/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include "cperf_test_latency.h" #include "cperf_ops.h" #include "cperf_test_common.h" struct cperf_op_result { uint64_t tsc_start; uint64_t tsc_end; enum rte_crypto_op_status status; }; struct cperf_latency_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; uint32_t src_buf_offset; uint32_t dst_buf_offset; const struct cperf_options *options; const struct cperf_test_vector *test_vector; struct cperf_op_result *res; }; struct priv_op_data { struct cperf_op_result *result; }; static void cperf_latency_test_free(struct cperf_latency_ctx *ctx) { if (ctx) { if (ctx->sess) { rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); rte_cryptodev_sym_session_free(ctx->sess); } if (ctx->pool) rte_mempool_free(ctx->pool); rte_free(ctx->res); rte_free(ctx); } } void * cperf_latency_test_constructor(struct rte_mempool *sess_mp, struct rte_mempool *sess_priv_mp, uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_latency_ctx *ctx = NULL; size_t extra_op_priv_size = sizeof(struct priv_op_data); ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; /* IV goes at the end of the crypto operation */ uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op) + sizeof(struct cperf_op_result *); ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, test_vector, iv_offset); if (ctx->sess == NULL) goto err; if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, extra_op_priv_size, &ctx->src_buf_offset, &ctx->dst_buf_offset, &ctx->pool) < 0) goto err; ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * ctx->options->total_ops, 0); if (ctx->res == NULL) goto err; return ctx; err: cperf_latency_test_free(ctx); return NULL; } static inline void store_timestamp(struct rte_crypto_op *op, uint64_t timestamp) { struct priv_op_data *priv_data; priv_data = (struct priv_op_data *) (op->sym + 1); priv_data->result->status = op->status; priv_data->result->tsc_end = timestamp; } int cperf_latency_test_runner(void *arg) { struct cperf_latency_ctx *ctx = arg; uint16_t test_burst_size; uint8_t burst_size_idx = 0; uint32_t imix_idx = 0; static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); if (ctx == NULL) return 0; struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint64_t i; struct priv_op_data *priv_data; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segment_sz < ctx->options->max_buffer_size) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; /* Warm up the host CPU before starting the test */ for (i = 0; i < ctx->options->total_ops; i++) rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* Get first size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size = ctx->options->min_burst_size; else test_burst_size = ctx->options->burst_size_list[0]; uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op) + sizeof(struct cperf_op_result *); while (test_burst_size <= ctx->options->max_burst_size) { uint64_t ops_enqd = 0, ops_deqd = 0; uint64_t b_idx = 0; uint64_t tsc_val, tsc_end, tsc_start; uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; while (enqd_tot < ctx->options->total_ops) { uint16_t burst_size = ((enqd_tot + test_burst_size) <= ctx->options->total_ops) ? test_burst_size : ctx->options->total_ops - enqd_tot; /* Allocate objects containing crypto operations and mbufs */ if (rte_mempool_get_bulk(ctx->pool, (void **)ops, burst_size) != 0) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, ctx->src_buf_offset, ctx->dst_buf_offset, burst_size, ctx->sess, ctx->options, ctx->test_vector, iv_offset, &imix_idx); tsc_start = rte_rdtsc_precise(); #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); tsc_end = rte_rdtsc_precise(); /* Free memory for not enqueued operations */ if (ops_enqd != burst_size) rte_mempool_put_bulk(ctx->pool, (void **)&ops[ops_enqd], burst_size - ops_enqd); for (i = 0; i < ops_enqd; i++) { ctx->res[tsc_idx].tsc_start = tsc_start; /* * Private data structure starts after the end of the * rte_crypto_sym_op structure. */ priv_data = (struct priv_op_data *) (ops[i]->sym + 1); priv_data->result = (void *)&ctx->res[tsc_idx]; tsc_idx++; } if (likely(ops_deqd)) { /* Free crypto ops so they can be reused. */ for (i = 0; i < ops_deqd; i++) store_timestamp(ops_processed[i], tsc_end); rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); deqd_tot += ops_deqd; deqd_max = RTE_MAX(ops_deqd, deqd_max); deqd_min = RTE_MIN(ops_deqd, deqd_min); } enqd_tot += ops_enqd; enqd_max = RTE_MAX(ops_enqd, enqd_max); enqd_min = RTE_MIN(ops_enqd, enqd_min); b_idx++; } /* Dequeue any operations still in the crypto device */ while (deqd_tot < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); tsc_end = rte_rdtsc_precise(); if (ops_deqd != 0) { for (i = 0; i < ops_deqd; i++) store_timestamp(ops_processed[i], tsc_end); rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); deqd_tot += ops_deqd; deqd_max = RTE_MAX(ops_deqd, deqd_max); deqd_min = RTE_MIN(ops_deqd, deqd_min); } } for (i = 0; i < tsc_idx; i++) { tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; tsc_max = RTE_MAX(tsc_val, tsc_max); tsc_min = RTE_MIN(tsc_val, tsc_min); tsc_tot += tsc_val; } double time_tot, time_avg, time_max, time_min; const uint64_t tunit = 1000000; /* us */ const uint64_t tsc_hz = rte_get_tsc_hz(); uint64_t enqd_avg = enqd_tot / b_idx; uint64_t deqd_avg = deqd_tot / b_idx; uint64_t tsc_avg = tsc_tot / tsc_idx; time_tot = tunit*(double)(tsc_tot) / tsc_hz; time_avg = tunit*(double)(tsc_avg) / tsc_hz; time_max = tunit*(double)(tsc_max) / tsc_hz; time_min = tunit*(double)(tsc_min) / tsc_hz; if (ctx->options->csv) { if (rte_atomic16_test_and_set(&display_once)) printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " "Packet Size, cycles, time (us)"); for (i = 0; i < ctx->options->total_ops; i++) { printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, i + 1, ctx->res[i].tsc_end - ctx->res[i].tsc_start, tunit * (double) (ctx->res[i].tsc_end - ctx->res[i].tsc_start) / tsc_hz); } } else { printf("\n# Device %d on lcore %u\n", ctx->dev_id, ctx->lcore_id); printf("\n# total operations: %u", ctx->options->total_ops); printf("\n# Buffer size: %u", ctx->options->test_buffer_size); printf("\n# Burst size: %u", test_burst_size); printf("\n# Number of bursts: %"PRIu64, b_idx); printf("\n#"); printf("\n# \t Total\t Average\t " "Maximum\t Minimum"); printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, enqd_tot, enqd_avg, enqd_max, enqd_min); printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, deqd_tot, deqd_avg, deqd_max, deqd_min); printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, tsc_tot, tsc_avg, tsc_max, tsc_min); printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", time_tot, time_avg, time_max, time_min); printf("\n\n"); } /* Get next size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size += ctx->options->inc_burst_size; else { if (++burst_size_idx == ctx->options->burst_size_count) break; test_burst_size = ctx->options->burst_size_list[burst_size_idx]; } } return 0; } void cperf_latency_test_destructor(void *arg) { struct cperf_latency_ctx *ctx = arg; if (ctx == NULL) return; cperf_latency_test_free(ctx); }