/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2018 Broadcom * All rights reserved. */ #include #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_filter.h" #include "bnxt_hwrm.h" #include "bnxt_irq.h" #include "bnxt_ring.h" #include "bnxt_rxq.h" #include "bnxt_rxr.h" #include "bnxt_stats.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_vnic.h" #include "hsi_struct_def_dpdk.h" #include "bnxt_nvm_defs.h" #define DRV_MODULE_NAME "bnxt" static const char bnxt_version[] = "Broadcom NetXtreme driver " DRV_MODULE_NAME; int bnxt_logtype_driver; /* * The set of PCI devices this driver supports */ static const struct rte_pci_id bnxt_pci_id_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) }, { .vendor_id = 0, /* sentinel */ }, }; #define BNXT_ETH_RSS_SUPPORT ( \ ETH_RSS_IPV4 | \ ETH_RSS_NONFRAG_IPV4_TCP | \ ETH_RSS_NONFRAG_IPV4_UDP | \ ETH_RSS_IPV6 | \ ETH_RSS_NONFRAG_IPV6_TCP | \ ETH_RSS_NONFRAG_IPV6_UDP) #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \ DEV_TX_OFFLOAD_IPV4_CKSUM | \ DEV_TX_OFFLOAD_TCP_CKSUM | \ DEV_TX_OFFLOAD_UDP_CKSUM | \ DEV_TX_OFFLOAD_TCP_TSO | \ DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \ DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \ DEV_TX_OFFLOAD_GRE_TNL_TSO | \ DEV_TX_OFFLOAD_IPIP_TNL_TSO | \ DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \ DEV_TX_OFFLOAD_QINQ_INSERT | \ DEV_TX_OFFLOAD_MULTI_SEGS) #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \ DEV_RX_OFFLOAD_VLAN_STRIP | \ DEV_RX_OFFLOAD_IPV4_CKSUM | \ DEV_RX_OFFLOAD_UDP_CKSUM | \ DEV_RX_OFFLOAD_TCP_CKSUM | \ DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \ DEV_RX_OFFLOAD_JUMBO_FRAME | \ DEV_RX_OFFLOAD_KEEP_CRC | \ DEV_RX_OFFLOAD_VLAN_EXTEND | \ DEV_RX_OFFLOAD_TCP_LRO | \ DEV_RX_OFFLOAD_SCATTER | \ DEV_RX_OFFLOAD_RSS_HASH) static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask); static void bnxt_print_link_info(struct rte_eth_dev *eth_dev); static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev); static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev); static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev); static void bnxt_cancel_fw_health_check(struct bnxt *bp); static int bnxt_restore_vlan_filters(struct bnxt *bp); static void bnxt_dev_recover(void *arg); int is_bnxt_in_error(struct bnxt *bp) { if (bp->flags & BNXT_FLAG_FATAL_ERROR) return -EIO; if (bp->flags & BNXT_FLAG_FW_RESET) return -EBUSY; return 0; } /***********************/ /* * High level utility functions */ static uint16_t bnxt_rss_ctxts(const struct bnxt *bp) { if (!BNXT_CHIP_THOR(bp)) return 1; return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings, BNXT_RSS_ENTRIES_PER_CTX_THOR) / BNXT_RSS_ENTRIES_PER_CTX_THOR; } static uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp) { if (!BNXT_CHIP_THOR(bp)) return HW_HASH_INDEX_SIZE; return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR; } static void bnxt_free_mem(struct bnxt *bp, bool reconfig) { bnxt_free_filter_mem(bp); bnxt_free_vnic_attributes(bp); bnxt_free_vnic_mem(bp); /* tx/rx rings are configured as part of *_queue_setup callbacks. * If the number of rings change across fw update, * we don't have much choice except to warn the user. */ if (!reconfig) { bnxt_free_stats(bp); bnxt_free_tx_rings(bp); bnxt_free_rx_rings(bp); } bnxt_free_async_cp_ring(bp); bnxt_free_rxtx_nq_ring(bp); rte_free(bp->grp_info); bp->grp_info = NULL; } static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig) { int rc; rc = bnxt_alloc_ring_grps(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_async_ring_struct(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnic_mem(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnic_attributes(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_filter_mem(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_async_cp_ring(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_rxtx_nq_ring(bp); if (rc) goto alloc_mem_err; return 0; alloc_mem_err: bnxt_free_mem(bp, reconfig); return rc; } static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id) { struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; uint64_t rx_offloads = dev_conf->rxmode.offloads; struct bnxt_rx_queue *rxq; unsigned int j; int rc; rc = bnxt_vnic_grp_alloc(bp, vnic); if (rc) goto err_out; PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n", vnic_id, vnic, vnic->fw_grp_ids); rc = bnxt_hwrm_vnic_alloc(bp, vnic); if (rc) goto err_out; /* Alloc RSS context only if RSS mode is enabled */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) { int j, nr_ctxs = bnxt_rss_ctxts(bp); rc = 0; for (j = 0; j < nr_ctxs; j++) { rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j); if (rc) break; } if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d ctx %d alloc failure rc: %x\n", vnic_id, j, rc); goto err_out; } vnic->num_lb_ctxts = nr_ctxs; } /* * Firmware sets pf pair in default vnic cfg. If the VLAN strip * setting is not available at this time, it will not be * configured correctly in the CFA. */ if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vnic->vlan_strip = true; else vnic->vlan_strip = false; rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) goto err_out; rc = bnxt_set_hwrm_vnic_filters(bp, vnic); if (rc) goto err_out; for (j = 0; j < bp->rx_num_qs_per_vnic; j++) { rxq = bp->eth_dev->data->rx_queues[j]; PMD_DRV_LOG(DEBUG, "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n", j, rxq->vnic, rxq->vnic->fw_grp_ids); if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start) rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID; else vnic->rx_queue_cnt++; } PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt); rc = bnxt_vnic_rss_configure(bp, vnic); if (rc) goto err_out; bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); if (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO) bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1); else bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0); return 0; err_out: PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n", vnic_id, rc); return rc; } static int bnxt_init_chip(struct bnxt *bp) { struct rte_eth_link new; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t intr_vector = 0; uint32_t queue_id, base = BNXT_MISC_VEC_ID; uint32_t vec = BNXT_MISC_VEC_ID; unsigned int i, j; int rc; if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) { bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags |= BNXT_FLAG_JUMBO; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } /* THOR does not support ring groups. * But we will use the array to save RSS context IDs. */ if (BNXT_CHIP_THOR(bp)) bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR; rc = bnxt_alloc_all_hwrm_stat_ctxs(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_hwrm_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_all_hwrm_ring_grps(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc); goto err_out; } if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY)) goto skip_cosq_cfg; for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) { if (bp->rx_cos_queue[i].id != 0xff) { struct bnxt_vnic_info *vnic = &bp->vnic_info[j++]; if (!vnic) { PMD_DRV_LOG(ERR, "Num pools more than FW profile\n"); rc = -EINVAL; goto err_out; } vnic->cos_queue_id = bp->rx_cos_queue[i].id; bp->rx_cosq_cnt++; } } skip_cosq_cfg: rc = bnxt_mq_rx_configure(bp); if (rc) { PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc); goto err_out; } /* VNIC configuration */ for (i = 0; i < bp->nr_vnics; i++) { rc = bnxt_setup_one_vnic(bp, i); if (rc) goto err_out; } rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL); if (rc) { PMD_DRV_LOG(ERR, "HWRM cfa l2 rx mask failure rc: %x\n", rc); goto err_out; } /* check and configure queue intr-vector mapping */ if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) && bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = bp->eth_dev->data->nb_rx_queues; PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector); if (intr_vector > bp->rx_cp_nr_rings) { PMD_DRV_LOG(ERR, "At most %d intr queues supported", bp->rx_cp_nr_rings); return -ENOTSUP; } rc = rte_intr_efd_enable(intr_handle, intr_vector); if (rc) return rc; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", bp->eth_dev->data->nb_rx_queues * sizeof(int), 0); if (intr_handle->intr_vec == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", bp->eth_dev->data->nb_rx_queues); rc = -ENOMEM; goto err_disable; } PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p " "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n", intr_handle->intr_vec, intr_handle->nb_efd, intr_handle->max_intr); for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues; queue_id++) { intr_handle->intr_vec[queue_id] = vec + BNXT_RX_VEC_START; if (vec < base + intr_handle->nb_efd - 1) vec++; } } /* enable uio/vfio intr/eventfd mapping */ rc = rte_intr_enable(intr_handle); #ifndef RTE_EXEC_ENV_FREEBSD /* In FreeBSD OS, nic_uio driver does not support interrupts */ if (rc) goto err_free; #endif rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc); goto err_free; } if (!bp->link_info.link_up) { rc = bnxt_set_hwrm_link_config(bp, true); if (rc) { PMD_DRV_LOG(ERR, "HWRM link config failure rc: %x\n", rc); goto err_free; } } bnxt_print_link_info(bp->eth_dev); bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0); if (!bp->mark_table) PMD_DRV_LOG(ERR, "Allocation of mark table failed\n"); return 0; err_free: rte_free(intr_handle->intr_vec); err_disable: rte_intr_efd_disable(intr_handle); err_out: /* Some of the error status returned by FW may not be from errno.h */ if (rc > 0) rc = -EIO; return rc; } static int bnxt_shutdown_nic(struct bnxt *bp) { bnxt_free_all_hwrm_resources(bp); bnxt_free_all_filters(bp); bnxt_free_all_vnics(bp); return 0; } /* * Device configuration and status function */ static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *dev_info) { struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device); struct bnxt *bp = eth_dev->data->dev_private; uint16_t max_vnics, i, j, vpool, vrxq; unsigned int max_rx_rings; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* MAC Specifics */ dev_info->max_mac_addrs = bp->max_l2_ctx; dev_info->max_hash_mac_addrs = 0; /* PF/VF specifics */ if (BNXT_PF(bp)) dev_info->max_vfs = pdev->max_vfs; max_rx_rings = BNXT_MAX_RINGS(bp); /* For the sake of symmetry, max_rx_queues = max_tx_queues */ dev_info->max_rx_queues = max_rx_rings; dev_info->max_tx_queues = max_rx_rings; dev_info->reta_size = bnxt_rss_hash_tbl_size(bp); dev_info->hash_key_size = 40; max_vnics = bp->max_vnics; /* MTU specifics */ dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->max_mtu = BNXT_MAX_MTU; /* Fast path specifics */ dev_info->min_rx_bufsize = 1; dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN; dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT; if (bp->flags & BNXT_FLAG_PTP_SUPPORTED) dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP; dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT; dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT; /* *INDENT-OFF* */ dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = 8, .hthresh = 8, .wthresh = 0, }, .rx_free_thresh = 32, /* If no descriptors available, pkts are dropped by default */ .rx_drop_en = 1, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = 32, .hthresh = 0, .wthresh = 0, }, .tx_free_thresh = 32, .tx_rs_thresh = 32, }; eth_dev->data->dev_conf.intr_conf.lsc = 1; eth_dev->data->dev_conf.intr_conf.rxq = 1; dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC; dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC; /* *INDENT-ON* */ /* * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim * need further investigation. */ /* VMDq resources */ vpool = 64; /* ETH_64_POOLS */ vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */ for (i = 0; i < 4; vpool >>= 1, i++) { if (max_vnics > vpool) { for (j = 0; j < 5; vrxq >>= 1, j++) { if (dev_info->max_rx_queues > vrxq) { if (vpool > vrxq) vpool = vrxq; goto found; } } /* Not enough resources to support VMDq */ break; } } /* Not enough resources to support VMDq */ vpool = 0; vrxq = 0; found: dev_info->max_vmdq_pools = vpool; dev_info->vmdq_queue_num = vrxq; dev_info->vmdq_pool_base = 0; dev_info->vmdq_queue_base = 0; return 0; } /* Configure the device based on the configuration provided */ static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; int rc; bp->rx_queues = (void *)eth_dev->data->rx_queues; bp->tx_queues = (void *)eth_dev->data->tx_queues; bp->tx_nr_rings = eth_dev->data->nb_tx_queues; bp->rx_nr_rings = eth_dev->data->nb_rx_queues; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) { rc = bnxt_hwrm_check_vf_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM insufficient resources\n"); return -ENOSPC; } /* If a resource has already been allocated - in this case * it is the async completion ring, free it. Reallocate it after * resource reservation. This will ensure the resource counts * are calculated correctly. */ pthread_mutex_lock(&bp->def_cp_lock); if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) { bnxt_disable_int(bp); bnxt_free_cp_ring(bp, bp->async_cp_ring); } rc = bnxt_hwrm_func_reserve_vf_resc(bp, false); if (rc) { PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc); pthread_mutex_unlock(&bp->def_cp_lock); return -ENOSPC; } if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) { rc = bnxt_alloc_async_cp_ring(bp); if (rc) { pthread_mutex_unlock(&bp->def_cp_lock); return rc; } bnxt_enable_int(bp); } pthread_mutex_unlock(&bp->def_cp_lock); } else { /* legacy driver needs to get updated values */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc); return rc; } } /* Inherit new configurations */ if (eth_dev->data->nb_rx_queues > bp->max_rx_rings || eth_dev->data->nb_tx_queues > bp->max_tx_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues + BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues > bp->max_stat_ctx) goto resource_error; if (BNXT_HAS_RING_GRPS(bp) && (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps) goto resource_error; if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) && bp->max_vnics < eth_dev->data->nb_rx_queues) goto resource_error; bp->rx_cp_nr_rings = bp->rx_nr_rings; bp->tx_cp_nr_rings = bp->tx_nr_rings; if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH; eth_dev->data->dev_conf.rxmode.offloads = rx_offloads; if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { eth_dev->data->mtu = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len - RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE * BNXT_NUM_VLANS; bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu); } return 0; resource_error: PMD_DRV_LOG(ERR, "Insufficient resources to support requested config\n"); PMD_DRV_LOG(ERR, "Num Queues Requested: Tx %d, Rx %d\n", eth_dev->data->nb_tx_queues, eth_dev->data->nb_rx_queues); PMD_DRV_LOG(ERR, "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n", bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings, bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics); return -ENOSPC; } static void bnxt_print_link_info(struct rte_eth_dev *eth_dev) { struct rte_eth_link *link = ð_dev->data->dev_link; if (link->link_status) PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n", eth_dev->data->port_id, (uint32_t)link->link_speed, (link->link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else PMD_DRV_LOG(INFO, "Port %d Link Down\n", eth_dev->data->port_id); } /* * Determine whether the current configuration requires support for scattered * receive; return 1 if scattered receive is required and 0 if not. */ static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev) { uint16_t buf_size; int i; if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) return 1; for (i = 0; i < eth_dev->data->nb_rx_queues; i++) { struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i]; buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM); if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size) return 1; } return 0; } static eth_rx_burst_t bnxt_receive_function(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; #ifdef RTE_ARCH_X86 #ifndef RTE_LIBRTE_IEEE1588 /* * Vector mode receive can be enabled only if scatter rx is not * in use and rx offloads are limited to VLAN stripping and * CRC stripping. */ if (!eth_dev->data->scattered_rx && !(eth_dev->data->dev_conf.rxmode.offloads & ~(DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_KEEP_CRC | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_RSS_HASH | DEV_RX_OFFLOAD_VLAN_FILTER))) { PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n", eth_dev->data->port_id); bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE; return bnxt_recv_pkts_vec; } PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n", eth_dev->data->port_id); PMD_DRV_LOG(INFO, "Port %d scatter: %d rx offload: %" PRIX64 "\n", eth_dev->data->port_id, eth_dev->data->scattered_rx, eth_dev->data->dev_conf.rxmode.offloads); #endif #endif bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; return bnxt_recv_pkts; } static eth_tx_burst_t bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev) { #ifdef RTE_ARCH_X86 #ifndef RTE_LIBRTE_IEEE1588 /* * Vector mode transmit can be enabled only if not using scatter rx * or tx offloads. */ if (!eth_dev->data->scattered_rx && !eth_dev->data->dev_conf.txmode.offloads) { PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n", eth_dev->data->port_id); return bnxt_xmit_pkts_vec; } PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n", eth_dev->data->port_id); PMD_DRV_LOG(INFO, "Port %d scatter: %d tx offload: %" PRIX64 "\n", eth_dev->data->port_id, eth_dev->data->scattered_rx, eth_dev->data->dev_conf.txmode.offloads); #endif #endif return bnxt_xmit_pkts; } static int bnxt_handle_if_change_status(struct bnxt *bp) { int rc; /* Since fw has undergone a reset and lost all contexts, * set fatal flag to not issue hwrm during cleanup */ bp->flags |= BNXT_FLAG_FATAL_ERROR; bnxt_uninit_resources(bp, true); /* clear fatal flag so that re-init happens */ bp->flags &= ~BNXT_FLAG_FATAL_ERROR; rc = bnxt_init_resources(bp, true); bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE; return rc; } static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; int vlan_mask = 0; int rc; if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) { PMD_DRV_LOG(ERR, "Queues are not configured yet!\n"); return -EINVAL; } if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) { PMD_DRV_LOG(ERR, "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n", bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS); } rc = bnxt_hwrm_if_change(bp, 1); if (!rc) { if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) { rc = bnxt_handle_if_change_status(bp); if (rc) return rc; } } bnxt_enable_int(bp); rc = bnxt_init_chip(bp); if (rc) goto error; eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev); eth_dev->data->dev_started = 1; bnxt_link_update(eth_dev, 1, ETH_LINK_UP); if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER) vlan_mask |= ETH_VLAN_FILTER_MASK; if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vlan_mask |= ETH_VLAN_STRIP_MASK; rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask); if (rc) goto error; eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev); eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev); pthread_mutex_lock(&bp->def_cp_lock); bnxt_schedule_fw_health_check(bp); pthread_mutex_unlock(&bp->def_cp_lock); return 0; error: bnxt_hwrm_if_change(bp, 0); bnxt_shutdown_nic(bp); bnxt_free_tx_mbufs(bp); bnxt_free_rx_mbufs(bp); eth_dev->data->dev_started = 0; return rc; } static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; int rc = 0; if (!bp->link_info.link_up) rc = bnxt_set_hwrm_link_config(bp, true); if (!rc) eth_dev->data->dev_link.link_status = 1; bnxt_print_link_info(eth_dev); return rc; } static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; eth_dev->data->dev_link.link_status = 0; bnxt_set_hwrm_link_config(bp, false); bp->link_info.link_up = 0; return 0; } /* Unload the driver, release resources */ static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; eth_dev->data->dev_started = 0; /* Prevent crashes when queues are still in use */ eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts; eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts; bnxt_disable_int(bp); /* disable uio/vfio intr/eventfd mapping */ rte_intr_disable(intr_handle); bnxt_cancel_fw_health_check(bp); bnxt_dev_set_link_down_op(eth_dev); /* Wait for link to be reset and the async notification to process. * During reset recovery, there is no need to wait and * VF/NPAR functions do not have privilege to change PHY config. */ if (!is_bnxt_in_error(bp) && BNXT_SINGLE_PF(bp)) bnxt_link_update(eth_dev, 1, ETH_LINK_DOWN); /* Clean queue intr-vector mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec != NULL) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } bnxt_hwrm_port_clr_stats(bp); bnxt_free_tx_mbufs(bp); bnxt_free_rx_mbufs(bp); /* Process any remaining notifications in default completion queue */ bnxt_int_handler(eth_dev); bnxt_shutdown_nic(bp); bnxt_hwrm_if_change(bp, 0); rte_free(bp->mark_table); bp->mark_table = NULL; bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; bp->rx_cosq_cnt = 0; } static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; /* cancel the recovery handler before remove dev */ rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp); rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp); if (eth_dev->data->dev_started) bnxt_dev_stop_op(eth_dev); bnxt_uninit_resources(bp, false); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone); bp->tx_mem_zone = NULL; rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone); bp->rx_mem_zone = NULL; rte_free(bp->pf.vf_info); bp->pf.vf_info = NULL; rte_free(bp->grp_info); bp->grp_info = NULL; } static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev, uint32_t index) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t pool_mask = eth_dev->data->mac_pool_sel[index]; struct bnxt_vnic_info *vnic; struct bnxt_filter_info *filter, *temp_filter; uint32_t i; if (is_bnxt_in_error(bp)) return; /* * Loop through all VNICs from the specified filter flow pools to * remove the corresponding MAC addr filter */ for (i = 0; i < bp->nr_vnics; i++) { if (!(pool_mask & (1ULL << i))) continue; vnic = &bp->vnic_info[i]; filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); if (filter->mac_index == index) { STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_hwrm_clear_l2_filter(bp, filter); bnxt_free_filter(bp, filter); } filter = temp_filter; } } } static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct bnxt_filter_info *filter; int rc = 0; /* Attach requested MAC address to the new l2_filter */ STAILQ_FOREACH(filter, &vnic->filter, next) { if (filter->mac_index == index) { PMD_DRV_LOG(DEBUG, "MAC addr already existed for pool %d\n", pool); return 0; } } filter = bnxt_alloc_filter(bp); if (!filter) { PMD_DRV_LOG(ERR, "L2 filter alloc failed\n"); return -ENODEV; } /* bnxt_alloc_filter copies default MAC to filter->l2_addr. So, * if the MAC that's been programmed now is a different one, then, * copy that addr to filter->l2_addr */ if (mac_addr) memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN); filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); if (!rc) { filter->mac_index = index; if (filter->mac_index == 0) STAILQ_INSERT_HEAD(&vnic->filter, filter, next); else STAILQ_INSERT_TAIL(&vnic->filter, filter, next); } else { bnxt_free_filter(bp, filter); } return rc; } static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = &bp->vnic_info[pool]; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) { PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n"); return -ENOTSUP; } if (!vnic) { PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool); return -EINVAL; } /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool); return rc; } int bnxt_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete, bool exp_link_status) { int rc = 0; struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_link new; int cnt = exp_link_status ? BNXT_LINK_UP_WAIT_CNT : BNXT_LINK_DOWN_WAIT_CNT; rc = is_bnxt_in_error(bp); if (rc) return rc; memset(&new, 0, sizeof(new)); do { /* Retrieve link info from hardware */ rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { new.link_speed = ETH_LINK_SPEED_100M; new.link_duplex = ETH_LINK_FULL_DUPLEX; PMD_DRV_LOG(ERR, "Failed to retrieve link rc = 0x%x!\n", rc); goto out; } if (!wait_to_complete || new.link_status == exp_link_status) break; rte_delay_ms(BNXT_LINK_WAIT_INTERVAL); } while (cnt--); out: /* Timed out or success */ if (new.link_status != eth_dev->data->dev_link.link_status || new.link_speed != eth_dev->data->dev_link.link_speed) { rte_eth_linkstatus_set(eth_dev, &new); _rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL); bnxt_print_link_info(eth_dev); } return rc; } static int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete) { return bnxt_link_update(eth_dev, wait_to_complete, ETH_LINK_UP); } static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags |= BNXT_VNIC_INFO_PROMISC; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags &= ~BNXT_VNIC_INFO_PROMISC; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } /* Return bnxt_rx_queue pointer corresponding to a given rxq. */ static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid) { if (qid >= bp->rx_nr_rings) return NULL; return bp->eth_dev->data->rx_queues[qid]; } /* Return rxq corresponding to a given rss table ring/group ID. */ static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr) { struct bnxt_rx_queue *rxq; unsigned int i; if (!BNXT_HAS_RING_GRPS(bp)) { for (i = 0; i < bp->rx_nr_rings; i++) { rxq = bp->eth_dev->data->rx_queues[i]; if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr) return rxq->index; } } else { for (i = 0; i < bp->rx_nr_rings; i++) { if (bp->grp_info[i].fw_grp_id == fwr) return i; } } return INVALID_HW_RING_ID; } static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp); uint16_t idx, sft; int i, rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!vnic->rss_table) return -EINVAL; if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) return -EINVAL; if (reta_size != tbl_size) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, tbl_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { struct bnxt_rx_queue *rxq; idx = i / RTE_RETA_GROUP_SIZE; sft = i % RTE_RETA_GROUP_SIZE; if (!(reta_conf[idx].mask & (1ULL << sft))) continue; rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]); if (!rxq) { PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n"); return -EINVAL; } if (BNXT_CHIP_THOR(bp)) { vnic->rss_table[i * 2] = rxq->rx_ring->rx_ring_struct->fw_ring_id; vnic->rss_table[i * 2 + 1] = rxq->cp_ring->cp_ring_struct->fw_ring_id; } else { vnic->rss_table[i] = vnic->fw_grp_ids[reta_conf[idx].reta[sft]]; } } bnxt_hwrm_vnic_rss_cfg(bp, vnic); return 0; } static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp); uint16_t idx, sft, i; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Retrieve from the default VNIC */ if (!vnic) return -EINVAL; if (!vnic->rss_table) return -EINVAL; if (reta_size != tbl_size) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, tbl_size); return -EINVAL; } for (idx = 0, i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; sft = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << sft)) { uint16_t qid; if (BNXT_CHIP_THOR(bp)) qid = bnxt_rss_to_qid(bp, vnic->rss_table[i * 2]); else qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]); if (qid == INVALID_HW_RING_ID) { PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n"); return -EINVAL; } reta_conf[idx].reta[sft] = qid; } } return 0; } static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* * If RSS enablement were different than dev_configure, * then return -EINVAL */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) { if (!rss_conf->rss_hf) PMD_DRV_LOG(ERR, "Hash type NONE\n"); } else { if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT) return -EINVAL; } bp->flags |= BNXT_FLAG_UPDATE_HASH; memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf)); /* Update the default RSS VNIC(s) */ vnic = BNXT_GET_DEFAULT_VNIC(bp); vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf); /* * If hashkey is not specified, use the previously configured * hashkey */ if (!rss_conf->rss_key) goto rss_config; if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) { PMD_DRV_LOG(ERR, "Invalid hashkey length, should be 16 bytes\n"); return -EINVAL; } memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len); rss_config: bnxt_hwrm_vnic_rss_cfg(bp, vnic); return 0; } static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int len, rc; uint32_t hash_types; rc = is_bnxt_in_error(bp); if (rc) return rc; /* RSS configuration is the same for all VNICs */ if (vnic && vnic->rss_hash_key) { if (rss_conf->rss_key) { len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ? rss_conf->rss_key_len : HW_HASH_KEY_SIZE; memcpy(rss_conf->rss_key, vnic->rss_hash_key, len); } hash_types = vnic->hash_type; rss_conf->rss_hf = 0; if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) { rss_conf->rss_hf |= ETH_RSS_IPV4; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) { rss_conf->rss_hf |= ETH_RSS_IPV6; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6; } if (hash_types) { PMD_DRV_LOG(ERR, "Unknwon RSS config from firmware (%08x), RSS disabled", vnic->hash_type); return -ENOTSUP; } } else { rss_conf->rss_hf = 0; } return 0; } static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = dev->data->dev_private; struct rte_eth_link link_info; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; rc = bnxt_get_hwrm_link_config(bp, &link_info); if (rc) return rc; memset(fc_conf, 0, sizeof(*fc_conf)); if (bp->link_info.auto_pause) fc_conf->autoneg = 1; switch (bp->link_info.pause) { case 0: fc_conf->mode = RTE_FC_NONE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX: fc_conf->mode = RTE_FC_TX_PAUSE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX: fc_conf->mode = RTE_FC_RX_PAUSE; break; case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX | HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX): fc_conf->mode = RTE_FC_FULL; break; } return 0; } static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) { PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n"); return -ENOTSUP; } switch (fc_conf->mode) { case RTE_FC_NONE: bp->link_info.auto_pause = 0; bp->link_info.force_pause = 0; break; case RTE_FC_RX_PAUSE: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; case RTE_FC_TX_PAUSE: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX; } break; case RTE_FC_FULL: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; } return bnxt_set_hwrm_link_config(bp, true); } /* Add UDP tunneling port */ static int bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = eth_dev->data->dev_private; uint16_t tunnel_type = 0; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->vxlan_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN; bp->vxlan_port_cnt++; break; case RTE_TUNNEL_TYPE_GENEVE: if (bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->geneve_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE; bp->geneve_port_cnt++; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port, tunnel_type); return rc; } static int bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = eth_dev->data->dev_private; uint16_t tunnel_type = 0; uint16_t port = 0; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (!bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->vxlan_port); return -EINVAL; } if (--bp->vxlan_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN; port = bp->vxlan_fw_dst_port_id; break; case RTE_TUNNEL_TYPE_GENEVE: if (!bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->geneve_port); return -EINVAL; } if (--bp->geneve_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE; port = bp->geneve_fw_dst_port_id; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type); if (!rc) { if (tunnel_type == HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN) bp->vxlan_port = 0; if (tunnel_type == HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE) bp->geneve_port = 0; } return rc; } static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic; int rc = 0; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN; vnic = BNXT_GET_DEFAULT_VNIC(bp); filter = STAILQ_FIRST(&vnic->filter); while (filter) { /* Search for this matching MAC+VLAN filter */ if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) { /* Delete the filter */ rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (rc) return rc; STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_free_filter(bp, filter); PMD_DRV_LOG(INFO, "Deleted vlan filter for %d\n", vlan_id); return 0; } filter = STAILQ_NEXT(filter, next); } return -ENOENT; } static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic; int rc = 0; uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN; /* Implementation notes on the use of VNIC in this command: * * By default, these filters belong to default vnic for the function. * Once these filters are set up, only destination VNIC can be modified. * If the destination VNIC is not specified in this command, * then the HWRM shall only create an l2 context id. */ vnic = BNXT_GET_DEFAULT_VNIC(bp); filter = STAILQ_FIRST(&vnic->filter); /* Check if the VLAN has already been added */ while (filter) { if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) return -EEXIST; filter = STAILQ_NEXT(filter, next); } /* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC * command to create MAC+VLAN filter with the right flags, enables set. */ filter = bnxt_alloc_filter(bp); if (!filter) { PMD_DRV_LOG(ERR, "MAC/VLAN filter alloc failed\n"); return -ENOMEM; } /* MAC + VLAN ID filter */ /* If l2_ivlan == 0 and l2_ivlan_mask != 0, only * untagged packets are received * * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged * packets and only the programmed vlan's packets are received */ filter->l2_ivlan = vlan_id; filter->l2_ivlan_mask = 0x0FFF; filter->enables |= en; filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); if (rc) { /* Free the newly allocated filter as we were * not able to create the filter in hardware. */ bnxt_free_filter(bp, filter); return rc; } filter->mac_index = 0; /* Add this new filter to the list */ if (vlan_id == 0) STAILQ_INSERT_HEAD(&vnic->filter, filter, next); else STAILQ_INSERT_TAIL(&vnic->filter, filter, next); PMD_DRV_LOG(INFO, "Added Vlan filter for %d\n", vlan_id); return rc; } static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev, uint16_t vlan_id, int on) { struct bnxt *bp = eth_dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* These operations apply to ALL existing MAC/VLAN filters */ if (on) return bnxt_add_vlan_filter(bp, vlan_id); else return bnxt_del_vlan_filter(bp, vlan_id); } static int bnxt_del_dflt_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic) { struct bnxt_filter_info *filter; int rc; filter = STAILQ_FIRST(&vnic->filter); while (filter) { if (filter->mac_index == 0 && !memcmp(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN)) { rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (!rc) { STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_free_filter(bp, filter); } return rc; } filter = STAILQ_NEXT(filter, next); } return 0; } static int bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads) { struct bnxt_vnic_info *vnic; unsigned int i; int rc; vnic = BNXT_GET_DEFAULT_VNIC(bp); if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) { /* Remove any VLAN filters programmed */ for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++) bnxt_del_vlan_filter(bp, i); rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0); if (rc) return rc; } else { /* Default filter will allow packets that match the * dest mac. So, it has to be deleted, otherwise, we * will endup receiving vlan packets for which the * filter is not programmed, when hw-vlan-filter * configuration is ON */ bnxt_del_dflt_mac_filter(bp, vnic); /* This filter will allow only untagged packets */ bnxt_add_vlan_filter(bp, 0); } PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)); return 0; } static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id) { struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; unsigned int i; int rc; /* Destroy vnic filters and vnic */ if (bp->eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++) bnxt_del_vlan_filter(bp, i); } bnxt_del_dflt_mac_filter(bp, vnic); rc = bnxt_hwrm_vnic_free(bp, vnic); if (rc) return rc; rte_free(vnic->fw_grp_ids); vnic->fw_grp_ids = NULL; return 0; } static int bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads) { struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int rc; /* Destroy, recreate and reconfigure the default vnic */ rc = bnxt_free_one_vnic(bp, 0); if (rc) return rc; /* default vnic 0 */ rc = bnxt_setup_one_vnic(bp, 0); if (rc) return rc; if (bp->eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { rc = bnxt_add_vlan_filter(bp, 0); if (rc) return rc; rc = bnxt_restore_vlan_filters(bp); if (rc) return rc; } else { rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0); if (rc) return rc; } rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc) return rc; PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)); return rc; } static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask) { uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads; struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!dev->data->dev_started) return 0; if (mask & ETH_VLAN_FILTER_MASK) { /* Enable or disable VLAN filtering */ rc = bnxt_config_vlan_hw_filter(bp, rx_offloads); if (rc) return rc; } if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads); if (rc) return rc; } if (mask & ETH_VLAN_EXTEND_MASK) { if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n"); else PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n"); } return 0; } static int bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid) { struct bnxt *bp = dev->data->dev_private; int qinq = dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_EXTEND; if (vlan_type != ETH_VLAN_TYPE_INNER && vlan_type != ETH_VLAN_TYPE_OUTER) { PMD_DRV_LOG(ERR, "Unsupported vlan type."); return -EINVAL; } if (!qinq) { PMD_DRV_LOG(ERR, "QinQ not enabled. Needs to be ON as we can " "accelerate only outer vlan\n"); return -EINVAL; } if (vlan_type == ETH_VLAN_TYPE_OUTER) { switch (tpid) { case RTE_ETHER_TYPE_QINQ: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8; break; case RTE_ETHER_TYPE_VLAN: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100; break; case 0x9100: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100; break; case 0x9200: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200; break; case 0x9300: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300; break; default: PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid); return -EINVAL; } bp->outer_tpid_bd |= tpid; PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd); } else if (vlan_type == ETH_VLAN_TYPE_INNER) { PMD_DRV_LOG(ERR, "Can accelerate only outer vlan in QinQ\n"); return -EINVAL; } return 0; } static int bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct rte_ether_addr *addr) { struct bnxt *bp = dev->data->dev_private; /* Default Filter is tied to VNIC 0 */ struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) return -EPERM; if (rte_is_zero_ether_addr(addr)) return -EINVAL; /* Filter settings will get applied when port is started */ if (!dev->data->dev_started) return 0; /* Check if the requested MAC is already added */ if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0) return 0; /* Destroy filter and re-create it */ bnxt_del_dflt_mac_filter(bp, vnic); memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN); if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { /* This filter will allow only untagged packets */ rc = bnxt_add_vlan_filter(bp, 0); } else { rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0); } PMD_DRV_LOG(DEBUG, "Set MAC addr\n"); return rc; } static int bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct bnxt *bp = eth_dev->data->dev_private; char *mc_addr_list = (char *)mc_addr_set; struct bnxt_vnic_info *vnic; uint32_t off = 0, i = 0; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; vnic = BNXT_GET_DEFAULT_VNIC(bp); if (nb_mc_addr > BNXT_MAX_MC_ADDRS) { vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; goto allmulti; } /* TODO Check for Duplicate mcast addresses */ vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; for (i = 0; i < nb_mc_addr; i++) { memcpy(vnic->mc_list + off, &mc_addr_list[i], RTE_ETHER_ADDR_LEN); off += RTE_ETHER_ADDR_LEN; } vnic->mc_addr_cnt = i; if (vnic->mc_addr_cnt) vnic->flags |= BNXT_VNIC_INFO_MCAST; else vnic->flags &= ~BNXT_VNIC_INFO_MCAST; allmulti: return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static int bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct bnxt *bp = dev->data->dev_private; uint8_t fw_major = (bp->fw_ver >> 24) & 0xff; uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff; uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff; int ret; ret = snprintf(fw_version, fw_size, "%d.%d.%d", fw_major, fw_minor, fw_updt); ret += 1; /* add the size of '\0' */ if (fw_size < (uint32_t)ret) return ret; else return 0; } static void bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct bnxt *bp = dev->data->dev_private; struct bnxt_rx_queue *rxq; if (is_bnxt_in_error(bp)) return; rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->scattered_rx = dev->data->scattered_rx; qinfo->nb_desc = rxq->nb_rx_desc; qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; qinfo->conf.rx_drop_en = 0; qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; } static void bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct bnxt *bp = dev->data->dev_private; struct bnxt_tx_queue *txq; if (is_bnxt_in_error(bp)) return; txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; qinfo->conf.tx_thresh.pthresh = txq->pthresh; qinfo->conf.tx_thresh.hthresh = txq->hthresh; qinfo->conf.tx_thresh.wthresh = txq->wthresh; qinfo->conf.tx_free_thresh = txq->tx_free_thresh; qinfo->conf.tx_rs_thresh = 0; qinfo->conf.tx_deferred_start = txq->tx_deferred_start; } int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu) { struct bnxt *bp = eth_dev->data->dev_private; uint32_t new_pkt_size; uint32_t rc = 0; uint32_t i; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Exit if receive queues are not configured yet */ if (!eth_dev->data->nb_rx_queues) return rc; new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * BNXT_NUM_VLANS; #ifdef RTE_ARCH_X86 /* * If vector-mode tx/rx is active, disallow any MTU change that would * require scattered receive support. */ if (eth_dev->data->dev_started && (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec || eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) && (new_pkt_size > eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) { PMD_DRV_LOG(ERR, "MTU change would require scattered rx support. "); PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n"); return -EINVAL; } #endif if (new_mtu > RTE_ETHER_MTU) { bp->flags |= BNXT_FLAG_JUMBO; bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } /* Is there a change in mtu setting? */ if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size) return rc; for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; uint16_t size = 0; vnic->mru = BNXT_VNIC_MRU(new_mtu); rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) break; size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool); size -= RTE_PKTMBUF_HEADROOM; if (size < new_mtu) { rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); if (rc) return rc; } } if (!rc) eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size; PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu); return rc; } static int bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct bnxt *bp = dev->data->dev_private; uint16_t vlan = bp->vlan; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) { PMD_DRV_LOG(ERR, "PVID cannot be modified for this function\n"); return -ENOTSUP; } bp->vlan = on ? pvid : 0; rc = bnxt_hwrm_set_default_vlan(bp, 0, 0); if (rc) bp->vlan = vlan; return rc; } static int bnxt_dev_led_on_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; return bnxt_hwrm_port_led_cfg(bp, true); } static int bnxt_dev_led_off_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; return bnxt_hwrm_port_led_cfg(bp, false); } static uint32_t bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint32_t desc = 0, raw_cons = 0, cons; struct bnxt_cp_ring_info *cpr; struct bnxt_rx_queue *rxq; struct rx_pkt_cmpl *rxcmp; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; rxq = dev->data->rx_queues[rx_queue_id]; cpr = rxq->cp_ring; raw_cons = cpr->cp_raw_cons; while (1) { cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rte_prefetch0(&cpr->cp_desc_ring[cons]); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) { break; } else { raw_cons++; desc++; } } return desc; } static int bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset) { struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue; struct bnxt_rx_ring_info *rxr; struct bnxt_cp_ring_info *cpr; struct bnxt_sw_rx_bd *rx_buf; struct rx_pkt_cmpl *rxcmp; uint32_t cons, cp_cons; int rc; if (!rxq) return -EINVAL; rc = is_bnxt_in_error(rxq->bp); if (rc) return rc; cpr = rxq->cp_ring; rxr = rxq->rx_ring; if (offset >= rxq->nb_rx_desc) return -EINVAL; cons = RING_CMP(cpr->cp_ring_struct, offset); cp_cons = cpr->cp_raw_cons; rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (cons > cp_cons) { if (CMPL_VALID(rxcmp, cpr->valid)) return RTE_ETH_RX_DESC_DONE; } else { if (CMPL_VALID(rxcmp, !cpr->valid)) return RTE_ETH_RX_DESC_DONE; } rx_buf = &rxr->rx_buf_ring[cons]; if (rx_buf->mbuf == NULL) return RTE_ETH_RX_DESC_UNAVAIL; return RTE_ETH_RX_DESC_AVAIL; } static int bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset) { struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue; struct bnxt_tx_ring_info *txr; struct bnxt_cp_ring_info *cpr; struct bnxt_sw_tx_bd *tx_buf; struct tx_pkt_cmpl *txcmp; uint32_t cons, cp_cons; int rc; if (!txq) return -EINVAL; rc = is_bnxt_in_error(txq->bp); if (rc) return rc; cpr = txq->cp_ring; txr = txq->tx_ring; if (offset >= txq->nb_tx_desc) return -EINVAL; cons = RING_CMP(cpr->cp_ring_struct, offset); txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; cp_cons = cpr->cp_raw_cons; if (cons > cp_cons) { if (CMPL_VALID(txcmp, cpr->valid)) return RTE_ETH_TX_DESC_UNAVAIL; } else { if (CMPL_VALID(txcmp, !cpr->valid)) return RTE_ETH_TX_DESC_UNAVAIL; } tx_buf = &txr->tx_buf_ring[cons]; if (tx_buf->mbuf == NULL) return RTE_ETH_TX_DESC_DONE; return RTE_ETH_TX_DESC_FULL; } static struct bnxt_filter_info * bnxt_match_and_validate_ether_filter(struct bnxt *bp, struct rte_eth_ethertype_filter *efilter, struct bnxt_vnic_info *vnic0, struct bnxt_vnic_info *vnic, int *ret) { struct bnxt_filter_info *mfilter = NULL; int match = 0; *ret = 0; if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 || efilter->ether_type == RTE_ETHER_TYPE_IPV6) { PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in" " ethertype filter.", efilter->ether_type); *ret = -EINVAL; goto exit; } if (efilter->queue >= bp->rx_nr_rings) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue); *ret = -EINVAL; goto exit; } vnic0 = BNXT_GET_DEFAULT_VNIC(bp); vnic = &bp->vnic_info[efilter->queue]; if (vnic == NULL) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue); *ret = -EINVAL; goto exit; } if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) { STAILQ_FOREACH(mfilter, &vnic0->filter, next) { if ((!memcmp(efilter->mac_addr.addr_bytes, mfilter->l2_addr, RTE_ETHER_ADDR_LEN) && mfilter->flags == HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP && mfilter->ethertype == efilter->ether_type)) { match = 1; break; } } } else { STAILQ_FOREACH(mfilter, &vnic->filter, next) if ((!memcmp(efilter->mac_addr.addr_bytes, mfilter->l2_addr, RTE_ETHER_ADDR_LEN) && mfilter->ethertype == efilter->ether_type && mfilter->flags == HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) { match = 1; break; } } if (match) *ret = -EEXIST; exit: return mfilter; } static int bnxt_ethertype_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = dev->data->dev_private; struct rte_eth_ethertype_filter *efilter = (struct rte_eth_ethertype_filter *)arg; struct bnxt_filter_info *bfilter, *filter1; struct bnxt_vnic_info *vnic, *vnic0; int ret; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL) { PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", filter_op); return -EINVAL; } vnic0 = BNXT_GET_DEFAULT_VNIC(bp); vnic = &bp->vnic_info[efilter->queue]; switch (filter_op) { case RTE_ETH_FILTER_ADD: bnxt_match_and_validate_ether_filter(bp, efilter, vnic0, vnic, &ret); if (ret < 0) return ret; bfilter = bnxt_get_unused_filter(bp); if (bfilter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new filter.\n"); return -ENOMEM; } bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER; memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes, RTE_ETHER_ADDR_LEN); memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes, RTE_ETHER_ADDR_LEN); bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR; bfilter->ethertype = efilter->ether_type; bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0); if (filter1 == NULL) { ret = -EINVAL; goto cleanup; } bfilter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id; bfilter->dst_id = vnic->fw_vnic_id; if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) { bfilter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; } ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter); if (ret) goto cleanup; STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next); break; case RTE_ETH_FILTER_DELETE: filter1 = bnxt_match_and_validate_ether_filter(bp, efilter, vnic0, vnic, &ret); if (ret == -EEXIST) { ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1); STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info, next); bnxt_free_filter(bp, filter1); } else if (ret == 0) { PMD_DRV_LOG(ERR, "No matching filter found\n"); } break; default: PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); ret = -EINVAL; goto error; } return ret; cleanup: bnxt_free_filter(bp, bfilter); error: return ret; } static inline int parse_ntuple_filter(struct bnxt *bp, struct rte_eth_ntuple_filter *nfilter, struct bnxt_filter_info *bfilter) { uint32_t en = 0; if (nfilter->queue >= bp->rx_nr_rings) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue); return -EINVAL; } switch (nfilter->dst_port_mask) { case UINT16_MAX: bfilter->dst_port_mask = -1; bfilter->dst_port = nfilter->dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; break; default: PMD_DRV_LOG(ERR, "invalid dst_port mask."); return -EINVAL; } bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; switch (nfilter->proto_mask) { case UINT8_MAX: if (nfilter->proto == 17) /* IPPROTO_UDP */ bfilter->ip_protocol = 17; else if (nfilter->proto == 6) /* IPPROTO_TCP */ bfilter->ip_protocol = 6; else return -EINVAL; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; break; default: PMD_DRV_LOG(ERR, "invalid protocol mask."); return -EINVAL; } switch (nfilter->dst_ip_mask) { case UINT32_MAX: bfilter->dst_ipaddr_mask[0] = -1; bfilter->dst_ipaddr[0] = nfilter->dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; break; default: PMD_DRV_LOG(ERR, "invalid dst_ip mask."); return -EINVAL; } switch (nfilter->src_ip_mask) { case UINT32_MAX: bfilter->src_ipaddr_mask[0] = -1; bfilter->src_ipaddr[0] = nfilter->src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; break; default: PMD_DRV_LOG(ERR, "invalid src_ip mask."); return -EINVAL; } switch (nfilter->src_port_mask) { case UINT16_MAX: bfilter->src_port_mask = -1; bfilter->src_port = nfilter->src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; break; default: PMD_DRV_LOG(ERR, "invalid src_port mask."); return -EINVAL; } bfilter->enables = en; return 0; } static struct bnxt_filter_info* bnxt_match_ntuple_filter(struct bnxt *bp, struct bnxt_filter_info *bfilter, struct bnxt_vnic_info **mvnic) { struct bnxt_filter_info *mfilter = NULL; int i; for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(mfilter, &vnic->filter, next) { if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] && bfilter->src_ipaddr_mask[0] == mfilter->src_ipaddr_mask[0] && bfilter->src_port == mfilter->src_port && bfilter->src_port_mask == mfilter->src_port_mask && bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] && bfilter->dst_ipaddr_mask[0] == mfilter->dst_ipaddr_mask[0] && bfilter->dst_port == mfilter->dst_port && bfilter->dst_port_mask == mfilter->dst_port_mask && bfilter->flags == mfilter->flags && bfilter->enables == mfilter->enables) { if (mvnic) *mvnic = vnic; return mfilter; } } } return NULL; } static int bnxt_cfg_ntuple_filter(struct bnxt *bp, struct rte_eth_ntuple_filter *nfilter, enum rte_filter_op filter_op) { struct bnxt_filter_info *bfilter, *mfilter, *filter1; struct bnxt_vnic_info *vnic, *vnic0, *mvnic; int ret; if (nfilter->flags != RTE_5TUPLE_FLAGS) { PMD_DRV_LOG(ERR, "only 5tuple is supported."); return -EINVAL; } if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) { PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n"); return -EINVAL; } bfilter = bnxt_get_unused_filter(bp); if (bfilter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new filter.\n"); return -ENOMEM; } ret = parse_ntuple_filter(bp, nfilter, bfilter); if (ret < 0) goto free_filter; vnic = &bp->vnic_info[nfilter->queue]; vnic0 = BNXT_GET_DEFAULT_VNIC(bp); filter1 = STAILQ_FIRST(&vnic0->filter); if (filter1 == NULL) { ret = -EINVAL; goto free_filter; } bfilter->dst_id = vnic->fw_vnic_id; bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id; bfilter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; bfilter->ethertype = 0x800; bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic); if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD && bfilter->dst_id == mfilter->dst_id) { PMD_DRV_LOG(ERR, "filter exists.\n"); ret = -EEXIST; goto free_filter; } else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD && bfilter->dst_id != mfilter->dst_id) { mfilter->dst_id = vnic->fw_vnic_id; ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter); STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next); PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n"); PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n"); goto free_filter; } if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) { PMD_DRV_LOG(ERR, "filter doesn't exist."); ret = -ENOENT; goto free_filter; } if (filter_op == RTE_ETH_FILTER_ADD) { bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER; ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter); if (ret) goto free_filter; STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next); } else { if (mfilter == NULL) { /* This should not happen. But for Coverity! */ ret = -ENOENT; goto free_filter; } ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter); STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next); bnxt_free_filter(bp, mfilter); bnxt_free_filter(bp, bfilter); } return 0; free_filter: bnxt_free_filter(bp, bfilter); return ret; } static int bnxt_ntuple_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = dev->data->dev_private; int ret; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL) { PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", filter_op); return -EINVAL; } switch (filter_op) { case RTE_ETH_FILTER_ADD: ret = bnxt_cfg_ntuple_filter(bp, (struct rte_eth_ntuple_filter *)arg, filter_op); break; case RTE_ETH_FILTER_DELETE: ret = bnxt_cfg_ntuple_filter(bp, (struct rte_eth_ntuple_filter *)arg, filter_op); break; default: PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); ret = -EINVAL; break; } return ret; } static int bnxt_parse_fdir_filter(struct bnxt *bp, struct rte_eth_fdir_filter *fdir, struct bnxt_filter_info *filter) { enum rte_fdir_mode fdir_mode = bp->eth_dev->data->dev_conf.fdir_conf.mode; struct bnxt_vnic_info *vnic0, *vnic; struct bnxt_filter_info *filter1; uint32_t en = 0; int i; if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL) return -EINVAL; filter->l2_ovlan = fdir->input.flow_ext.vlan_tci; en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID; switch (fdir->input.flow_type) { case RTE_ETH_FLOW_IPV4: case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: /* FALLTHROUGH */ filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = fdir->input.flow.ip4_flow.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: filter->src_port = fdir->input.flow.tcp4_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.tcp4_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = 6; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: filter->src_port = fdir->input.flow.udp4_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.udp4_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = 17; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_IPV6: case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: /* FALLTHROUGH */ filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.ipv6_flow.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.ipv6_flow.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.ipv6_flow.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: filter->src_port = fdir->input.flow.tcp6_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.tcp6_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.tcp6_flow.ip.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.tcp6_flow.ip.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: filter->src_port = fdir->input.flow.udp6_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.udp6_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.udp6_flow.ip.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.udp6_flow.ip.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_L2_PAYLOAD: filter->ethertype = fdir->input.flow.l2_flow.ether_type; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_VXLAN: if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) return -EINVAL; filter->vni = fdir->input.flow.tunnel_flow.tunnel_id; filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE; break; case RTE_ETH_FLOW_NVGRE: if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) return -EINVAL; filter->vni = fdir->input.flow.tunnel_flow.tunnel_id; filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE; break; case RTE_ETH_FLOW_UNKNOWN: case RTE_ETH_FLOW_RAW: case RTE_ETH_FLOW_FRAG_IPV4: case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP: case RTE_ETH_FLOW_FRAG_IPV6: case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP: case RTE_ETH_FLOW_IPV6_EX: case RTE_ETH_FLOW_IPV6_TCP_EX: case RTE_ETH_FLOW_IPV6_UDP_EX: case RTE_ETH_FLOW_GENEVE: /* FALLTHROUGH */ default: return -EINVAL; } vnic0 = BNXT_GET_DEFAULT_VNIC(bp); vnic = &bp->vnic_info[fdir->action.rx_queue]; if (vnic == NULL) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue); return -EINVAL; } if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) { rte_memcpy(filter->dst_macaddr, fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR; } if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) { filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; filter1 = STAILQ_FIRST(&vnic0->filter); //filter1 = bnxt_get_l2_filter(bp, filter, vnic0); } else { filter->dst_id = vnic->fw_vnic_id; for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) if (filter->dst_macaddr[i] == 0x00) filter1 = STAILQ_FIRST(&vnic0->filter); else filter1 = bnxt_get_l2_filter(bp, filter, vnic); } if (filter1 == NULL) return -EINVAL; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->enables = en; return 0; } static struct bnxt_filter_info * bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf, struct bnxt_vnic_info **mvnic) { struct bnxt_filter_info *mf = NULL; int i; for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(mf, &vnic->filter, next) { if (mf->filter_type == nf->filter_type && mf->flags == nf->flags && mf->src_port == nf->src_port && mf->src_port_mask == nf->src_port_mask && mf->dst_port == nf->dst_port && mf->dst_port_mask == nf->dst_port_mask && mf->ip_protocol == nf->ip_protocol && mf->ip_addr_type == nf->ip_addr_type && mf->ethertype == nf->ethertype && mf->vni == nf->vni && mf->tunnel_type == nf->tunnel_type && mf->l2_ovlan == nf->l2_ovlan && mf->l2_ovlan_mask == nf->l2_ovlan_mask && mf->l2_ivlan == nf->l2_ivlan && mf->l2_ivlan_mask == nf->l2_ivlan_mask && !memcmp(mf->l2_addr, nf->l2_addr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->l2_addr_mask, nf->l2_addr_mask, RTE_ETHER_ADDR_LEN) && !memcmp(mf->src_macaddr, nf->src_macaddr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->dst_macaddr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->src_ipaddr, nf->src_ipaddr, sizeof(nf->src_ipaddr)) && !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask, sizeof(nf->src_ipaddr_mask)) && !memcmp(mf->dst_ipaddr, nf->dst_ipaddr, sizeof(nf->dst_ipaddr)) && !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask, sizeof(nf->dst_ipaddr_mask))) { if (mvnic) *mvnic = vnic; return mf; } } } return NULL; } static int bnxt_fdir_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = dev->data->dev_private; struct rte_eth_fdir_filter *fdir = (struct rte_eth_fdir_filter *)arg; struct bnxt_filter_info *filter, *match; struct bnxt_vnic_info *vnic, *mvnic; int ret = 0, i; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH) return -EINVAL; switch (filter_op) { case RTE_ETH_FILTER_ADD: case RTE_ETH_FILTER_DELETE: /* FALLTHROUGH */ filter = bnxt_get_unused_filter(bp); if (filter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n"); return -ENOMEM; } ret = bnxt_parse_fdir_filter(bp, fdir, filter); if (ret != 0) goto free_filter; filter->filter_type = HWRM_CFA_NTUPLE_FILTER; if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) vnic = &bp->vnic_info[0]; else vnic = &bp->vnic_info[fdir->action.rx_queue]; match = bnxt_match_fdir(bp, filter, &mvnic); if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) { if (match->dst_id == vnic->fw_vnic_id) { PMD_DRV_LOG(ERR, "Flow already exists.\n"); ret = -EEXIST; goto free_filter; } else { match->dst_id = vnic->fw_vnic_id; ret = bnxt_hwrm_set_ntuple_filter(bp, match->dst_id, match); STAILQ_REMOVE(&mvnic->filter, match, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&vnic->filter, match, next); PMD_DRV_LOG(ERR, "Filter with matching pattern exist\n"); PMD_DRV_LOG(ERR, "Updated it to new destination q\n"); goto free_filter; } } if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) { PMD_DRV_LOG(ERR, "Flow does not exist.\n"); ret = -ENOENT; goto free_filter; } if (filter_op == RTE_ETH_FILTER_ADD) { ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter); if (ret) goto free_filter; STAILQ_INSERT_TAIL(&vnic->filter, filter, next); } else { ret = bnxt_hwrm_clear_ntuple_filter(bp, match); STAILQ_REMOVE(&vnic->filter, match, bnxt_filter_info, next); bnxt_free_filter(bp, match); bnxt_free_filter(bp, filter); } break; case RTE_ETH_FILTER_FLUSH: for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(filter, &vnic->filter, next) { if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) { ret = bnxt_hwrm_clear_ntuple_filter(bp, filter); STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); } } } return ret; case RTE_ETH_FILTER_UPDATE: case RTE_ETH_FILTER_STATS: case RTE_ETH_FILTER_INFO: PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op); break; default: PMD_DRV_LOG(ERR, "unknown operation %u", filter_op); ret = -EINVAL; break; } return ret; free_filter: bnxt_free_filter(bp, filter); return ret; } static int bnxt_filter_ctrl_op(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; ret = is_bnxt_in_error(dev->data->dev_private); if (ret) return ret; switch (filter_type) { case RTE_ETH_FILTER_TUNNEL: PMD_DRV_LOG(ERR, "filter type: %d: To be implemented\n", filter_type); break; case RTE_ETH_FILTER_FDIR: ret = bnxt_fdir_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_NTUPLE: ret = bnxt_ntuple_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_ETHERTYPE: ret = bnxt_ethertype_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &bnxt_flow_ops; break; default: PMD_DRV_LOG(ERR, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } static const uint32_t * bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_UNKNOWN }; if (!dev->rx_pkt_burst) return NULL; return ptypes; } static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count, int reg_win) { uint32_t reg_base = *reg_arr & 0xfffff000; uint32_t win_off; int i; for (i = 0; i < count; i++) { if ((reg_arr[i] & 0xfffff000) != reg_base) return -ERANGE; } win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4; rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off); return 0; } static int bnxt_map_ptp_regs(struct bnxt *bp) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t *reg_arr; int rc, i; reg_arr = ptp->rx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5); if (rc) return rc; reg_arr = ptp->tx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6); if (rc) return rc; for (i = 0; i < BNXT_PTP_RX_REGS; i++) ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff); for (i = 0; i < BNXT_PTP_TX_REGS; i++) ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff); return 0; } static void bnxt_unmap_ptp_regs(struct bnxt *bp) { rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16); rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20); } static uint64_t bnxt_cc_read(struct bnxt *bp) { uint64_t ns; ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME)); ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32; return ns; } static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t fifo; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); if (fifo & BNXT_PTP_TX_FIFO_EMPTY) return -EAGAIN; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32; return 0; } static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; struct bnxt_pf_info *pf = &bp->pf; uint16_t port_id; uint32_t fifo; if (!ptp) return -ENODEV; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (!(fifo & BNXT_PTP_RX_FIFO_PENDING)) return -EAGAIN; port_id = pf->port_id; rte_write32(1 << port_id, (uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]); fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (fifo & BNXT_PTP_RX_FIFO_PENDING) { /* bnxt_clr_rx_ts(bp); TBD */ return -EBUSY; } *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32; return 0; } static int bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) { uint64_t ns; struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ns = rte_timespec_to_ns(ts); /* Set the timecounters to a new value. */ ptp->tc.nsec = ns; return 0; } static int bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t ns, systime_cycles = 0; int rc = 0; if (!ptp) return 0; if (BNXT_CHIP_THOR(bp)) rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME, &systime_cycles); else systime_cycles = bnxt_cc_read(bp); ns = rte_timecounter_update(&ptp->tc, systime_cycles); *ts = rte_ns_to_timespec(ns); return rc; } static int bnxt_timesync_enable(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t shift = 0; int rc; if (!ptp) return 0; ptp->rx_filter = 1; ptp->tx_tstamp_en = 1; ptp->rxctl = BNXT_PTP_MSG_EVENTS; rc = bnxt_hwrm_ptp_cfg(bp); if (rc) return rc; memset(&ptp->tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tc.cc_shift = shift; ptp->tc.nsec_mask = (1ULL << shift) - 1; ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->rx_tstamp_tc.cc_shift = shift; ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tx_tstamp_tc.cc_shift = shift; ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; if (!BNXT_CHIP_THOR(bp)) bnxt_map_ptp_regs(bp); return 0; } static int bnxt_timesync_disable(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ptp->rx_filter = 0; ptp->tx_tstamp_en = 0; ptp->rxctl = 0; bnxt_hwrm_ptp_cfg(bp); if (!BNXT_CHIP_THOR(bp)) bnxt_unmap_ptp_regs(bp); return 0; } static int bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags __rte_unused) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t rx_tstamp_cycles = 0; uint64_t ns; if (!ptp) return 0; if (BNXT_CHIP_THOR(bp)) rx_tstamp_cycles = ptp->rx_timestamp; else bnxt_get_rx_ts(bp, &rx_tstamp_cycles); ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t tx_tstamp_cycles = 0; uint64_t ns; int rc = 0; if (!ptp) return 0; if (BNXT_CHIP_THOR(bp)) rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX, &tx_tstamp_cycles); else rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles); ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return rc; } static int bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ptp->tc.nsec += delta; return 0; } static int bnxt_get_eeprom_length_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; uint32_t dir_entries; uint32_t entry_length; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function); rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length); if (rc != 0) return rc; return dir_entries * entry_length; } static int bnxt_get_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = dev->data->dev_private; uint32_t index; uint32_t offset; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (in_eeprom->offset == 0) /* special offset value to get directory */ return bnxt_get_nvram_directory(bp, in_eeprom->length, in_eeprom->data); index = in_eeprom->offset >> 24; offset = in_eeprom->offset & 0xffffff; if (index != 0) return bnxt_hwrm_get_nvram_item(bp, index - 1, offset, in_eeprom->length, in_eeprom->data); return 0; } static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_CHIMP_PATCH: case BNX_DIR_TYPE_BOOTCODE: case BNX_DIR_TYPE_BOOTCODE_2: case BNX_DIR_TYPE_APE_FW: case BNX_DIR_TYPE_APE_PATCH: case BNX_DIR_TYPE_KONG_FW: case BNX_DIR_TYPE_KONG_PATCH: case BNX_DIR_TYPE_BONO_FW: case BNX_DIR_TYPE_BONO_PATCH: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_AVS: case BNX_DIR_TYPE_EXP_ROM_MBA: case BNX_DIR_TYPE_PCIE: case BNX_DIR_TYPE_TSCF_UCODE: case BNX_DIR_TYPE_EXT_PHY: case BNX_DIR_TYPE_CCM: case BNX_DIR_TYPE_ISCSI_BOOT: case BNX_DIR_TYPE_ISCSI_BOOT_IPV6: case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_executable(uint16_t dir_type) { return bnxt_dir_type_is_ape_bin_format(dir_type) || bnxt_dir_type_is_other_exec_format(dir_type); } static int bnxt_set_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = dev->data->dev_private; uint8_t index, dir_op; uint16_t type, ext, ordinal, attr; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (!BNXT_PF(bp)) { PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n"); return -EINVAL; } type = in_eeprom->magic >> 16; if (type == 0xffff) { /* special value for directory operations */ index = in_eeprom->magic & 0xff; dir_op = in_eeprom->magic >> 8; if (index == 0) return -EINVAL; switch (dir_op) { case 0x0e: /* erase */ if (in_eeprom->offset != ~in_eeprom->magic) return -EINVAL; return bnxt_hwrm_erase_nvram_directory(bp, index - 1); default: return -EINVAL; } } /* Create or re-write an NVM item: */ if (bnxt_dir_type_is_executable(type) == true) return -EOPNOTSUPP; ext = in_eeprom->magic & 0xffff; ordinal = in_eeprom->offset >> 16; attr = in_eeprom->offset & 0xffff; return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr, in_eeprom->data, in_eeprom->length); } /* * Initialization */ static const struct eth_dev_ops bnxt_dev_ops = { .dev_infos_get = bnxt_dev_info_get_op, .dev_close = bnxt_dev_close_op, .dev_configure = bnxt_dev_configure_op, .dev_start = bnxt_dev_start_op, .dev_stop = bnxt_dev_stop_op, .dev_set_link_up = bnxt_dev_set_link_up_op, .dev_set_link_down = bnxt_dev_set_link_down_op, .stats_get = bnxt_stats_get_op, .stats_reset = bnxt_stats_reset_op, .rx_queue_setup = bnxt_rx_queue_setup_op, .rx_queue_release = bnxt_rx_queue_release_op, .tx_queue_setup = bnxt_tx_queue_setup_op, .tx_queue_release = bnxt_tx_queue_release_op, .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op, .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op, .reta_update = bnxt_reta_update_op, .reta_query = bnxt_reta_query_op, .rss_hash_update = bnxt_rss_hash_update_op, .rss_hash_conf_get = bnxt_rss_hash_conf_get_op, .link_update = bnxt_link_update_op, .promiscuous_enable = bnxt_promiscuous_enable_op, .promiscuous_disable = bnxt_promiscuous_disable_op, .allmulticast_enable = bnxt_allmulticast_enable_op, .allmulticast_disable = bnxt_allmulticast_disable_op, .mac_addr_add = bnxt_mac_addr_add_op, .mac_addr_remove = bnxt_mac_addr_remove_op, .flow_ctrl_get = bnxt_flow_ctrl_get_op, .flow_ctrl_set = bnxt_flow_ctrl_set_op, .udp_tunnel_port_add = bnxt_udp_tunnel_port_add_op, .udp_tunnel_port_del = bnxt_udp_tunnel_port_del_op, .vlan_filter_set = bnxt_vlan_filter_set_op, .vlan_offload_set = bnxt_vlan_offload_set_op, .vlan_tpid_set = bnxt_vlan_tpid_set_op, .vlan_pvid_set = bnxt_vlan_pvid_set_op, .mtu_set = bnxt_mtu_set_op, .mac_addr_set = bnxt_set_default_mac_addr_op, .xstats_get = bnxt_dev_xstats_get_op, .xstats_get_names = bnxt_dev_xstats_get_names_op, .xstats_reset = bnxt_dev_xstats_reset_op, .fw_version_get = bnxt_fw_version_get, .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op, .rxq_info_get = bnxt_rxq_info_get_op, .txq_info_get = bnxt_txq_info_get_op, .dev_led_on = bnxt_dev_led_on_op, .dev_led_off = bnxt_dev_led_off_op, .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op, .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op, .rx_queue_count = bnxt_rx_queue_count_op, .rx_descriptor_status = bnxt_rx_descriptor_status_op, .tx_descriptor_status = bnxt_tx_descriptor_status_op, .rx_queue_start = bnxt_rx_queue_start, .rx_queue_stop = bnxt_rx_queue_stop, .tx_queue_start = bnxt_tx_queue_start, .tx_queue_stop = bnxt_tx_queue_stop, .filter_ctrl = bnxt_filter_ctrl_op, .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op, .get_eeprom_length = bnxt_get_eeprom_length_op, .get_eeprom = bnxt_get_eeprom_op, .set_eeprom = bnxt_set_eeprom_op, .timesync_enable = bnxt_timesync_enable, .timesync_disable = bnxt_timesync_disable, .timesync_read_time = bnxt_timesync_read_time, .timesync_write_time = bnxt_timesync_write_time, .timesync_adjust_time = bnxt_timesync_adjust_time, .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp, }; static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg) { uint32_t offset; /* Only pre-map the reset GRC registers using window 3 */ rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8); offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc); return offset; } int bnxt_map_fw_health_status_regs(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t reg_base = 0xffffffff; int i; /* Only pre-map the monitoring GRC registers using window 2 */ for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) { uint32_t reg = info->status_regs[i]; if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC) continue; if (reg_base == 0xffffffff) reg_base = reg & 0xfffff000; if ((reg & 0xfffff000) != reg_base) return -ERANGE; /* Use mask 0xffc as the Lower 2 bits indicates * address space location */ info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE + (reg & 0xffc); } if (reg_base == 0xffffffff) return 0; rte_write32(reg_base, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); return 0; } static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t delay = info->delay_after_reset[index]; uint32_t val = info->reset_reg_val[index]; uint32_t reg = info->reset_reg[index]; uint32_t type, offset; type = BNXT_FW_STATUS_REG_TYPE(reg); offset = BNXT_FW_STATUS_REG_OFF(reg); switch (type) { case BNXT_FW_STATUS_REG_TYPE_CFG: rte_pci_write_config(bp->pdev, &val, sizeof(val), offset); break; case BNXT_FW_STATUS_REG_TYPE_GRC: offset = bnxt_map_reset_regs(bp, offset); rte_write32(val, (uint8_t *)bp->bar0 + offset); break; case BNXT_FW_STATUS_REG_TYPE_BAR0: rte_write32(val, (uint8_t *)bp->bar0 + offset); break; } /* wait on a specific interval of time until core reset is complete */ if (delay) rte_delay_ms(delay); } static void bnxt_dev_cleanup(struct bnxt *bp) { bnxt_set_hwrm_link_config(bp, false); bp->link_info.link_up = 0; if (bp->eth_dev->data->dev_started) bnxt_dev_stop_op(bp->eth_dev); bnxt_uninit_resources(bp, true); } static int bnxt_restore_vlan_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; struct rte_vlan_filter_conf *vfc; int vidx, vbit, rc; uint16_t vlan_id; for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) { vfc = &dev->data->vlan_filter_conf; vidx = vlan_id / 64; vbit = vlan_id % 64; /* Each bit corresponds to a VLAN id */ if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) { rc = bnxt_add_vlan_filter(bp, vlan_id); if (rc) return rc; } } return 0; } static int bnxt_restore_mac_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; struct rte_eth_dev_info dev_info; struct rte_ether_addr *addr; uint64_t pool_mask; uint32_t pool = 0; uint16_t i; int rc; if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) return 0; rc = bnxt_dev_info_get_op(dev, &dev_info); if (rc) return rc; /* replay MAC address configuration */ for (i = 1; i < dev_info.max_mac_addrs; i++) { addr = &dev->data->mac_addrs[i]; /* skip zero address */ if (rte_is_zero_ether_addr(addr)) continue; pool = 0; pool_mask = dev->data->mac_pool_sel[i]; do { if (pool_mask & 1ULL) { rc = bnxt_mac_addr_add_op(dev, addr, i, pool); if (rc) return rc; } pool_mask >>= 1; pool++; } while (pool_mask); } return 0; } static int bnxt_restore_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; int ret = 0; if (dev->data->all_multicast) { ret = bnxt_allmulticast_enable_op(dev); if (ret) return ret; } if (dev->data->promiscuous) { ret = bnxt_promiscuous_enable_op(dev); if (ret) return ret; } ret = bnxt_restore_mac_filters(bp); if (ret) return ret; ret = bnxt_restore_vlan_filters(bp); /* TODO restore other filters as well */ return ret; } static void bnxt_dev_recover(void *arg) { struct bnxt *bp = arg; int timeout = bp->fw_reset_max_msecs; int rc = 0; /* Clear Error flag so that device re-init should happen */ bp->flags &= ~BNXT_FLAG_FATAL_ERROR; do { rc = bnxt_hwrm_ver_get(bp, SHORT_HWRM_CMD_TIMEOUT); if (rc == 0) break; rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL); timeout -= BNXT_FW_READY_WAIT_INTERVAL; } while (rc && timeout); if (rc) { PMD_DRV_LOG(ERR, "FW is not Ready after reset\n"); goto err; } rc = bnxt_init_resources(bp, true); if (rc) { PMD_DRV_LOG(ERR, "Failed to initialize resources after reset\n"); goto err; } /* clear reset flag as the device is initialized now */ bp->flags &= ~BNXT_FLAG_FW_RESET; rc = bnxt_dev_start_op(bp->eth_dev); if (rc) { PMD_DRV_LOG(ERR, "Failed to start port after reset\n"); goto err_start; } rc = bnxt_restore_filters(bp); if (rc) goto err_start; PMD_DRV_LOG(INFO, "Recovered from FW reset\n"); return; err_start: bnxt_dev_stop_op(bp->eth_dev); err: bp->flags |= BNXT_FLAG_FATAL_ERROR; bnxt_uninit_resources(bp, false); PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n"); } void bnxt_dev_reset_and_resume(void *arg) { struct bnxt *bp = arg; int rc; bnxt_dev_cleanup(bp); bnxt_wait_for_device_shutdown(bp); rc = rte_eal_alarm_set(US_PER_MS * bp->fw_reset_min_msecs, bnxt_dev_recover, (void *)bp); if (rc) PMD_DRV_LOG(ERR, "Error setting recovery alarm"); } uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t reg = info->status_regs[index]; uint32_t type, offset, val = 0; type = BNXT_FW_STATUS_REG_TYPE(reg); offset = BNXT_FW_STATUS_REG_OFF(reg); switch (type) { case BNXT_FW_STATUS_REG_TYPE_CFG: rte_pci_read_config(bp->pdev, &val, sizeof(val), offset); break; case BNXT_FW_STATUS_REG_TYPE_GRC: offset = info->mapped_status_regs[index]; /* FALLTHROUGH */ case BNXT_FW_STATUS_REG_TYPE_BAR0: val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + offset)); break; } return val; } static int bnxt_fw_reset_all(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t i; int rc = 0; if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) { /* Reset through master function driver */ for (i = 0; i < info->reg_array_cnt; i++) bnxt_write_fw_reset_reg(bp, i); /* Wait for time specified by FW after triggering reset */ rte_delay_ms(info->master_func_wait_period_after_reset); } else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) { /* Reset with the help of Kong processor */ rc = bnxt_hwrm_fw_reset(bp); if (rc) PMD_DRV_LOG(ERR, "Failed to reset FW\n"); } return rc; } static void bnxt_fw_reset_cb(void *arg) { struct bnxt *bp = arg; struct bnxt_error_recovery_info *info = bp->recovery_info; int rc = 0; /* Only Master function can do FW reset */ if (bnxt_is_master_func(bp) && bnxt_is_recovery_enabled(bp)) { rc = bnxt_fw_reset_all(bp); if (rc) { PMD_DRV_LOG(ERR, "Adapter recovery failed\n"); return; } } /* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send * EXCEPTION_FATAL_ASYNC event to all the functions * (including MASTER FUNC). After receiving this Async, all the active * drivers should treat this case as FW initiated recovery */ if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) { bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT; bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT; /* To recover from error */ rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume, (void *)bp); } } /* Driver should poll FW heartbeat, reset_counter with the frequency * advertised by FW in HWRM_ERROR_RECOVERY_QCFG. * When the driver detects heartbeat stop or change in reset_counter, * it has to trigger a reset to recover from the error condition. * A “master PF” is the function who will have the privilege to * initiate the chimp reset. The master PF will be elected by the * firmware and will be notified through async message. */ static void bnxt_check_fw_health(void *arg) { struct bnxt *bp = arg; struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t val = 0, wait_msec; if (!info || !bnxt_is_recovery_enabled(bp) || is_bnxt_in_error(bp)) return; val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG); if (val == info->last_heart_beat) goto reset; info->last_heart_beat = val; val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG); if (val != info->last_reset_counter) goto reset; info->last_reset_counter = val; rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq, bnxt_check_fw_health, (void *)bp); return; reset: /* Stop DMA to/from device */ bp->flags |= BNXT_FLAG_FATAL_ERROR; bp->flags |= BNXT_FLAG_FW_RESET; PMD_DRV_LOG(ERR, "Detected FW dead condition\n"); if (bnxt_is_master_func(bp)) wait_msec = info->master_func_wait_period; else wait_msec = info->normal_func_wait_period; rte_eal_alarm_set(US_PER_MS * wait_msec, bnxt_fw_reset_cb, (void *)bp); } void bnxt_schedule_fw_health_check(struct bnxt *bp) { uint32_t polling_freq; if (!bnxt_is_recovery_enabled(bp)) return; if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED) return; polling_freq = bp->recovery_info->driver_polling_freq; rte_eal_alarm_set(US_PER_MS * polling_freq, bnxt_check_fw_health, (void *)bp); bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED; } static void bnxt_cancel_fw_health_check(struct bnxt *bp) { if (!bnxt_is_recovery_enabled(bp)) return; rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp); bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED; } static bool bnxt_vf_pciid(uint16_t device_id) { switch (device_id) { case BROADCOM_DEV_ID_57304_VF: case BROADCOM_DEV_ID_57406_VF: case BROADCOM_DEV_ID_5731X_VF: case BROADCOM_DEV_ID_5741X_VF: case BROADCOM_DEV_ID_57414_VF: case BROADCOM_DEV_ID_STRATUS_NIC_VF1: case BROADCOM_DEV_ID_STRATUS_NIC_VF2: case BROADCOM_DEV_ID_58802_VF: case BROADCOM_DEV_ID_57500_VF1: case BROADCOM_DEV_ID_57500_VF2: /* FALLTHROUGH */ return true; default: return false; } } static bool bnxt_thor_device(uint16_t device_id) { switch (device_id) { case BROADCOM_DEV_ID_57508: case BROADCOM_DEV_ID_57504: case BROADCOM_DEV_ID_57502: case BROADCOM_DEV_ID_57508_MF1: case BROADCOM_DEV_ID_57504_MF1: case BROADCOM_DEV_ID_57502_MF1: case BROADCOM_DEV_ID_57508_MF2: case BROADCOM_DEV_ID_57504_MF2: case BROADCOM_DEV_ID_57502_MF2: case BROADCOM_DEV_ID_57500_VF1: case BROADCOM_DEV_ID_57500_VF2: /* FALLTHROUGH */ return true; default: return false; } } bool bnxt_stratus_device(struct bnxt *bp) { uint16_t device_id = bp->pdev->id.device_id; switch (device_id) { case BROADCOM_DEV_ID_STRATUS_NIC: case BROADCOM_DEV_ID_STRATUS_NIC_VF1: case BROADCOM_DEV_ID_STRATUS_NIC_VF2: /* FALLTHROUGH */ return true; default: return false; } } static int bnxt_init_board(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct bnxt *bp = eth_dev->data->dev_private; /* enable device (incl. PCI PM wakeup), and bus-mastering */ bp->bar0 = (void *)pci_dev->mem_resource[0].addr; bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr; if (!bp->bar0 || !bp->doorbell_base) { PMD_DRV_LOG(ERR, "Unable to access Hardware\n"); return -ENODEV; } bp->eth_dev = eth_dev; bp->pdev = pci_dev; return 0; } static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, struct bnxt_ctx_pg_info *ctx_pg, uint32_t mem_size, const char *suffix, uint16_t idx) { struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; const struct rte_memzone *mz = NULL; char mz_name[RTE_MEMZONE_NAMESIZE]; rte_iova_t mz_phys_addr; uint64_t valid_bits = 0; uint32_t sz; int i; if (!mem_size) return 0; rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) / BNXT_PAGE_SIZE; rmem->page_size = BNXT_PAGE_SIZE; rmem->pg_arr = ctx_pg->ctx_pg_arr; rmem->dma_arr = ctx_pg->ctx_dma_arr; rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; valid_bits = PTU_PTE_VALID; if (rmem->nr_pages > 1) { snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_pg_tbl%s_%x_%d", suffix, idx, bp->eth_dev->data->port_id); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); if (!mz) { mz = rte_memzone_reserve_aligned(mz_name, rmem->nr_pages * 8, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG, BNXT_PAGE_SIZE); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; rmem->pg_tbl = mz->addr; rmem->pg_tbl_map = mz_phys_addr; rmem->pg_tbl_mz = mz; } snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d", suffix, idx, bp->eth_dev->data->port_id); mz = rte_memzone_lookup(mz_name); if (!mz) { mz = rte_memzone_reserve_aligned(mz_name, mem_size, SOCKET_ID_ANY, RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG, BNXT_PAGE_SIZE); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) { rmem->pg_arr[i] = ((char *)mz->addr) + sz; rmem->dma_arr[i] = mz_phys_addr + sz; if (rmem->nr_pages > 1) { if (i == rmem->nr_pages - 2 && (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) valid_bits |= PTU_PTE_NEXT_TO_LAST; else if (i == rmem->nr_pages - 1 && (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) valid_bits |= PTU_PTE_LAST; rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] | valid_bits); } } rmem->mz = mz; if (rmem->vmem_size) rmem->vmem = (void **)mz->addr; rmem->dma_arr[0] = mz_phys_addr; return 0; } static void bnxt_free_ctx_mem(struct bnxt *bp) { int i; if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED)) return; bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED; rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz); rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz); rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz); rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz); rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz); rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz); for (i = 0; i < BNXT_MAX_Q; i++) { if (bp->ctx->tqm_mem[i]) rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz); } rte_free(bp->ctx); bp->ctx = NULL; } #define bnxt_roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1 : __min2; }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1 : __max2; }) #define clamp_t(type, _x, min, max) min_t(type, max_t(type, _x, min), max) int bnxt_alloc_ctx_mem(struct bnxt *bp) { struct bnxt_ctx_pg_info *ctx_pg; struct bnxt_ctx_mem_info *ctx; uint32_t mem_size, ena, entries; int i, rc; rc = bnxt_hwrm_func_backing_store_qcaps(bp); if (rc) { PMD_DRV_LOG(ERR, "Query context mem capability failed\n"); return rc; } ctx = bp->ctx; if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) return 0; ctx_pg = &ctx->qp_mem; ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries; mem_size = ctx->qp_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0); if (rc) return rc; ctx_pg = &ctx->srq_mem; ctx_pg->entries = ctx->srq_max_l2_entries; mem_size = ctx->srq_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0); if (rc) return rc; ctx_pg = &ctx->cq_mem; ctx_pg->entries = ctx->cq_max_l2_entries; mem_size = ctx->cq_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0); if (rc) return rc; ctx_pg = &ctx->vnic_mem; ctx_pg->entries = ctx->vnic_max_vnic_entries + ctx->vnic_max_ring_table_entries; mem_size = ctx->vnic_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0); if (rc) return rc; ctx_pg = &ctx->stat_mem; ctx_pg->entries = ctx->stat_max_entries; mem_size = ctx->stat_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0); if (rc) return rc; entries = ctx->qp_max_l2_entries + ctx->vnic_max_vnic_entries + ctx->tqm_min_entries_per_ring; entries = bnxt_roundup(entries, ctx->tqm_entries_multiple); entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring, ctx->tqm_max_entries_per_ring); for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) { ctx_pg = ctx->tqm_mem[i]; /* use min tqm entries for now. */ ctx_pg->entries = entries; mem_size = ctx->tqm_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i); if (rc) return rc; ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i; } ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES; rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); if (rc) PMD_DRV_LOG(ERR, "Failed to configure context mem: rc = %d\n", rc); else ctx->flags |= BNXT_CTX_FLAG_INITED; return rc; } static int bnxt_alloc_stats_mem(struct bnxt *bp) { struct rte_pci_device *pci_dev = bp->pdev; char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz = NULL; uint32_t total_alloc_len; rte_iova_t mz_phys_addr; if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2) return 0; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "rx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) + sizeof(struct rx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; bp->rx_mem_zone = (const void *)mz; bp->hw_rx_port_stats = mz->addr; bp->hw_rx_port_stats_map = mz_phys_addr; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "tx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) + sizeof(struct tx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; bp->tx_mem_zone = (const void *)mz; bp->hw_tx_port_stats = mz->addr; bp->hw_tx_port_stats_map = mz_phys_addr; bp->flags |= BNXT_FLAG_PORT_STATS; /* Display extended statistics if FW supports it */ if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 || bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 || !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED)) return 0; bp->hw_rx_port_stats_ext = (void *) ((uint8_t *)bp->hw_rx_port_stats + sizeof(struct rx_port_stats)); bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map + sizeof(struct rx_port_stats); bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS; if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 || bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) { bp->hw_tx_port_stats_ext = (void *) ((uint8_t *)bp->hw_tx_port_stats + sizeof(struct tx_port_stats)); bp->hw_tx_port_stats_ext_map = bp->hw_tx_port_stats_map + sizeof(struct tx_port_stats); bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS; } return 0; } static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; int rc = 0; eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl", RTE_ETHER_ADDR_LEN * bp->max_l2_ctx, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n"); return -ENOMEM; } if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) { if (BNXT_PF(bp)) return -EINVAL; /* Generate a random MAC address, if none was assigned by PF */ PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n"); bnxt_eth_hw_addr_random(bp->mac_addr); PMD_DRV_LOG(INFO, "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n", bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2], bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]); rc = bnxt_hwrm_set_mac(bp); if (!rc) memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN); return rc; } /* Copy the permanent MAC from the FUNC_QCAPS response */ memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN); memcpy(ð_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN); return rc; } static int bnxt_restore_dflt_mac(struct bnxt *bp) { int rc = 0; /* MAC is already configured in FW */ if (!bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) return 0; /* Restore the old MAC configured */ rc = bnxt_hwrm_set_mac(bp); if (rc) PMD_DRV_LOG(ERR, "Failed to restore MAC address\n"); return rc; } static void bnxt_config_vf_req_fwd(struct bnxt *bp) { if (!BNXT_PF(bp)) return; #define ALLOW_FUNC(x) \ { \ uint32_t arg = (x); \ bp->pf.vf_req_fwd[((arg) >> 5)] &= \ ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \ } /* Forward all requests if firmware is new enough */ if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) && (bp->fw_ver < ((20 << 24) | (7 << 16)))) || ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) { memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd)); } else { PMD_DRV_LOG(WARNING, "Firmware too old for VF mailbox functionality\n"); memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd)); } /* * The following are used for driver cleanup. If we disallow these, * VF drivers can't clean up cleanly. */ ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR); ALLOW_FUNC(HWRM_VNIC_FREE); ALLOW_FUNC(HWRM_RING_FREE); ALLOW_FUNC(HWRM_RING_GRP_FREE); ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE); ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE); ALLOW_FUNC(HWRM_STAT_CTX_FREE); ALLOW_FUNC(HWRM_PORT_PHY_QCFG); ALLOW_FUNC(HWRM_VNIC_TPA_CFG); } static int bnxt_init_fw(struct bnxt *bp) { uint16_t mtu; int rc = 0; bp->fw_cap = 0; rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT); if (rc) return rc; rc = bnxt_hwrm_func_reset(bp); if (rc) return -EIO; rc = bnxt_hwrm_vnic_qcaps(bp); if (rc) return rc; rc = bnxt_hwrm_queue_qportcfg(bp); if (rc) return rc; /* Get the MAX capabilities for this function. * This function also allocates context memory for TQM rings and * informs the firmware about this allocated backing store memory. */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) return rc; rc = bnxt_hwrm_func_qcfg(bp, &mtu); if (rc) return rc; rc = bnxt_hwrm_cfa_adv_flow_mgmt_qcaps(bp); if (rc) return rc; /* Get the adapter error recovery support info */ rc = bnxt_hwrm_error_recovery_qcfg(bp); if (rc) bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; bnxt_hwrm_port_led_qcaps(bp); return 0; } static int bnxt_init_locks(struct bnxt *bp) { int err; err = pthread_mutex_init(&bp->flow_lock, NULL); if (err) { PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n"); return err; } err = pthread_mutex_init(&bp->def_cp_lock, NULL); if (err) PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n"); return err; } static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev) { int rc; rc = bnxt_init_fw(bp); if (rc) return rc; if (!reconfig_dev) { rc = bnxt_setup_mac_addr(bp->eth_dev); if (rc) return rc; } else { rc = bnxt_restore_dflt_mac(bp); if (rc) return rc; } bnxt_config_vf_req_fwd(bp); rc = bnxt_hwrm_func_driver_register(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to register driver"); return -EBUSY; } if (BNXT_PF(bp)) { if (bp->pdev->max_vfs) { rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate VFs\n"); return rc; } } else { rc = bnxt_hwrm_allocate_pf_only(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate PF resources"); return rc; } } } rc = bnxt_alloc_mem(bp, reconfig_dev); if (rc) return rc; rc = bnxt_setup_int(bp); if (rc) return rc; rc = bnxt_request_int(bp); if (rc) return rc; rc = bnxt_init_locks(bp); if (rc) return rc; return 0; } static int bnxt_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); static int version_printed; struct bnxt *bp; int rc; if (version_printed++ == 0) PMD_DRV_LOG(INFO, "%s\n", bnxt_version); eth_dev->dev_ops = &bnxt_dev_ops; eth_dev->rx_pkt_burst = &bnxt_recv_pkts; eth_dev->tx_pkt_burst = &bnxt_xmit_pkts; /* * For secondary processes, we don't initialise any further * as primary has already done this work. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; rte_eth_copy_pci_info(eth_dev, pci_dev); bp = eth_dev->data->dev_private; bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; if (bnxt_vf_pciid(pci_dev->id.device_id)) bp->flags |= BNXT_FLAG_VF; if (bnxt_thor_device(pci_dev->id.device_id)) bp->flags |= BNXT_FLAG_THOR_CHIP; if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 || pci_dev->id.device_id == BROADCOM_DEV_ID_58804 || pci_dev->id.device_id == BROADCOM_DEV_ID_58808 || pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF) bp->flags |= BNXT_FLAG_STINGRAY; rc = bnxt_init_board(eth_dev); if (rc) { PMD_DRV_LOG(ERR, "Failed to initialize board rc: %x\n", rc); return rc; } rc = bnxt_alloc_hwrm_resources(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate hwrm resource rc: %x\n", rc); goto error_free; } rc = bnxt_init_resources(bp, false); if (rc) goto error_free; rc = bnxt_alloc_stats_mem(bp); if (rc) goto error_free; /* Pass the information to the rte_eth_dev_close() that it should also * release the private port resources. */ eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; PMD_DRV_LOG(INFO, DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n", pci_dev->mem_resource[0].phys_addr, pci_dev->mem_resource[0].addr); return 0; error_free: bnxt_dev_uninit(eth_dev); return rc; } static void bnxt_uninit_locks(struct bnxt *bp) { pthread_mutex_destroy(&bp->flow_lock); pthread_mutex_destroy(&bp->def_cp_lock); } static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev) { int rc; bnxt_free_int(bp); bnxt_free_mem(bp, reconfig_dev); bnxt_hwrm_func_buf_unrgtr(bp); rc = bnxt_hwrm_func_driver_unregister(bp, 0); bp->flags &= ~BNXT_FLAG_REGISTERED; bnxt_free_ctx_mem(bp); if (!reconfig_dev) { bnxt_free_hwrm_resources(bp); if (bp->recovery_info != NULL) { rte_free(bp->recovery_info); bp->recovery_info = NULL; } } bnxt_uninit_locks(bp); rte_free(bp->ptp_cfg); bp->ptp_cfg = NULL; return rc; } static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; PMD_DRV_LOG(DEBUG, "Calling Device uninit\n"); if (eth_dev->state != RTE_ETH_DEV_UNUSED) bnxt_dev_close_op(eth_dev); return 0; } static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt), bnxt_dev_init); } static int bnxt_pci_remove(struct rte_pci_device *pci_dev) { if (rte_eal_process_type() == RTE_PROC_PRIMARY) return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit); else return rte_eth_dev_pci_generic_remove(pci_dev, NULL); } static struct rte_pci_driver bnxt_rte_pmd = { .id_table = bnxt_pci_id_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = bnxt_pci_probe, .remove = bnxt_pci_remove, }; static bool is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv) { if (strcmp(dev->device->driver->name, drv->driver.name)) return false; return true; } bool is_bnxt_supported(struct rte_eth_dev *dev) { return is_device_supported(dev, &bnxt_rte_pmd); } RTE_INIT(bnxt_init_log) { bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver"); if (bnxt_logtype_driver >= 0) rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE); } RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map); RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");