/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright 2014 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" #define IP_DEFTTL 64 /* from RFC 1340. */ #define GRE_CHECKSUM_PRESENT 0x8000 #define GRE_KEY_PRESENT 0x2000 #define GRE_SEQUENCE_PRESENT 0x1000 #define GRE_EXT_LEN 4 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ GRE_SEQUENCE_PRESENT) /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) #else #define _htons(x) (x) #endif uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; /* structure that caches offload info for the current packet */ struct testpmd_offload_info { uint16_t ethertype; uint8_t gso_enable; uint16_t l2_len; uint16_t l3_len; uint16_t l4_len; uint8_t l4_proto; uint8_t is_tunnel; uint16_t outer_ethertype; uint16_t outer_l2_len; uint16_t outer_l3_len; uint8_t outer_l4_proto; uint16_t tso_segsz; uint16_t tunnel_tso_segsz; uint32_t pkt_len; }; /* simplified GRE header */ struct simple_gre_hdr { uint16_t flags; uint16_t proto; } __rte_packed; static uint16_t get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) { if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); } /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ static void parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) { struct rte_tcp_hdr *tcp_hdr; info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); info->l4_proto = ipv4_hdr->next_proto_id; /* only fill l4_len for TCP, it's useful for TSO */ if (info->l4_proto == IPPROTO_TCP) { tcp_hdr = (struct rte_tcp_hdr *) ((char *)ipv4_hdr + info->l3_len); info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; } else if (info->l4_proto == IPPROTO_UDP) info->l4_len = sizeof(struct rte_udp_hdr); else info->l4_len = 0; } /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ static void parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) { struct rte_tcp_hdr *tcp_hdr; info->l3_len = sizeof(struct rte_ipv6_hdr); info->l4_proto = ipv6_hdr->proto; /* only fill l4_len for TCP, it's useful for TSO */ if (info->l4_proto == IPPROTO_TCP) { tcp_hdr = (struct rte_tcp_hdr *) ((char *)ipv6_hdr + info->l3_len); info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; } else if (info->l4_proto == IPPROTO_UDP) info->l4_len = sizeof(struct rte_udp_hdr); else info->l4_len = 0; } /* * Parse an ethernet header to fill the ethertype, l2_len, l3_len and * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN * headers. The l4_len argument is only set in case of TCP (useful for TSO). */ static void parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_vlan_hdr *vlan_hdr; info->l2_len = sizeof(struct rte_ether_hdr); info->ethertype = eth_hdr->ether_type; while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { vlan_hdr = (struct rte_vlan_hdr *) ((char *)eth_hdr + info->l2_len); info->l2_len += sizeof(struct rte_vlan_hdr); info->ethertype = vlan_hdr->eth_proto; } switch (info->ethertype) { case _htons(RTE_ETHER_TYPE_IPV4): ipv4_hdr = (struct rte_ipv4_hdr *) ((char *)eth_hdr + info->l2_len); parse_ipv4(ipv4_hdr, info); break; case _htons(RTE_ETHER_TYPE_IPV6): ipv6_hdr = (struct rte_ipv6_hdr *) ((char *)eth_hdr + info->l2_len); parse_ipv6(ipv6_hdr, info); break; default: info->l4_len = 0; info->l3_len = 0; info->l4_proto = 0; break; } } /* Fill in outer layers length */ static void update_tunnel_outer(struct testpmd_offload_info *info) { info->is_tunnel = 1; info->outer_ethertype = info->ethertype; info->outer_l2_len = info->l2_len; info->outer_l3_len = info->l3_len; info->outer_l4_proto = info->l4_proto; } /* * Parse a GTP protocol header. * No optional fields and next extension header type. */ static void parse_gtp(struct rte_udp_hdr *udp_hdr, struct testpmd_offload_info *info) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_gtp_hdr *gtp_hdr; uint8_t gtp_len = sizeof(*gtp_hdr); uint8_t ip_ver; /* Check udp destination port. */ if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) return; update_tunnel_outer(info); info->l2_len = 0; gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + sizeof(struct rte_udp_hdr)); /* * Check message type. If message type is 0xff, it is * a GTP data packet. If not, it is a GTP control packet */ if (gtp_hdr->msg_type == 0xff) { ip_ver = *(uint8_t *)((char *)udp_hdr + sizeof(struct rte_udp_hdr) + sizeof(struct rte_gtp_hdr)); ip_ver = (ip_ver) & 0xf0; if (ip_ver == RTE_GTP_TYPE_IPV4) { ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + gtp_len); info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); parse_ipv4(ipv4_hdr, info); } else if (ip_ver == RTE_GTP_TYPE_IPV6) { ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + gtp_len); info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); parse_ipv6(ipv6_hdr, info); } } else { info->ethertype = 0; info->l4_len = 0; info->l3_len = 0; info->l4_proto = 0; } info->l2_len += RTE_ETHER_GTP_HLEN; } /* Parse a vxlan header */ static void parse_vxlan(struct rte_udp_hdr *udp_hdr, struct testpmd_offload_info *info, uint32_t pkt_type) { struct rte_ether_hdr *eth_hdr; /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the * default vxlan port (rfc7348) or that the rx offload flag is set * (i40e only currently) */ if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) && RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) return; update_tunnel_outer(info); eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + sizeof(struct rte_udp_hdr) + sizeof(struct rte_vxlan_hdr)); parse_ethernet(eth_hdr, info); info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ } /* Parse a vxlan-gpe header */ static void parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, struct testpmd_offload_info *info) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); /* Check udp destination port. */ if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) return; vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + sizeof(struct rte_udp_hdr)); if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV4) { update_tunnel_outer(info); ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + vxlan_gpe_len); parse_ipv4(ipv4_hdr, info); info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); info->l2_len = 0; } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { update_tunnel_outer(info); ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + vxlan_gpe_len); info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); parse_ipv6(ipv6_hdr, info); info->l2_len = 0; } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { update_tunnel_outer(info); eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + vxlan_gpe_len); parse_ethernet(eth_hdr, info); } else return; info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; } /* Parse a geneve header */ static void parse_geneve(struct rte_udp_hdr *udp_hdr, struct testpmd_offload_info *info) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_geneve_hdr *geneve_hdr; uint16_t geneve_len; /* Check udp destination port. */ if (udp_hdr->dst_port != _htons(geneve_udp_port)) return; geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + sizeof(struct rte_udp_hdr)); geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; if (!geneve_hdr->proto || geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { update_tunnel_outer(info); ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + geneve_len); parse_ipv4(ipv4_hdr, info); info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); info->l2_len = 0; } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { update_tunnel_outer(info); ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + geneve_len); info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); parse_ipv6(ipv6_hdr, info); info->l2_len = 0; } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { update_tunnel_outer(info); eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + geneve_len); parse_ethernet(eth_hdr, info); } else return; info->l2_len += (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); } /* Parse a gre header */ static void parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; uint8_t gre_len = 0; gre_len += sizeof(struct simple_gre_hdr); if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) gre_len += GRE_EXT_LEN; if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) gre_len += GRE_EXT_LEN; if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) gre_len += GRE_EXT_LEN; if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { update_tunnel_outer(info); ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); parse_ipv4(ipv4_hdr, info); info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); info->l2_len = 0; } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { update_tunnel_outer(info); ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); parse_ipv6(ipv6_hdr, info); info->l2_len = 0; } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { update_tunnel_outer(info); eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); parse_ethernet(eth_hdr, info); } else return; info->l2_len += gre_len; } /* Parse an encapsulated ip or ipv6 header */ static void parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) { struct rte_ipv4_hdr *ipv4_hdr = encap_ip; struct rte_ipv6_hdr *ipv6_hdr = encap_ip; uint8_t ip_version; ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; if (ip_version != 4 && ip_version != 6) return; info->is_tunnel = 1; info->outer_ethertype = info->ethertype; info->outer_l2_len = info->l2_len; info->outer_l3_len = info->l3_len; if (ip_version == 4) { parse_ipv4(ipv4_hdr, info); info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); } else { parse_ipv6(ipv6_hdr, info); info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); } info->l2_len = 0; } /* if possible, calculate the checksum of a packet in hw or sw, * depending on the testpmd command line configuration */ static uint64_t process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, uint64_t tx_offloads) { struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; struct rte_udp_hdr *udp_hdr; struct rte_tcp_hdr *tcp_hdr; struct rte_sctp_hdr *sctp_hdr; uint64_t ol_flags = 0; uint32_t max_pkt_len, tso_segsz = 0; /* ensure packet is large enough to require tso */ if (!info->is_tunnel) { max_pkt_len = info->l2_len + info->l3_len + info->l4_len + info->tso_segsz; if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) tso_segsz = info->tso_segsz; } else { max_pkt_len = info->outer_l2_len + info->outer_l3_len + info->l2_len + info->l3_len + info->l4_len + info->tunnel_tso_segsz; if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) tso_segsz = info->tunnel_tso_segsz; } if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { ipv4_hdr = l3_hdr; ol_flags |= PKT_TX_IPV4; if (info->l4_proto == IPPROTO_TCP && tso_segsz) { ol_flags |= PKT_TX_IP_CKSUM; } else { if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) { ol_flags |= PKT_TX_IP_CKSUM; } else { ipv4_hdr->hdr_checksum = 0; ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } } } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) ol_flags |= PKT_TX_IPV6; else return 0; /* packet type not supported, nothing to do */ if (info->l4_proto == IPPROTO_UDP) { udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); /* do not recalculate udp cksum if it was 0 */ if (udp_hdr->dgram_cksum != 0) { if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) { ol_flags |= PKT_TX_UDP_CKSUM; } else { udp_hdr->dgram_cksum = 0; udp_hdr->dgram_cksum = get_udptcp_checksum(l3_hdr, udp_hdr, info->ethertype); } } if (info->gso_enable) ol_flags |= PKT_TX_UDP_SEG; } else if (info->l4_proto == IPPROTO_TCP) { tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); if (tso_segsz) ol_flags |= PKT_TX_TCP_SEG; else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) { ol_flags |= PKT_TX_TCP_CKSUM; } else { tcp_hdr->cksum = 0; tcp_hdr->cksum = get_udptcp_checksum(l3_hdr, tcp_hdr, info->ethertype); } if (info->gso_enable) ol_flags |= PKT_TX_TCP_SEG; } else if (info->l4_proto == IPPROTO_SCTP) { sctp_hdr = (struct rte_sctp_hdr *) ((char *)l3_hdr + info->l3_len); /* sctp payload must be a multiple of 4 to be * offloaded */ if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) && ((ipv4_hdr->total_length & 0x3) == 0)) { ol_flags |= PKT_TX_SCTP_CKSUM; } else { sctp_hdr->cksum = 0; /* XXX implement CRC32c, example available in * RFC3309 */ } } return ol_flags; } /* Calculate the checksum of outer header */ static uint64_t process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, uint64_t tx_offloads, int tso_enabled) { struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; struct rte_udp_hdr *udp_hdr; uint64_t ol_flags = 0; if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { ipv4_hdr->hdr_checksum = 0; ol_flags |= PKT_TX_OUTER_IPV4; if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ol_flags |= PKT_TX_OUTER_IP_CKSUM; else ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } else ol_flags |= PKT_TX_OUTER_IPV6; if (info->outer_l4_proto != IPPROTO_UDP) return ol_flags; udp_hdr = (struct rte_udp_hdr *) ((char *)outer_l3_hdr + info->outer_l3_len); if (tso_enabled) ol_flags |= PKT_TX_TCP_SEG; /* Skip SW outer UDP checksum generation if HW supports it */ if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); else udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); ol_flags |= PKT_TX_OUTER_UDP_CKSUM; return ol_flags; } /* outer UDP checksum is done in software. In the other side, for * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be * set to zero. * * If a packet will be TSOed into small packets by NIC, we cannot * set/calculate a non-zero checksum, because it will be a wrong * value after the packet be split into several small packets. */ if (tso_enabled) udp_hdr->dgram_cksum = 0; /* do not recalculate udp cksum if it was 0 */ if (udp_hdr->dgram_cksum != 0) { udp_hdr->dgram_cksum = 0; if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) udp_hdr->dgram_cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); else udp_hdr->dgram_cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); } return ol_flags; } /* * Helper function. * Performs actual copying. * Returns number of segments in the destination mbuf on success, * or negative error code on failure. */ static int mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], uint16_t seglen[], uint8_t nb_seg) { uint32_t dlen, slen, tlen; uint32_t i, len; const struct rte_mbuf *m; const uint8_t *src; uint8_t *dst; dlen = 0; slen = 0; tlen = 0; dst = NULL; src = NULL; m = ms; i = 0; while (ms != NULL && i != nb_seg) { if (slen == 0) { slen = rte_pktmbuf_data_len(ms); src = rte_pktmbuf_mtod(ms, const uint8_t *); } if (dlen == 0) { dlen = RTE_MIN(seglen[i], slen); md[i]->data_len = dlen; md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; dst = rte_pktmbuf_mtod(md[i], uint8_t *); } len = RTE_MIN(slen, dlen); memcpy(dst, src, len); tlen += len; slen -= len; dlen -= len; src += len; dst += len; if (slen == 0) ms = ms->next; if (dlen == 0) i++; } if (ms != NULL) return -ENOBUFS; else if (tlen != m->pkt_len) return -EINVAL; md[0]->nb_segs = nb_seg; md[0]->pkt_len = tlen; md[0]->vlan_tci = m->vlan_tci; md[0]->vlan_tci_outer = m->vlan_tci_outer; md[0]->ol_flags = m->ol_flags; md[0]->tx_offload = m->tx_offload; return nb_seg; } /* * Allocate a new mbuf with up to tx_pkt_nb_segs segments. * Copy packet contents and offload information into the new segmented mbuf. */ static struct rte_mbuf * pkt_copy_split(const struct rte_mbuf *pkt) { int32_t n, rc; uint32_t i, len, nb_seg; struct rte_mempool *mp; uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; mp = current_fwd_lcore()->mbp; if (tx_pkt_split == TX_PKT_SPLIT_RND) nb_seg = rte_rand() % tx_pkt_nb_segs + 1; else nb_seg = tx_pkt_nb_segs; memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); /* calculate number of segments to use and their length. */ len = 0; for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { len += seglen[i]; md[i] = NULL; } n = pkt->pkt_len - len; /* update size of the last segment to fit rest of the packet */ if (n >= 0) { seglen[i - 1] += n; len += n; } nb_seg = i; while (i != 0) { p = rte_pktmbuf_alloc(mp); if (p == NULL) { TESTPMD_LOG(ERR, "failed to allocate %u-th of %u mbuf " "from mempool: %s\n", nb_seg - i, nb_seg, mp->name); break; } md[--i] = p; if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " "expected seglen: %u, " "actual mbuf tailroom: %u\n", mp->name, i, seglen[i], rte_pktmbuf_tailroom(md[i])); break; } } /* all mbufs successfully allocated, do copy */ if (i == 0) { rc = mbuf_copy_split(pkt, md, seglen, nb_seg); if (rc < 0) TESTPMD_LOG(ERR, "mbuf_copy_split for %p(len=%u, nb_seg=%u) " "into %u segments failed with error code: %d\n", pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); /* figure out how many mbufs to free. */ i = RTE_MAX(rc, 0); } /* free unused mbufs */ for (; i != nb_seg; i++) { rte_pktmbuf_free_seg(md[i]); md[i] = NULL; } return md[0]; } /* * Receive a burst of packets, and for each packet: * - parse packet, and try to recognize a supported packet type (1) * - if it's not a supported packet type, don't touch the packet, else: * - reprocess the checksum of all supported layers. This is done in SW * or HW, depending on testpmd command line configuration * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP * segmentation offload (this implies HW TCP checksum) * Then transmit packets on the output port. * * (1) Supported packets are: * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / * UDP|TCP|SCTP * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / * UDP|TCP|SCTP * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / * UDP|TCP|SCTP * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP * * The testpmd command line for this forward engine sets the flags * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control * wether a checksum must be calculated in software or in hardware. The * IP, UDP, TCP and SCTP flags always concern the inner layer. The * OUTER_IP is only useful for tunnel packets. */ static void pkt_burst_checksum_forward(struct fwd_stream *fs) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; struct rte_gso_ctx *gso_ctx; struct rte_mbuf **tx_pkts_burst; struct rte_port *txp; struct rte_mbuf *m, *p; struct rte_ether_hdr *eth_hdr; void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ void **gro_ctx; uint16_t gro_pkts_num; uint8_t gro_enable; uint16_t nb_rx; uint16_t nb_tx; uint16_t nb_prep; uint16_t i; uint64_t rx_ol_flags, tx_ol_flags; uint64_t tx_offloads; uint32_t retry; uint32_t rx_bad_ip_csum; uint32_t rx_bad_l4_csum; uint32_t rx_bad_outer_l4_csum; uint32_t rx_bad_outer_ip_csum; struct testpmd_offload_info info; uint16_t nb_segments = 0; int ret; uint64_t start_tsc = 0; get_start_cycles(&start_tsc); /* receive a burst of packet */ nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, nb_pkt_per_burst); inc_rx_burst_stats(fs, nb_rx); if (unlikely(nb_rx == 0)) return; fs->rx_packets += nb_rx; rx_bad_ip_csum = 0; rx_bad_l4_csum = 0; rx_bad_outer_l4_csum = 0; rx_bad_outer_ip_csum = 0; gro_enable = gro_ports[fs->rx_port].enable; txp = &ports[fs->tx_port]; tx_offloads = txp->dev_conf.txmode.offloads; memset(&info, 0, sizeof(info)); info.tso_segsz = txp->tso_segsz; info.tunnel_tso_segsz = txp->tunnel_tso_segsz; if (gso_ports[fs->tx_port].enable) info.gso_enable = 1; for (i = 0; i < nb_rx; i++) { if (likely(i < nb_rx - 1)) rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], void *)); m = pkts_burst[i]; info.is_tunnel = 0; info.pkt_len = rte_pktmbuf_pkt_len(m); tx_ol_flags = m->ol_flags & (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF); rx_ol_flags = m->ol_flags; /* Update the L3/L4 checksum error packet statistics */ if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) rx_bad_ip_csum += 1; if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) rx_bad_l4_csum += 1; if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD) rx_bad_outer_l4_csum += 1; if (rx_ol_flags & PKT_RX_OUTER_IP_CKSUM_BAD) rx_bad_outer_ip_csum += 1; /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan * and inner headers */ eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], ð_hdr->dst_addr); rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, ð_hdr->src_addr); parse_ethernet(eth_hdr, &info); l3_hdr = (char *)eth_hdr + info.l2_len; /* check if it's a supported tunnel */ if (txp->parse_tunnel) { if (info.l4_proto == IPPROTO_UDP) { struct rte_udp_hdr *udp_hdr; udp_hdr = (struct rte_udp_hdr *) ((char *)l3_hdr + info.l3_len); parse_gtp(udp_hdr, &info); if (info.is_tunnel) { tx_ol_flags |= PKT_TX_TUNNEL_GTP; goto tunnel_update; } parse_vxlan_gpe(udp_hdr, &info); if (info.is_tunnel) { tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE; goto tunnel_update; } parse_vxlan(udp_hdr, &info, m->packet_type); if (info.is_tunnel) { tx_ol_flags |= PKT_TX_TUNNEL_VXLAN; goto tunnel_update; } parse_geneve(udp_hdr, &info); if (info.is_tunnel) { tx_ol_flags |= PKT_TX_TUNNEL_GENEVE; goto tunnel_update; } } else if (info.l4_proto == IPPROTO_GRE) { struct simple_gre_hdr *gre_hdr; gre_hdr = (struct simple_gre_hdr *) ((char *)l3_hdr + info.l3_len); parse_gre(gre_hdr, &info); if (info.is_tunnel) tx_ol_flags |= PKT_TX_TUNNEL_GRE; } else if (info.l4_proto == IPPROTO_IPIP) { void *encap_ip_hdr; encap_ip_hdr = (char *)l3_hdr + info.l3_len; parse_encap_ip(encap_ip_hdr, &info); if (info.is_tunnel) tx_ol_flags |= PKT_TX_TUNNEL_IPIP; } } tunnel_update: /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ if (info.is_tunnel) { outer_l3_hdr = l3_hdr; l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; } /* step 2: depending on user command line configuration, * recompute checksum either in software or flag the * mbuf to offload the calculation to the NIC. If TSO * is configured, prepare the mbuf for TCP segmentation. */ /* process checksums of inner headers first */ tx_ol_flags |= process_inner_cksums(l3_hdr, &info, tx_offloads); /* Then process outer headers if any. Note that the software * checksum will be wrong if one of the inner checksums is * processed in hardware. */ if (info.is_tunnel == 1) { tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, tx_offloads, !!(tx_ol_flags & PKT_TX_TCP_SEG)); } /* step 3: fill the mbuf meta data (flags and header lengths) */ m->tx_offload = 0; if (info.is_tunnel == 1) { if (info.tunnel_tso_segsz || (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM)) { m->outer_l2_len = info.outer_l2_len; m->outer_l3_len = info.outer_l3_len; m->l2_len = info.l2_len; m->l3_len = info.l3_len; m->l4_len = info.l4_len; m->tso_segsz = info.tunnel_tso_segsz; } else { /* if there is a outer UDP cksum processed in sw and the inner in hw, the outer checksum will be wrong as the payload will be modified by the hardware */ m->l2_len = info.outer_l2_len + info.outer_l3_len + info.l2_len; m->l3_len = info.l3_len; m->l4_len = info.l4_len; } } else { /* this is only useful if an offload flag is * set, but it does not hurt to fill it in any * case */ m->l2_len = info.l2_len; m->l3_len = info.l3_len; m->l4_len = info.l4_len; m->tso_segsz = info.tso_segsz; } m->ol_flags = tx_ol_flags; /* Do split & copy for the packet. */ if (tx_pkt_split != TX_PKT_SPLIT_OFF) { p = pkt_copy_split(m); if (p != NULL) { rte_pktmbuf_free(m); m = p; pkts_burst[i] = m; } } /* if verbose mode is enabled, dump debug info */ if (verbose_level > 0) { char buf[256]; printf("-----------------\n"); printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", fs->rx_port, m, m->pkt_len, m->nb_segs); /* dump rx parsed packet info */ rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); printf("rx: l2_len=%d ethertype=%x l3_len=%d " "l4_proto=%d l4_len=%d flags=%s\n", info.l2_len, rte_be_to_cpu_16(info.ethertype), info.l3_len, info.l4_proto, info.l4_len, buf); if (rx_ol_flags & PKT_RX_LRO) printf("rx: m->lro_segsz=%u\n", m->tso_segsz); if (info.is_tunnel == 1) printf("rx: outer_l2_len=%d outer_ethertype=%x " "outer_l3_len=%d\n", info.outer_l2_len, rte_be_to_cpu_16(info.outer_ethertype), info.outer_l3_len); /* dump tx packet info */ if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM)) || info.tso_segsz != 0) printf("tx: m->l2_len=%d m->l3_len=%d " "m->l4_len=%d\n", m->l2_len, m->l3_len, m->l4_len); if (info.is_tunnel == 1) { if ((tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || (tx_ol_flags & PKT_TX_OUTER_IPV6)) printf("tx: m->outer_l2_len=%d " "m->outer_l3_len=%d\n", m->outer_l2_len, m->outer_l3_len); if (info.tunnel_tso_segsz != 0 && (m->ol_flags & PKT_TX_TCP_SEG)) printf("tx: m->tso_segsz=%d\n", m->tso_segsz); } else if (info.tso_segsz != 0 && (m->ol_flags & PKT_TX_TCP_SEG)) printf("tx: m->tso_segsz=%d\n", m->tso_segsz); rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); printf("tx: flags=%s", buf); printf("\n"); } } if (unlikely(gro_enable)) { if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, &(gro_ports[fs->rx_port].param)); } else { gro_ctx = current_fwd_lcore()->gro_ctx; nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); if (++fs->gro_times >= gro_flush_cycles) { gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); if (gro_pkts_num > MAX_PKT_BURST - nb_rx) gro_pkts_num = MAX_PKT_BURST - nb_rx; nb_rx += rte_gro_timeout_flush(gro_ctx, 0, RTE_GRO_TCP_IPV4, &pkts_burst[nb_rx], gro_pkts_num); fs->gro_times = 0; } } } if (gso_ports[fs->tx_port].enable == 0) tx_pkts_burst = pkts_burst; else { gso_ctx = &(current_fwd_lcore()->gso_ctx); gso_ctx->gso_size = gso_max_segment_size; for (i = 0; i < nb_rx; i++) { ret = rte_gso_segment(pkts_burst[i], gso_ctx, &gso_segments[nb_segments], GSO_MAX_PKT_BURST - nb_segments); if (ret >= 1) { /* pkts_burst[i] can be freed safely here. */ rte_pktmbuf_free(pkts_burst[i]); nb_segments += ret; } else if (ret == 0) { /* 0 means it can be transmitted directly * without gso. */ gso_segments[nb_segments] = pkts_burst[i]; nb_segments += 1; } else { TESTPMD_LOG(DEBUG, "Unable to segment packet"); rte_pktmbuf_free(pkts_burst[i]); } } tx_pkts_burst = gso_segments; nb_rx = nb_segments; } nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, tx_pkts_burst, nb_rx); if (nb_prep != nb_rx) fprintf(stderr, "Preparing packet burst to transmit failed: %s\n", rte_strerror(rte_errno)); nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, nb_prep); /* * Retry if necessary */ if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { retry = 0; while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { rte_delay_us(burst_tx_delay_time); nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, &tx_pkts_burst[nb_tx], nb_rx - nb_tx); } } fs->tx_packets += nb_tx; fs->rx_bad_ip_csum += rx_bad_ip_csum; fs->rx_bad_l4_csum += rx_bad_l4_csum; fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; inc_tx_burst_stats(fs, nb_tx); if (unlikely(nb_tx < nb_rx)) { fs->fwd_dropped += (nb_rx - nb_tx); do { rte_pktmbuf_free(tx_pkts_burst[nb_tx]); } while (++nb_tx < nb_rx); } get_end_cycles(fs, start_tsc); } struct fwd_engine csum_fwd_engine = { .fwd_mode_name = "csum", .port_fwd_begin = NULL, .port_fwd_end = NULL, .packet_fwd = pkt_burst_checksum_forward, };