/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2019 Intel Corporation */ #include "base/iavf_prototype.h" #include "iavf_rxtx_vec_common.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void iavf_rxq_rearm(struct iavf_rx_queue *rxq) { int i; uint16_t rx_id; volatile union iavf_rx_desc *rxdp; struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxp, IAVF_RXQ_REARM_THRESH) < 0) { if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { __m128i dma_addr0; dma_addr0 = _mm_setzero_si128(); for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) { rxp[i] = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += IAVF_RXQ_REARM_THRESH; return; } #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC struct rte_mbuf *mb0, *mb1; __m128i dma_addr0, dma_addr1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) { __m128i vaddr0, vaddr1; mb0 = rxp[0]; mb1 = rxp[1]; /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } #else struct rte_mbuf *mb0, *mb1, *mb2, *mb3; __m256i dma_addr0_1, dma_addr2_3; __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); /* Initialize the mbufs in vector, process 4 mbufs in one loop */ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 4, rxp += 4, rxdp += 4) { __m128i vaddr0, vaddr1, vaddr2, vaddr3; __m256i vaddr0_1, vaddr2_3; mb0 = rxp[0]; mb1 = rxp[1]; mb2 = rxp[2]; mb3 = rxp[3]; /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); /** * merge 0 & 1, by casting 0 to 256-bit and inserting 1 * into the high lanes. Similarly for 2 & 3 */ vaddr0_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1); vaddr2_3 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), vaddr3, 1); /* convert pa to dma_addr hdr/data */ dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); /* add headroom to pa values */ dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); /* flush desc with pa dma_addr */ _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); } #endif rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } #define PKTLEN_SHIFT 10 static inline uint16_t _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { #define IAVF_DESCS_PER_LOOP_AVX 8 /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */ static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = { /* [0] reserved */ [1] = RTE_PTYPE_L2_ETHER, /* [2] - [21] reserved */ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG, [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP, /* [25] reserved */ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP, [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP, [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_ICMP, /* All others reserved */ }; const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer); /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; const int avx_aligned = ((rxq->rx_tail & 1) == 0); rte_prefetch0(rxdp); /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) iavf_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT))) return 0; /* constants used in processing loop */ const __m256i crc_adjust = _mm256_set_epi16 (/* first descriptor */ 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0, /* ignore pkt_type field */ /* second descriptor */ 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); /* 8 packets DD mask, LSB in each 32-bit value */ const __m256i dd_check = _mm256_set1_epi32(1); /* 8 packets EOP mask, second-LSB in each 32-bit value */ const __m256i eop_check = _mm256_slli_epi32(dd_check, IAVF_RX_DESC_STATUS_EOF_SHIFT); /* mask to shuffle from desc. to mbuf (2 descriptors)*/ const __m256i shuf_msk = _mm256_set_epi8 (/* first descriptor */ 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 3, 2, /* octet 2~3, low 16 bits vlan_macip */ 15, 14, /* octet 15~14, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 15, 14, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF, /*pkt_type set as unknown */ /* second descriptor */ 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 3, 2, /* octet 2~3, low 16 bits vlan_macip */ 15, 14, /* octet 15~14, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 15, 14, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF /*pkt_type set as unknown */ ); /** * compile-time check the above crc and shuffle layout is correct. * NOTE: the first field (lowest address) is given last in set_epi * calls above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Status/Error flag masks */ /** * mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. Bits 3-5 of error * field (bits 22-24) are for IP/L4 checksum errors */ const __m256i flags_mask = _mm256_set1_epi32((1 << 2) | (1 << 11) | (3 << 12) | (7 << 22)); /** * data to be shuffled by result of flag mask. If VLAN bit is set, * (bit 2), then position 4 in this array will be used in the * destination */ const __m256i vlan_flags_shuf = _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); /** * data to be shuffled by result of flag mask, shifted down 11. * If RSS/FDIR bits are set, shuffle moves appropriate flags in * place. */ const __m256i rss_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ 0, 0, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, 0, 0, PKT_RX_FDIR, 0); /** * data to be shuffled by the result of the flags mask shifted by 22 * bits. This gives use the l3_l4 flags. */ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, /* shift right 1 bit to make sure it not exceed 255 */ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, PKT_RX_IP_CKSUM_BAD >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, /* second 128-bits */ 0, 0, 0, 0, 0, 0, 0, 0, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, PKT_RX_IP_CKSUM_BAD >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); const __m256i cksum_mask = _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | PKT_RX_EIP_CKSUM_BAD); RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ uint16_t i, received; for (i = 0, received = 0; i < nb_pkts; i += IAVF_DESCS_PER_LOOP_AVX, rxdp += IAVF_DESCS_PER_LOOP_AVX) { /* step 1, copy over 8 mbuf pointers to rx_pkts array */ _mm256_storeu_si256((void *)&rx_pkts[i], _mm256_loadu_si256((void *)&sw_ring[i])); #ifdef RTE_ARCH_X86_64 _mm256_storeu_si256 ((void *)&rx_pkts[i + 4], _mm256_loadu_si256((void *)&sw_ring[i + 4])); #endif __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; #ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC /* for AVX we need alignment otherwise loads are not atomic */ if (avx_aligned) { /* load in descriptors, 2 at a time, in reverse order */ raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); rte_compiler_barrier(); raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); rte_compiler_barrier(); raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); rte_compiler_barrier(); raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); } else #endif { const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7)); rte_compiler_barrier(); const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6)); rte_compiler_barrier(); const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5)); rte_compiler_barrier(); const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4)); rte_compiler_barrier(); const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3)); rte_compiler_barrier(); const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2)); rte_compiler_barrier(); const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1)); rte_compiler_barrier(); const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0)); raw_desc6_7 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc6), raw_desc7, 1); raw_desc4_5 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc4), raw_desc5, 1); raw_desc2_3 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc2), raw_desc3, 1); raw_desc0_1 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc0), raw_desc1, 1); } if (split_packet) { int j; for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) rte_mbuf_prefetch_part2(rx_pkts[i + j]); } /** * convert descriptors 4-7 into mbufs, adjusting length and * re-arranging fields. Then write into the mbuf */ const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT); const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT); const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80); const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80); __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); /** * to get packet types, shift 64-bit values down 30 bits * and so ptype is in lower 8-bits in each */ const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4); mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0); mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4); mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0); /* merge the status bits into one register */ const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, desc4_5); /** * convert descriptors 0-3 into mbufs, adjusting length and * re-arranging fields. Then write into the mbuf */ const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT); const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT); const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80); const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80); __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); /* get the packet types */ const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4); mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0); mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4); mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0); /* merge the status bits into one register */ const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, desc0_1); /** * take the two sets of status bits and merge to one * After merge, the packets status flags are in the * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] */ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, status0_3); /* now do flag manipulation */ /* get only flag/error bits we want */ const __m256i flag_bits = _mm256_and_si256(status0_7, flags_mask); /* set vlan and rss flags */ const __m256i vlan_flags = _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf, _mm256_srli_epi32(flag_bits, 11)); /** * l3_l4_error flags, shuffle, then shift to correct adjustment * of flags in flags_shuf, and finally mask out extra bits */ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, _mm256_srli_epi32(flag_bits, 22)); l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); /* merge flags */ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, _mm256_or_si256(rss_flags, vlan_flags)); /** * At this point, we have the 8 sets of flags in the low 16-bits * of each 32-bit value in vlan0. * We want to extract these, and merge them with the mbuf init * data so we can do a single write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend * for each mbuf before we do the write. However, we can also * add in the previously computed rx_descriptor fields to * make a single 256-bit write per mbuf */ /* check the structure matches expectations */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); /* build up data and do writes */ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7; rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04); rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04); rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04); /* permute to add in the rx_descriptor e.g. rss fields */ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); /* write to mbuf */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0); /* repeat for the odd mbufs */ const __m256i odd_flags = _mm256_castsi128_si256 (_mm256_extracti128_si256(mbuf_flags, 1)); rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04); rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04); rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04); /* since odd mbufs are already in hi 128-bits use blend */ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); /* again write to mbufs */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1); /* extract and record EOP bit */ if (split_packet) { const __m128i eop_mask = _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT); const __m256i eop_bits256 = _mm256_and_si256(status0_7, eop_check); /* pack status bits into a single 128-bit register */ const __m128i eop_bits = _mm_packus_epi32 (_mm256_castsi256_si128(eop_bits256), _mm256_extractf128_si256(eop_bits256, 1)); /** * flip bits, and mask out the EOP bit, which is now * a split-packet bit i.e. !EOP, rather than EOP one. */ __m128i split_bits = _mm_andnot_si128(eop_bits, eop_mask); /** * eop bits are out of order, so we need to shuffle them * back into order again. In doing so, only use low 8 * bits, which acts like another pack instruction * The original order is (hi->lo): 1,3,5,7,0,2,4,6 * [Since we use epi8, the 16-bit positions are * multiplied by 2 in the eop_shuffle value.] */ __m128i eop_shuffle = _mm_set_epi8(/* zero hi 64b */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* move values to lo 64b */ 8, 0, 10, 2, 12, 4, 14, 6); split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); *(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits); split_packet += IAVF_DESCS_PER_LOOP_AVX; } /* perform dd_check */ status0_7 = _mm256_and_si256(status0_7, dd_check); status0_7 = _mm256_packs_epi32(status0_7, _mm256_setzero_si256()); uint64_t burst = __builtin_popcountll (_mm_cvtsi128_si64 (_mm256_extracti128_si256 (status0_7, 1))); burst += __builtin_popcountll (_mm_cvtsi128_si64 (_mm256_castsi256_si128(status0_7))); received += burst; if (burst != IAVF_DESCS_PER_LOOP_AVX) break; } /* update tail pointers */ rxq->rx_tail += received; rxq->rx_tail &= (rxq->nb_rx_desc - 1); if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ rxq->rx_tail--; received--; } rxq->rxrearm_nb += received; return received; } /** * Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet */ uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet */ static uint16_t iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct iavf_rx_queue *rxq = rx_queue; uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned int i = 0; if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. * Main receive routine that can handle arbitrary burst sizes * Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet */ uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); retval += burst; nb_pkts -= burst; if (burst < IAVF_VPMD_RX_MAX_BURST) return retval; } return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue, rx_pkts + retval, nb_pkts); } static inline void iavf_vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (IAVF_TX_DESC_DTYPE_DATA | ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT)); __m128i descriptor = _mm_set_epi64x(high_qw, pkt->buf_physaddr + pkt->data_off); _mm_store_si128((__m128i *)txdp, descriptor); } static inline void iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA | ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT)); /* if unaligned on 32-bit boundary, do one to align */ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { iavf_vtx1(txdp, *pkt, flags); nb_pkts--, txdp++, pkt++; } /* do two at a time while possible, in bursts */ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { uint64_t hi_qw3 = hi_qw_tmpl | ((uint64_t)pkt[3]->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); uint64_t hi_qw2 = hi_qw_tmpl | ((uint64_t)pkt[2]->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); uint64_t hi_qw1 = hi_qw_tmpl | ((uint64_t)pkt[1]->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); uint64_t hi_qw0 = hi_qw_tmpl | ((uint64_t)pkt[0]->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); __m256i desc2_3 = _mm256_set_epi64x (hi_qw3, pkt[3]->buf_physaddr + pkt[3]->data_off, hi_qw2, pkt[2]->buf_physaddr + pkt[2]->data_off); __m256i desc0_1 = _mm256_set_epi64x (hi_qw1, pkt[1]->buf_physaddr + pkt[1]->data_off, hi_qw0, pkt[0]->buf_physaddr + pkt[0]->data_off); _mm256_store_si256((void *)(txdp + 2), desc2_3); _mm256_store_si256((void *)txdp, desc0_1); } /* do any last ones */ while (nb_pkts) { iavf_vtx1(txdp, *pkt, flags); txdp++, pkt++, nb_pkts--; } } static inline uint16_t iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; volatile struct iavf_tx_desc *txdp; struct iavf_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = IAVF_TX_DESC_CMD_EOP; uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); if (txq->nb_free < txq->free_thresh) iavf_tx_free_bufs(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); iavf_vtx(txdp, tx_pkts, n - 1, flags); tx_pkts += (n - 1); txdp += (n - 1); iavf_vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->next_rs = (uint16_t)(txq->rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); iavf_vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->next_rs) { txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) << IAVF_TXD_QW1_CMD_SHIFT); txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh); } txq->tx_tail = tx_id; IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { uint16_t nb_tx = 0; struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; while (nb_pkts) { uint16_t ret, num; num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx], num); nb_tx += ret; nb_pkts -= ret; if (ret < num) break; } return nb_tx; }