testzone1", 100, SOCKET_ID_ANY, 0); if (mz != NULL) return -1; printf("test reserving memzone with bigger size than the maximum\n"); if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0) return -1; printf("test reserving memory in smallest segments\n"); if (test_memzone_reserve_memory_in_smallest_segment() < 0) return -1; printf("test reserving memory in segments with smallest offsets\n"); if (test_memzone_reserve_memory_with_smallest_offset() < 0) return -1; printf("test memzone_reserve flags\n"); if (test_memzone_reserve_flags() < 0) return -1; printf("test alignment for memzone_reserve\n"); if (test_memzone_aligned() < 0) return -1; printf("test boundary alignment for memzone_reserve\n"); if (test_memzone_bounded() < 0) return -1; printf("test invalid alignment for memzone_reserve\n"); if (test_memzone_invalid_alignment() < 0) return -1; printf("test reserving amounts of memory equal to segment's length\n"); if (test_memzone_reserve_remainder() < 0) return -1; printf("test reserving the largest size memzone possible\n"); if (test_memzone_reserve_max() < 0) return -1; printf("test reserving the largest size aligned memzone possible\n"); if (test_memzone_reserve_max_aligned() < 0) return -1; return 0; } static struct test_command memzone_cmd = { .command = "memzone_autotest", .callback = test_memzone, }; REGISTER_TEST_COMMAND(memzone_cmd);