/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "acl.h" #define BIT_SIZEOF(x) (sizeof(x) * CHAR_BIT) TAILQ_HEAD(rte_acl_list, rte_tailq_entry); static struct rte_tailq_elem rte_acl_tailq = { .name = "RTE_ACL", }; EAL_REGISTER_TAILQ(rte_acl_tailq) /* * If the compiler doesn't support AVX2 instructions, * then the dummy one would be used instead for AVX2 classify method. */ int __attribute__ ((weak)) rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } static const rte_acl_classify_t classify_fns[] = { [RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar, [RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar, [RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse, [RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2, }; /* by default, use always available scalar code path. */ static enum rte_acl_classify_alg rte_acl_default_classify = RTE_ACL_CLASSIFY_SCALAR; static void rte_acl_set_default_classify(enum rte_acl_classify_alg alg) { rte_acl_default_classify = alg; } extern int rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg) { if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns)) return -EINVAL; ctx->alg = alg; return 0; } /* * Select highest available classify method as default one. * Note that CLASSIFY_AVX2 should be set as a default only * if both conditions are met: * at build time compiler supports AVX2 and target cpu supports AVX2. */ static void __attribute__((constructor)) rte_acl_init(void) { enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT; #ifdef CC_AVX2_SUPPORT if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) alg = RTE_ACL_CLASSIFY_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1)) #else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1)) #endif alg = RTE_ACL_CLASSIFY_SSE; rte_acl_set_default_classify(alg); } int rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories, enum rte_acl_classify_alg alg) { if (categories != 1 && ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) return -EINVAL; return classify_fns[alg](ctx, data, results, num, categories); } int rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories) { return rte_acl_classify_alg(ctx, data, results, num, categories, ctx->alg); } struct rte_acl_ctx * rte_acl_find_existing(const char *name) { struct rte_acl_ctx *ctx = NULL; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return ctx; } void rte_acl_free(struct rte_acl_ctx *ctx) { struct rte_acl_list *acl_list; struct rte_tailq_entry *te; if (ctx == NULL) return; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, acl_list, next) { if (te->data == (void *) ctx) break; } if (te == NULL) { rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return; } TAILQ_REMOVE(acl_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(ctx->mem); rte_free(ctx); rte_free(te); } struct rte_acl_ctx * rte_acl_create(const struct rte_acl_param *param) { size_t sz; struct rte_acl_ctx *ctx; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; char name[sizeof(ctx->name)]; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); /* check that input parameters are valid. */ if (param == NULL || param->name == NULL) { rte_errno = EINVAL; return NULL; } snprintf(name, sizeof(name), "ACL_%s", param->name); /* calculate amount of memory required for pattern set. */ sz = sizeof(*ctx) + param->max_rule_num * param->rule_size; /* get EAL TAILQ lock. */ rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* if we already have one with that name */ TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0) break; } /* if ACL with such name doesn't exist, then create a new one. */ if (te == NULL) { ctx = NULL; te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n"); goto exit; } ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id); if (ctx == NULL) { RTE_LOG(ERR, ACL, "allocation of %zu bytes on socket %d for %s failed\n", sz, param->socket_id, name); rte_free(te); goto exit; } /* init new allocated context. */ ctx->rules = ctx + 1; ctx->max_rules = param->max_rule_num; ctx->rule_sz = param->rule_size; ctx->socket_id = param->socket_id; ctx->alg = rte_acl_default_classify; snprintf(ctx->name, sizeof(ctx->name), "%s", param->name); te->data = (void *) ctx; TAILQ_INSERT_TAIL(acl_list, te, next); } exit: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return ctx; } static int acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num) { uint8_t *pos; if (num + ctx->num_rules > ctx->max_rules) return -ENOMEM; pos = ctx->rules; pos += ctx->rule_sz * ctx->num_rules; memcpy(pos, rules, num * ctx->rule_sz); ctx->num_rules += num; return 0; } static int acl_check_rule(const struct rte_acl_rule_data *rd) { if ((rd->category_mask & LEN2MASK(RTE_ACL_MAX_CATEGORIES)) == 0 || rd->priority > RTE_ACL_MAX_PRIORITY || rd->priority < RTE_ACL_MIN_PRIORITY || rd->userdata == RTE_ACL_INVALID_USERDATA) return -EINVAL; return 0; } int rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules, uint32_t num) { const struct rte_acl_rule *rv; uint32_t i; int32_t rc; if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz) return -EINVAL; for (i = 0; i != num; i++) { rv = (const struct rte_acl_rule *) ((uintptr_t)rules + i * ctx->rule_sz); rc = acl_check_rule(&rv->data); if (rc != 0) { RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n", __func__, ctx->name, i + 1); return rc; } } return acl_add_rules(ctx, rules, num); } /* * Reset all rules. * Note that RT structures are not affected. */ void rte_acl_reset_rules(struct rte_acl_ctx *ctx) { if (ctx != NULL) ctx->num_rules = 0; } /* * Reset all rules and destroys RT structures. */ void rte_acl_reset(struct rte_acl_ctx *ctx) { if (ctx != NULL) { rte_acl_reset_rules(ctx); rte_acl_build(ctx, &ctx->config); } } /* * Dump ACL context to the stdout. */ void rte_acl_dump(const struct rte_acl_ctx *ctx) { if (!ctx) return; printf("acl context <%s>@%p\n", ctx->name, ctx); printf(" socket_id=%"PRId32"\n", ctx->socket_id); printf(" alg=%"PRId32"\n", ctx->alg); printf(" max_rules=%"PRIu32"\n", ctx->max_rules); printf(" rule_size=%"PRIu32"\n", ctx->rule_sz); printf(" num_rules=%"PRIu32"\n", ctx->num_rules); printf(" num_categories=%"PRIu32"\n", ctx->num_categories); printf(" num_tries=%"PRIu32"\n", ctx->num_tries); } /* * Dump all ACL contexts to the stdout. */ void rte_acl_list_dump(void) { struct rte_acl_ctx *ctx; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; rte_acl_dump(ctx); } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); } /* * Support for legacy ipv4vlan rules. */ RTE_ACL_RULE_DEF(acl_ipv4vlan_rule, RTE_ACL_IPV4VLAN_NUM_FIELDS); static int acl_ipv4vlan_check_rule(const struct rte_acl_ipv4vlan_rule *rule) { if (rule->src_port_low > rule->src_port_high || rule->dst_port_low > rule->dst_port_high || rule->src_mask_len > BIT_SIZEOF(rule->src_addr) || rule->dst_mask_len > BIT_SIZEOF(rule->dst_addr)) return -EINVAL; return acl_check_rule(&rule->data); } static void acl_ipv4vlan_convert_rule(const struct rte_acl_ipv4vlan_rule *ri, struct acl_ipv4vlan_rule *ro) { ro->data = ri->data; ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto; ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan; ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain; ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr; ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr; ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low; ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low; ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask; ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask; ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 = ri->domain_mask; ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 = ri->src_mask_len; ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len; ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 = ri->src_port_high; ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 = ri->dst_port_high; } int rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_ipv4vlan_rule *rules, uint32_t num) { int32_t rc; uint32_t i; struct acl_ipv4vlan_rule rv; if (ctx == NULL || rules == NULL || ctx->rule_sz != sizeof(rv)) return -EINVAL; /* check input rules. */ for (i = 0; i != num; i++) { rc = acl_ipv4vlan_check_rule(rules + i); if (rc != 0) { RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n", __func__, ctx->name, i + 1); return rc; } } if (num + ctx->num_rules > ctx->max_rules) return -ENOMEM; /* perform conversion to the internal format and add to the context. */ for (i = 0, rc = 0; i != num && rc == 0; i++) { acl_ipv4vlan_convert_rule(rules + i, &rv); rc = acl_add_rules(ctx, &rv, 1); } return rc; } static void acl_ipv4vlan_config(struct rte_acl_config *cfg, const uint32_t layout[RTE_ACL_IPV4VLAN_NUM], uint32_t num_categories) { static const struct rte_acl_field_def ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = { { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD, .input_index = RTE_ACL_IPV4VLAN_PROTO, }, { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD, .input_index = RTE_ACL_IPV4VLAN_VLAN, }, { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD, .input_index = RTE_ACL_IPV4VLAN_VLAN, }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = RTE_ACL_IPV4VLAN_SRC_FIELD, .input_index = RTE_ACL_IPV4VLAN_SRC, }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = RTE_ACL_IPV4VLAN_DST_FIELD, .input_index = RTE_ACL_IPV4VLAN_DST, }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD, .input_index = RTE_ACL_IPV4VLAN_PORTS, }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD, .input_index = RTE_ACL_IPV4VLAN_PORTS, }, }; memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs)); cfg->num_fields = RTE_DIM(ipv4_defs); cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset = layout[RTE_ACL_IPV4VLAN_PROTO]; cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset = layout[RTE_ACL_IPV4VLAN_VLAN]; cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset = layout[RTE_ACL_IPV4VLAN_VLAN] + cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size; cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset = layout[RTE_ACL_IPV4VLAN_SRC]; cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset = layout[RTE_ACL_IPV4VLAN_DST]; cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset = layout[RTE_ACL_IPV4VLAN_PORTS]; cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset = layout[RTE_ACL_IPV4VLAN_PORTS] + cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size; cfg->num_categories = num_categories; } int rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx, const uint32_t layout[RTE_ACL_IPV4VLAN_NUM], uint32_t num_categories) { struct rte_acl_config cfg; if (ctx == NULL || layout == NULL) return -EINVAL; memset(&cfg, 0, sizeof(cfg)); acl_ipv4vlan_config(&cfg, layout, num_categories); return rte_acl_build(ctx, &cfg); }