/*- * BSD LICENSE * * Copyright(c) 2010-2017 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i40e_logs.h" #include "base/i40e_prototype.h" #include "base/i40e_adminq_cmd.h" #include "base/i40e_type.h" #include "base/i40e_register.h" #include "base/i40e_dcb.h" #include "i40e_ethdev.h" #include "i40e_rxtx.h" #include "i40e_pf.h" #include "i40e_regs.h" #define ETH_I40E_FLOATING_VEB_ARG "enable_floating_veb" #define ETH_I40E_FLOATING_VEB_LIST_ARG "floating_veb_list" #define I40E_CLEAR_PXE_WAIT_MS 200 /* Maximun number of capability elements */ #define I40E_MAX_CAP_ELE_NUM 128 /* Wait count and inteval */ #define I40E_CHK_Q_ENA_COUNT 1000 #define I40E_CHK_Q_ENA_INTERVAL_US 1000 /* Maximun number of VSI */ #define I40E_MAX_NUM_VSIS (384UL) #define I40E_PRE_TX_Q_CFG_WAIT_US 10 /* 10 us */ /* Flow control default timer */ #define I40E_DEFAULT_PAUSE_TIME 0xFFFFU /* Flow control default high water */ #define I40E_DEFAULT_HIGH_WATER (0x1C40/1024) /* Flow control default low water */ #define I40E_DEFAULT_LOW_WATER (0x1A40/1024) /* Flow control enable fwd bit */ #define I40E_PRTMAC_FWD_CTRL 0x00000001 /* Receive Packet Buffer size */ #define I40E_RXPBSIZE (968 * 1024) /* Kilobytes shift */ #define I40E_KILOSHIFT 10 /* Receive Average Packet Size in Byte*/ #define I40E_PACKET_AVERAGE_SIZE 128 /* Mask of PF interrupt causes */ #define I40E_PFINT_ICR0_ENA_MASK ( \ I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | \ I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | \ I40E_PFINT_ICR0_ENA_GRST_MASK | \ I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | \ I40E_PFINT_ICR0_ENA_STORM_DETECT_MASK | \ I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | \ I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK | \ I40E_PFINT_ICR0_ENA_VFLR_MASK | \ I40E_PFINT_ICR0_ENA_ADMINQ_MASK) #define I40E_FLOW_TYPES ( \ (1UL << RTE_ETH_FLOW_FRAG_IPV4) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV4_TCP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV4_UDP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV4_SCTP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV4_OTHER) | \ (1UL << RTE_ETH_FLOW_FRAG_IPV6) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV6_TCP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV6_UDP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV6_SCTP) | \ (1UL << RTE_ETH_FLOW_NONFRAG_IPV6_OTHER) | \ (1UL << RTE_ETH_FLOW_L2_PAYLOAD)) /* Additional timesync values. */ #define I40E_PTP_40GB_INCVAL 0x0199999999ULL #define I40E_PTP_10GB_INCVAL 0x0333333333ULL #define I40E_PTP_1GB_INCVAL 0x2000000000ULL #define I40E_PRTTSYN_TSYNENA 0x80000000 #define I40E_PRTTSYN_TSYNTYPE 0x0e000000 #define I40E_CYCLECOUNTER_MASK 0xffffffffffffffffULL #define I40E_MAX_PERCENT 100 #define I40E_DEFAULT_DCB_APP_NUM 1 #define I40E_DEFAULT_DCB_APP_PRIO 3 /** * Below are values for writing un-exposed registers suggested * by silicon experts */ /* Destination MAC address */ #define I40E_REG_INSET_L2_DMAC 0xE000000000000000ULL /* Source MAC address */ #define I40E_REG_INSET_L2_SMAC 0x1C00000000000000ULL /* Outer (S-Tag) VLAN tag in the outer L2 header */ #define I40E_REG_INSET_L2_OUTER_VLAN 0x0000000004000000ULL /* Inner (C-Tag) or single VLAN tag in the outer L2 header */ #define I40E_REG_INSET_L2_INNER_VLAN 0x0080000000000000ULL /* Single VLAN tag in the inner L2 header */ #define I40E_REG_INSET_TUNNEL_VLAN 0x0100000000000000ULL /* Source IPv4 address */ #define I40E_REG_INSET_L3_SRC_IP4 0x0001800000000000ULL /* Destination IPv4 address */ #define I40E_REG_INSET_L3_DST_IP4 0x0000001800000000ULL /* Source IPv4 address for X722 */ #define I40E_X722_REG_INSET_L3_SRC_IP4 0x0006000000000000ULL /* Destination IPv4 address for X722 */ #define I40E_X722_REG_INSET_L3_DST_IP4 0x0000060000000000ULL /* IPv4 Protocol for X722 */ #define I40E_X722_REG_INSET_L3_IP4_PROTO 0x0010000000000000ULL /* IPv4 Time to Live for X722 */ #define I40E_X722_REG_INSET_L3_IP4_TTL 0x0010000000000000ULL /* IPv4 Type of Service (TOS) */ #define I40E_REG_INSET_L3_IP4_TOS 0x0040000000000000ULL /* IPv4 Protocol */ #define I40E_REG_INSET_L3_IP4_PROTO 0x0004000000000000ULL /* IPv4 Time to Live */ #define I40E_REG_INSET_L3_IP4_TTL 0x0004000000000000ULL /* Source IPv6 address */ #define I40E_REG_INSET_L3_SRC_IP6 0x0007F80000000000ULL /* Destination IPv6 address */ #define I40E_REG_INSET_L3_DST_IP6 0x000007F800000000ULL /* IPv6 Traffic Class (TC) */ #define I40E_REG_INSET_L3_IP6_TC 0x0040000000000000ULL /* IPv6 Next Header */ #define I40E_REG_INSET_L3_IP6_NEXT_HDR 0x0008000000000000ULL /* IPv6 Hop Limit */ #define I40E_REG_INSET_L3_IP6_HOP_LIMIT 0x0008000000000000ULL /* Source L4 port */ #define I40E_REG_INSET_L4_SRC_PORT 0x0000000400000000ULL /* Destination L4 port */ #define I40E_REG_INSET_L4_DST_PORT 0x0000000200000000ULL /* SCTP verification tag */ #define I40E_REG_INSET_L4_SCTP_VERIFICATION_TAG 0x0000000180000000ULL /* Inner destination MAC address (MAC-in-UDP/MAC-in-GRE)*/ #define I40E_REG_INSET_TUNNEL_L2_INNER_DST_MAC 0x0000000001C00000ULL /* Source port of tunneling UDP */ #define I40E_REG_INSET_TUNNEL_L4_UDP_SRC_PORT 0x0000000000200000ULL /* Destination port of tunneling UDP */ #define I40E_REG_INSET_TUNNEL_L4_UDP_DST_PORT 0x0000000000100000ULL /* UDP Tunneling ID, NVGRE/GRE key */ #define I40E_REG_INSET_TUNNEL_ID 0x00000000000C0000ULL /* Last ether type */ #define I40E_REG_INSET_LAST_ETHER_TYPE 0x0000000000004000ULL /* Tunneling outer destination IPv4 address */ #define I40E_REG_INSET_TUNNEL_L3_DST_IP4 0x00000000000000C0ULL /* Tunneling outer destination IPv6 address */ #define I40E_REG_INSET_TUNNEL_L3_DST_IP6 0x0000000000003FC0ULL /* 1st word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD1 0x0000000000002000ULL /* 2nd word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD2 0x0000000000001000ULL /* 3rd word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD3 0x0000000000000800ULL /* 4th word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD4 0x0000000000000400ULL /* 5th word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD5 0x0000000000000200ULL /* 6th word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD6 0x0000000000000100ULL /* 7th word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD7 0x0000000000000080ULL /* 8th word of flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORD8 0x0000000000000040ULL /* all 8 words flex payload */ #define I40E_REG_INSET_FLEX_PAYLOAD_WORDS 0x0000000000003FC0ULL #define I40E_REG_INSET_MASK_DEFAULT 0x0000000000000000ULL #define I40E_TRANSLATE_INSET 0 #define I40E_TRANSLATE_REG 1 #define I40E_INSET_IPV4_TOS_MASK 0x0009FF00UL #define I40E_INSET_IPv4_TTL_MASK 0x000D00FFUL #define I40E_INSET_IPV4_PROTO_MASK 0x000DFF00UL #define I40E_INSET_IPV6_TC_MASK 0x0009F00FUL #define I40E_INSET_IPV6_HOP_LIMIT_MASK 0x000CFF00UL #define I40E_INSET_IPV6_NEXT_HDR_MASK 0x000C00FFUL /* PCI offset for querying capability */ #define PCI_DEV_CAP_REG 0xA4 /* PCI offset for enabling/disabling Extended Tag */ #define PCI_DEV_CTRL_REG 0xA8 /* Bit mask of Extended Tag capability */ #define PCI_DEV_CAP_EXT_TAG_MASK 0x20 /* Bit shift of Extended Tag enable/disable */ #define PCI_DEV_CTRL_EXT_TAG_SHIFT 8 /* Bit mask of Extended Tag enable/disable */ #define PCI_DEV_CTRL_EXT_TAG_MASK (1 << PCI_DEV_CTRL_EXT_TAG_SHIFT) static int eth_i40e_dev_init(struct rte_eth_dev *eth_dev); static int eth_i40e_dev_uninit(struct rte_eth_dev *eth_dev); static int i40e_dev_configure(struct rte_eth_dev *dev); static int i40e_dev_start(struct rte_eth_dev *dev); static void i40e_dev_stop(struct rte_eth_dev *dev); static void i40e_dev_close(struct rte_eth_dev *dev); static void i40e_dev_promiscuous_enable(struct rte_eth_dev *dev); static void i40e_dev_promiscuous_disable(struct rte_eth_dev *dev); static void i40e_dev_allmulticast_enable(struct rte_eth_dev *dev); static void i40e_dev_allmulticast_disable(struct rte_eth_dev *dev); static int i40e_dev_set_link_up(struct rte_eth_dev *dev); static int i40e_dev_set_link_down(struct rte_eth_dev *dev); static void i40e_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static int i40e_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n); static int i40e_dev_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned limit); static void i40e_dev_stats_reset(struct rte_eth_dev *dev); static int i40e_dev_queue_stats_mapping_set(struct rte_eth_dev *dev, uint16_t queue_id, uint8_t stat_idx, uint8_t is_rx); static int i40e_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size); static void i40e_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int i40e_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int i40e_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid); static void i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask); static void i40e_vlan_strip_queue_set(struct rte_eth_dev *dev, uint16_t queue, int on); static int i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on); static int i40e_dev_led_on(struct rte_eth_dev *dev); static int i40e_dev_led_off(struct rte_eth_dev *dev); static int i40e_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int i40e_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int i40e_priority_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_pfc_conf *pfc_conf); static int i40e_macaddr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, uint32_t pool); static void i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index); static int i40e_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int i40e_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int i40e_get_cap(struct i40e_hw *hw); static int i40e_pf_parameter_init(struct rte_eth_dev *dev); static int i40e_pf_setup(struct i40e_pf *pf); static int i40e_dev_rxtx_init(struct i40e_pf *pf); static int i40e_vmdq_setup(struct rte_eth_dev *dev); static int i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb); static int i40e_dcb_setup(struct rte_eth_dev *dev); static void i40e_stat_update_32(struct i40e_hw *hw, uint32_t reg, bool offset_loaded, uint64_t *offset, uint64_t *stat); static void i40e_stat_update_48(struct i40e_hw *hw, uint32_t hireg, uint32_t loreg, bool offset_loaded, uint64_t *offset, uint64_t *stat); static void i40e_pf_config_irq0(struct i40e_hw *hw, bool no_queue); static void i40e_dev_interrupt_handler(void *param); static int i40e_res_pool_init(struct i40e_res_pool_info *pool, uint32_t base, uint32_t num); static void i40e_res_pool_destroy(struct i40e_res_pool_info *pool); static int i40e_res_pool_free(struct i40e_res_pool_info *pool, uint32_t base); static int i40e_res_pool_alloc(struct i40e_res_pool_info *pool, uint16_t num); static int i40e_dev_init_vlan(struct rte_eth_dev *dev); static int i40e_veb_release(struct i40e_veb *veb); static struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, struct i40e_vsi *vsi); static int i40e_pf_config_mq_rx(struct i40e_pf *pf); static int i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on); static inline int i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi, struct i40e_macvlan_filter *mv_f, int num, uint16_t vlan); static int i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi); static int i40e_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int i40e_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel); static int i40e_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel); static void i40e_filter_input_set_init(struct i40e_pf *pf); static int i40e_ethertype_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg); static int i40e_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg); static int i40e_dev_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info); static int i40e_dev_sync_phy_type(struct i40e_hw *hw); static void i40e_configure_registers(struct i40e_hw *hw); static void i40e_hw_init(struct rte_eth_dev *dev); static int i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi); static int i40e_mirror_rule_set(struct rte_eth_dev *dev, struct rte_eth_mirror_conf *mirror_conf, uint8_t sw_id, uint8_t on); static int i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id); static int i40e_timesync_enable(struct rte_eth_dev *dev); static int i40e_timesync_disable(struct rte_eth_dev *dev); static int i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags); static int i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp); static void i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw); static int i40e_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta); static int i40e_timesync_read_time(struct rte_eth_dev *dev, struct timespec *timestamp); static int i40e_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *timestamp); static int i40e_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int i40e_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static int i40e_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs); static int i40e_get_eeprom_length(struct rte_eth_dev *dev); static int i40e_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom); static void i40e_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr); static int i40e_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int i40e_ethertype_filter_convert( const struct rte_eth_ethertype_filter *input, struct i40e_ethertype_filter *filter); static int i40e_sw_ethertype_filter_insert(struct i40e_pf *pf, struct i40e_ethertype_filter *filter); static int i40e_tunnel_filter_convert( struct i40e_aqc_add_rm_cloud_filt_elem_ext *cld_filter, struct i40e_tunnel_filter *tunnel_filter); static int i40e_sw_tunnel_filter_insert(struct i40e_pf *pf, struct i40e_tunnel_filter *tunnel_filter); static int i40e_cloud_filter_qinq_create(struct i40e_pf *pf); static void i40e_ethertype_filter_restore(struct i40e_pf *pf); static void i40e_tunnel_filter_restore(struct i40e_pf *pf); static void i40e_filter_restore(struct i40e_pf *pf); static void i40e_notify_all_vfs_link_status(struct rte_eth_dev *dev); int i40e_logtype_init; int i40e_logtype_driver; static const struct rte_pci_id pci_id_i40e_map[] = { { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_XL710) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QEMU) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_B) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_C) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_A) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_B) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_C) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_20G_KR2) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_20G_KR2_A) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T4) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_25G_B) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_25G_SFP28) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_A0) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_X722) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_X722) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_X722) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_1G_BASE_T_X722) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T_X722) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_I_X722) }, { .vendor_id = 0, /* sentinel */ }, }; static const struct eth_dev_ops i40e_eth_dev_ops = { .dev_configure = i40e_dev_configure, .dev_start = i40e_dev_start, .dev_stop = i40e_dev_stop, .dev_close = i40e_dev_close, .promiscuous_enable = i40e_dev_promiscuous_enable, .promiscuous_disable = i40e_dev_promiscuous_disable, .allmulticast_enable = i40e_dev_allmulticast_enable, .allmulticast_disable = i40e_dev_allmulticast_disable, .dev_set_link_up = i40e_dev_set_link_up, .dev_set_link_down = i40e_dev_set_link_down, .link_update = i40e_dev_link_update, .stats_get = i40e_dev_stats_get, .xstats_get = i40e_dev_xstats_get, .xstats_get_names = i40e_dev_xstats_get_names, .stats_reset = i40e_dev_stats_reset, .xstats_reset = i40e_dev_stats_reset, .queue_stats_mapping_set = i40e_dev_queue_stats_mapping_set, .fw_version_get = i40e_fw_version_get, .dev_infos_get = i40e_dev_info_get, .dev_supported_ptypes_get = i40e_dev_supported_ptypes_get, .vlan_filter_set = i40e_vlan_filter_set, .vlan_tpid_set = i40e_vlan_tpid_set, .vlan_offload_set = i40e_vlan_offload_set, .vlan_strip_queue_set = i40e_vlan_strip_queue_set, .vlan_pvid_set = i40e_vlan_pvid_set, .rx_queue_start = i40e_dev_rx_queue_start, .rx_queue_stop = i40e_dev_rx_queue_stop, .tx_queue_start = i40e_dev_tx_queue_start, .tx_queue_stop = i40e_dev_tx_queue_stop, .rx_queue_setup = i40e_dev_rx_queue_setup, .rx_queue_intr_enable = i40e_dev_rx_queue_intr_enable, .rx_queue_intr_disable = i40e_dev_rx_queue_intr_disable, .rx_queue_release = i40e_dev_rx_queue_release, .rx_queue_count = i40e_dev_rx_queue_count, .rx_descriptor_done = i40e_dev_rx_descriptor_done, .rx_descriptor_status = i40e_dev_rx_descriptor_status, .tx_descriptor_status = i40e_dev_tx_descriptor_status, .tx_queue_setup = i40e_dev_tx_queue_setup, .tx_queue_release = i40e_dev_tx_queue_release, .dev_led_on = i40e_dev_led_on, .dev_led_off = i40e_dev_led_off, .flow_ctrl_get = i40e_flow_ctrl_get, .flow_ctrl_set = i40e_flow_ctrl_set, .priority_flow_ctrl_set = i40e_priority_flow_ctrl_set, .mac_addr_add = i40e_macaddr_add, .mac_addr_remove = i40e_macaddr_remove, .reta_update = i40e_dev_rss_reta_update, .reta_query = i40e_dev_rss_reta_query, .rss_hash_update = i40e_dev_rss_hash_update, .rss_hash_conf_get = i40e_dev_rss_hash_conf_get, .udp_tunnel_port_add = i40e_dev_udp_tunnel_port_add, .udp_tunnel_port_del = i40e_dev_udp_tunnel_port_del, .filter_ctrl = i40e_dev_filter_ctrl, .rxq_info_get = i40e_rxq_info_get, .txq_info_get = i40e_txq_info_get, .mirror_rule_set = i40e_mirror_rule_set, .mirror_rule_reset = i40e_mirror_rule_reset, .timesync_enable = i40e_timesync_enable, .timesync_disable = i40e_timesync_disable, .timesync_read_rx_timestamp = i40e_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = i40e_timesync_read_tx_timestamp, .get_dcb_info = i40e_dev_get_dcb_info, .timesync_adjust_time = i40e_timesync_adjust_time, .timesync_read_time = i40e_timesync_read_time, .timesync_write_time = i40e_timesync_write_time, .get_reg = i40e_get_regs, .get_eeprom_length = i40e_get_eeprom_length, .get_eeprom = i40e_get_eeprom, .mac_addr_set = i40e_set_default_mac_addr, .mtu_set = i40e_dev_mtu_set, }; /* store statistics names and its offset in stats structure */ struct rte_i40e_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned offset; }; static const struct rte_i40e_xstats_name_off rte_i40e_stats_strings[] = { {"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)}, {"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)}, {"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)}, {"rx_dropped", offsetof(struct i40e_eth_stats, rx_discards)}, {"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats, rx_unknown_protocol)}, {"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)}, {"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)}, {"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)}, {"tx_dropped", offsetof(struct i40e_eth_stats, tx_discards)}, }; #define I40E_NB_ETH_XSTATS (sizeof(rte_i40e_stats_strings) / \ sizeof(rte_i40e_stats_strings[0])) static const struct rte_i40e_xstats_name_off rte_i40e_hw_port_strings[] = { {"tx_link_down_dropped", offsetof(struct i40e_hw_port_stats, tx_dropped_link_down)}, {"rx_crc_errors", offsetof(struct i40e_hw_port_stats, crc_errors)}, {"rx_illegal_byte_errors", offsetof(struct i40e_hw_port_stats, illegal_bytes)}, {"rx_error_bytes", offsetof(struct i40e_hw_port_stats, error_bytes)}, {"mac_local_errors", offsetof(struct i40e_hw_port_stats, mac_local_faults)}, {"mac_remote_errors", offsetof(struct i40e_hw_port_stats, mac_remote_faults)}, {"rx_length_errors", offsetof(struct i40e_hw_port_stats, rx_length_errors)}, {"tx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_tx)}, {"rx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_rx)}, {"tx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_tx)}, {"rx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_rx)}, {"rx_size_64_packets", offsetof(struct i40e_hw_port_stats, rx_size_64)}, {"rx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats, rx_size_127)}, {"rx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats, rx_size_255)}, {"rx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats, rx_size_511)}, {"rx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats, rx_size_1023)}, {"rx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats, rx_size_1522)}, {"rx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats, rx_size_big)}, {"rx_undersized_errors", offsetof(struct i40e_hw_port_stats, rx_undersize)}, {"rx_oversize_errors", offsetof(struct i40e_hw_port_stats, rx_oversize)}, {"rx_mac_short_dropped", offsetof(struct i40e_hw_port_stats, mac_short_packet_dropped)}, {"rx_fragmented_errors", offsetof(struct i40e_hw_port_stats, rx_fragments)}, {"rx_jabber_errors", offsetof(struct i40e_hw_port_stats, rx_jabber)}, {"tx_size_64_packets", offsetof(struct i40e_hw_port_stats, tx_size_64)}, {"tx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats, tx_size_127)}, {"tx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats, tx_size_255)}, {"tx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats, tx_size_511)}, {"tx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats, tx_size_1023)}, {"tx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats, tx_size_1522)}, {"tx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats, tx_size_big)}, {"rx_flow_director_atr_match_packets", offsetof(struct i40e_hw_port_stats, fd_atr_match)}, {"rx_flow_director_sb_match_packets", offsetof(struct i40e_hw_port_stats, fd_sb_match)}, {"tx_low_power_idle_status", offsetof(struct i40e_hw_port_stats, tx_lpi_status)}, {"rx_low_power_idle_status", offsetof(struct i40e_hw_port_stats, rx_lpi_status)}, {"tx_low_power_idle_count", offsetof(struct i40e_hw_port_stats, tx_lpi_count)}, {"rx_low_power_idle_count", offsetof(struct i40e_hw_port_stats, rx_lpi_count)}, }; #define I40E_NB_HW_PORT_XSTATS (sizeof(rte_i40e_hw_port_strings) / \ sizeof(rte_i40e_hw_port_strings[0])) static const struct rte_i40e_xstats_name_off rte_i40e_rxq_prio_strings[] = { {"xon_packets", offsetof(struct i40e_hw_port_stats, priority_xon_rx)}, {"xoff_packets", offsetof(struct i40e_hw_port_stats, priority_xoff_rx)}, }; #define I40E_NB_RXQ_PRIO_XSTATS (sizeof(rte_i40e_rxq_prio_strings) / \ sizeof(rte_i40e_rxq_prio_strings[0])) static const struct rte_i40e_xstats_name_off rte_i40e_txq_prio_strings[] = { {"xon_packets", offsetof(struct i40e_hw_port_stats, priority_xon_tx)}, {"xoff_packets", offsetof(struct i40e_hw_port_stats, priority_xoff_tx)}, {"xon_to_xoff_packets", offsetof(struct i40e_hw_port_stats, priority_xon_2_xoff)}, }; #define I40E_NB_TXQ_PRIO_XSTATS (sizeof(rte_i40e_txq_prio_strings) / \ sizeof(rte_i40e_txq_prio_strings[0])) static int eth_i40e_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct i40e_adapter), eth_i40e_dev_init); } static int eth_i40e_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_i40e_dev_uninit); } static struct rte_pci_driver rte_i40e_pmd = { .id_table = pci_id_i40e_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = eth_i40e_pci_probe, .remove = eth_i40e_pci_remove, }; static inline int rte_i40e_dev_atomic_read_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = link; struct rte_eth_link *src = &(dev->data->dev_link); if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } static inline int rte_i40e_dev_atomic_write_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = &(dev->data->dev_link); struct rte_eth_link *src = link; if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } RTE_PMD_REGISTER_PCI(net_i40e, rte_i40e_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_i40e, pci_id_i40e_map); RTE_PMD_REGISTER_KMOD_DEP(net_i40e, "* igb_uio | uio_pci_generic | vfio-pci"); #ifndef I40E_GLQF_ORT #define I40E_GLQF_ORT(_i) (0x00268900 + ((_i) * 4)) #endif #ifndef I40E_GLQF_PIT #define I40E_GLQF_PIT(_i) (0x00268C80 + ((_i) * 4)) #endif #ifndef I40E_GLQF_L3_MAP #define I40E_GLQF_L3_MAP(_i) (0x0026C700 + ((_i) * 4)) #endif static inline void i40e_GLQF_reg_init(struct i40e_hw *hw) { /* * Initialize registers for flexible payload, which should be set by NVM. * This should be removed from code once it is fixed in NVM. */ I40E_WRITE_REG(hw, I40E_GLQF_ORT(18), 0x00000030); I40E_WRITE_REG(hw, I40E_GLQF_ORT(19), 0x00000030); I40E_WRITE_REG(hw, I40E_GLQF_ORT(26), 0x0000002B); I40E_WRITE_REG(hw, I40E_GLQF_ORT(30), 0x0000002B); I40E_WRITE_REG(hw, I40E_GLQF_ORT(33), 0x000000E0); I40E_WRITE_REG(hw, I40E_GLQF_ORT(34), 0x000000E3); I40E_WRITE_REG(hw, I40E_GLQF_ORT(35), 0x000000E6); I40E_WRITE_REG(hw, I40E_GLQF_ORT(20), 0x00000031); I40E_WRITE_REG(hw, I40E_GLQF_ORT(23), 0x00000031); I40E_WRITE_REG(hw, I40E_GLQF_ORT(63), 0x0000002D); I40E_WRITE_REG(hw, I40E_GLQF_PIT(16), 0x00007480); I40E_WRITE_REG(hw, I40E_GLQF_PIT(17), 0x00007440); /* Initialize registers for parsing packet type of QinQ */ I40E_WRITE_REG(hw, I40E_GLQF_ORT(40), 0x00000029); I40E_WRITE_REG(hw, I40E_GLQF_PIT(9), 0x00009420); } #define I40E_FLOW_CONTROL_ETHERTYPE 0x8808 /* * Add a ethertype filter to drop all flow control frames transmitted * from VSIs. */ static void i40e_add_tx_flow_control_drop_filter(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); uint16_t flags = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC | I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP | I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX; int ret; ret = i40e_aq_add_rem_control_packet_filter(hw, NULL, I40E_FLOW_CONTROL_ETHERTYPE, flags, pf->main_vsi_seid, 0, TRUE, NULL, NULL); if (ret) PMD_INIT_LOG(ERR, "Failed to add filter to drop flow control frames from VSIs."); } static int floating_veb_list_handler(__rte_unused const char *key, const char *floating_veb_value, void *opaque) { int idx = 0; unsigned int count = 0; char *end = NULL; int min, max; bool *vf_floating_veb = opaque; while (isblank(*floating_veb_value)) floating_veb_value++; /* Reset floating VEB configuration for VFs */ for (idx = 0; idx < I40E_MAX_VF; idx++) vf_floating_veb[idx] = false; min = I40E_MAX_VF; do { while (isblank(*floating_veb_value)) floating_veb_value++; if (*floating_veb_value == '\0') return -1; errno = 0; idx = strtoul(floating_veb_value, &end, 10); if (errno || end == NULL) return -1; while (isblank(*end)) end++; if (*end == '-') { min = idx; } else if ((*end == ';') || (*end == '\0')) { max = idx; if (min == I40E_MAX_VF) min = idx; if (max >= I40E_MAX_VF) max = I40E_MAX_VF - 1; for (idx = min; idx <= max; idx++) { vf_floating_veb[idx] = true; count++; } min = I40E_MAX_VF; } else { return -1; } floating_veb_value = end + 1; } while (*end != '\0'); if (count == 0) return -1; return 0; } static void config_vf_floating_veb(struct rte_devargs *devargs, uint16_t floating_veb, bool *vf_floating_veb) { struct rte_kvargs *kvlist; int i; const char *floating_veb_list = ETH_I40E_FLOATING_VEB_LIST_ARG; if (!floating_veb) return; /* All the VFs attach to the floating VEB by default * when the floating VEB is enabled. */ for (i = 0; i < I40E_MAX_VF; i++) vf_floating_veb[i] = true; if (devargs == NULL) return; kvlist = rte_kvargs_parse(devargs->args, NULL); if (kvlist == NULL) return; if (!rte_kvargs_count(kvlist, floating_veb_list)) { rte_kvargs_free(kvlist); return; } /* When the floating_veb_list parameter exists, all the VFs * will attach to the legacy VEB firstly, then configure VFs * to the floating VEB according to the floating_veb_list. */ if (rte_kvargs_process(kvlist, floating_veb_list, floating_veb_list_handler, vf_floating_veb) < 0) { rte_kvargs_free(kvlist); return; } rte_kvargs_free(kvlist); } static int i40e_check_floating_handler(__rte_unused const char *key, const char *value, __rte_unused void *opaque) { if (strcmp(value, "1")) return -1; return 0; } static int is_floating_veb_supported(struct rte_devargs *devargs) { struct rte_kvargs *kvlist; const char *floating_veb_key = ETH_I40E_FLOATING_VEB_ARG; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, NULL); if (kvlist == NULL) return 0; if (!rte_kvargs_count(kvlist, floating_veb_key)) { rte_kvargs_free(kvlist); return 0; } /* Floating VEB is enabled when there's key-value: * enable_floating_veb=1 */ if (rte_kvargs_process(kvlist, floating_veb_key, i40e_check_floating_handler, NULL) < 0) { rte_kvargs_free(kvlist); return 0; } rte_kvargs_free(kvlist); return 1; } static void config_floating_veb(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); memset(pf->floating_veb_list, 0, sizeof(pf->floating_veb_list)); if (hw->aq.fw_maj_ver >= FLOATING_VEB_SUPPORTED_FW_MAJ) { pf->floating_veb = is_floating_veb_supported(pci_dev->device.devargs); config_vf_floating_veb(pci_dev->device.devargs, pf->floating_veb, pf->floating_veb_list); } else { pf->floating_veb = false; } } #define I40E_L2_TAGS_S_TAG_SHIFT 1 #define I40E_L2_TAGS_S_TAG_MASK I40E_MASK(0x1, I40E_L2_TAGS_S_TAG_SHIFT) static int i40e_init_ethtype_filter_list(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_ethertype_rule *ethertype_rule = &pf->ethertype; char ethertype_hash_name[RTE_HASH_NAMESIZE]; int ret; struct rte_hash_parameters ethertype_hash_params = { .name = ethertype_hash_name, .entries = I40E_MAX_ETHERTYPE_FILTER_NUM, .key_len = sizeof(struct i40e_ethertype_filter_input), .hash_func = rte_hash_crc, .hash_func_init_val = 0, .socket_id = rte_socket_id(), }; /* Initialize ethertype filter rule list and hash */ TAILQ_INIT(ðertype_rule->ethertype_list); snprintf(ethertype_hash_name, RTE_HASH_NAMESIZE, "ethertype_%s", dev->data->name); ethertype_rule->hash_table = rte_hash_create(ðertype_hash_params); if (!ethertype_rule->hash_table) { PMD_INIT_LOG(ERR, "Failed to create ethertype hash table!"); return -EINVAL; } ethertype_rule->hash_map = rte_zmalloc("i40e_ethertype_hash_map", sizeof(struct i40e_ethertype_filter *) * I40E_MAX_ETHERTYPE_FILTER_NUM, 0); if (!ethertype_rule->hash_map) { PMD_INIT_LOG(ERR, "Failed to allocate memory for ethertype hash map!"); ret = -ENOMEM; goto err_ethertype_hash_map_alloc; } return 0; err_ethertype_hash_map_alloc: rte_hash_free(ethertype_rule->hash_table); return ret; } static int i40e_init_tunnel_filter_list(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_tunnel_rule *tunnel_rule = &pf->tunnel; char tunnel_hash_name[RTE_HASH_NAMESIZE]; int ret; struct rte_hash_parameters tunnel_hash_params = { .name = tunnel_hash_name, .entries = I40E_MAX_TUNNEL_FILTER_NUM, .key_len = sizeof(struct i40e_tunnel_filter_input), .hash_func = rte_hash_crc, .hash_func_init_val = 0, .socket_id = rte_socket_id(), }; /* Initialize tunnel filter rule list and hash */ TAILQ_INIT(&tunnel_rule->tunnel_list); snprintf(tunnel_hash_name, RTE_HASH_NAMESIZE, "tunnel_%s", dev->data->name); tunnel_rule->hash_table = rte_hash_create(&tunnel_hash_params); if (!tunnel_rule->hash_table) { PMD_INIT_LOG(ERR, "Failed to create tunnel hash table!"); return -EINVAL; } tunnel_rule->hash_map = rte_zmalloc("i40e_tunnel_hash_map", sizeof(struct i40e_tunnel_filter *) * I40E_MAX_TUNNEL_FILTER_NUM, 0); if (!tunnel_rule->hash_map) { PMD_INIT_LOG(ERR, "Failed to allocate memory for tunnel hash map!"); ret = -ENOMEM; goto err_tunnel_hash_map_alloc; } return 0; err_tunnel_hash_map_alloc: rte_hash_free(tunnel_rule->hash_table); return ret; } static int i40e_init_fdir_filter_list(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_fdir_info *fdir_info = &pf->fdir; char fdir_hash_name[RTE_HASH_NAMESIZE]; int ret; struct rte_hash_parameters fdir_hash_params = { .name = fdir_hash_name, .entries = I40E_MAX_FDIR_FILTER_NUM, .key_len = sizeof(struct rte_eth_fdir_input), .hash_func = rte_hash_crc, .hash_func_init_val = 0, .socket_id = rte_socket_id(), }; /* Initialize flow director filter rule list and hash */ TAILQ_INIT(&fdir_info->fdir_list); snprintf(fdir_hash_name, RTE_HASH_NAMESIZE, "fdir_%s", dev->data->name); fdir_info->hash_table = rte_hash_create(&fdir_hash_params); if (!fdir_info->hash_table) { PMD_INIT_LOG(ERR, "Failed to create fdir hash table!"); return -EINVAL; } fdir_info->hash_map = rte_zmalloc("i40e_fdir_hash_map", sizeof(struct i40e_fdir_filter *) * I40E_MAX_FDIR_FILTER_NUM, 0); if (!fdir_info->hash_map) { PMD_INIT_LOG(ERR, "Failed to allocate memory for fdir hash map!"); ret = -ENOMEM; goto err_fdir_hash_map_alloc; } return 0; err_fdir_hash_map_alloc: rte_hash_free(fdir_info->hash_table); return ret; } static int eth_i40e_dev_init(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi; int ret; uint32_t len; uint8_t aq_fail = 0; PMD_INIT_FUNC_TRACE(); dev->dev_ops = &i40e_eth_dev_ops; dev->rx_pkt_burst = i40e_recv_pkts; dev->tx_pkt_burst = i40e_xmit_pkts; dev->tx_pkt_prepare = i40e_prep_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ i40e_set_rx_function(dev); i40e_set_tx_function(dev); return 0; } i40e_set_default_ptype_table(dev); pci_dev = I40E_DEV_TO_PCI(dev); intr_handle = &pci_dev->intr_handle; rte_eth_copy_pci_info(dev, pci_dev); dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE; pf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); pf->adapter->eth_dev = dev; pf->dev_data = dev->data; hw->back = I40E_PF_TO_ADAPTER(pf); hw->hw_addr = (uint8_t *)(pci_dev->mem_resource[0].addr); if (!hw->hw_addr) { PMD_INIT_LOG(ERR, "Hardware is not available, as address is NULL"); return -ENODEV; } hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; hw->adapter_stopped = 0; /* Make sure all is clean before doing PF reset */ i40e_clear_hw(hw); /* Initialize the hardware */ i40e_hw_init(dev); /* Reset here to make sure all is clean for each PF */ ret = i40e_pf_reset(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to reset pf: %d", ret); return ret; } /* Initialize the shared code (base driver) */ ret = i40e_init_shared_code(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init shared code (base driver): %d", ret); return ret; } /* * To work around the NVM issue, initialize registers * for flexible payload and packet type of QinQ by * software. It should be removed once issues are fixed * in NVM. */ i40e_GLQF_reg_init(hw); /* Initialize the input set for filters (hash and fd) to default value */ i40e_filter_input_set_init(pf); /* Initialize the parameters for adminq */ i40e_init_adminq_parameter(hw); ret = i40e_init_adminq(hw); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to init adminq: %d", ret); return -EIO; } PMD_INIT_LOG(INFO, "FW %d.%d API %d.%d NVM %02d.%02d.%02d eetrack %04x", hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.api_maj_ver, hw->aq.api_min_ver, ((hw->nvm.version >> 12) & 0xf), ((hw->nvm.version >> 4) & 0xff), (hw->nvm.version & 0xf), hw->nvm.eetrack); /* initialise the L3_MAP register */ ret = i40e_aq_debug_write_register(hw, I40E_GLQF_L3_MAP(40), 0x00000028, NULL); if (ret) PMD_INIT_LOG(ERR, "Failed to write L3 MAP register %d", ret); /* Need the special FW version to support floating VEB */ config_floating_veb(dev); /* Clear PXE mode */ i40e_clear_pxe_mode(hw); ret = i40e_dev_sync_phy_type(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to sync phy type: %d", ret); goto err_sync_phy_type; } /* * On X710, performance number is far from the expectation on recent * firmware versions. The fix for this issue may not be integrated in * the following firmware version. So the workaround in software driver * is needed. It needs to modify the initial values of 3 internal only * registers. Note that the workaround can be removed when it is fixed * in firmware in the future. */ i40e_configure_registers(hw); /* Get hw capabilities */ ret = i40e_get_cap(hw); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to get capabilities: %d", ret); goto err_get_capabilities; } /* Initialize parameters for PF */ ret = i40e_pf_parameter_init(dev); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to do parameter init: %d", ret); goto err_parameter_init; } /* Initialize the queue management */ ret = i40e_res_pool_init(&pf->qp_pool, 0, hw->func_caps.num_tx_qp); if (ret < 0) { PMD_INIT_LOG(ERR, "Failed to init queue pool"); goto err_qp_pool_init; } ret = i40e_res_pool_init(&pf->msix_pool, 1, hw->func_caps.num_msix_vectors - 1); if (ret < 0) { PMD_INIT_LOG(ERR, "Failed to init MSIX pool"); goto err_msix_pool_init; } /* Initialize lan hmc */ ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, hw->func_caps.num_rx_qp, 0, 0); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to init lan hmc: %d", ret); goto err_init_lan_hmc; } /* Configure lan hmc */ ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to configure lan hmc: %d", ret); goto err_configure_lan_hmc; } /* Get and check the mac address */ i40e_get_mac_addr(hw, hw->mac.addr); if (i40e_validate_mac_addr(hw->mac.addr) != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "mac address is not valid"); ret = -EIO; goto err_get_mac_addr; } /* Copy the permanent MAC address */ ether_addr_copy((struct ether_addr *) hw->mac.addr, (struct ether_addr *) hw->mac.perm_addr); /* Disable flow control */ hw->fc.requested_mode = I40E_FC_NONE; i40e_set_fc(hw, &aq_fail, TRUE); /* Set the global registers with default ether type value */ ret = i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_OUTER, ETHER_TYPE_VLAN); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to set the default outer VLAN ether type"); goto err_setup_pf_switch; } /* PF setup, which includes VSI setup */ ret = i40e_pf_setup(pf); if (ret) { PMD_INIT_LOG(ERR, "Failed to setup pf switch: %d", ret); goto err_setup_pf_switch; } /* reset all stats of the device, including pf and main vsi */ i40e_dev_stats_reset(dev); vsi = pf->main_vsi; /* Disable double vlan by default */ i40e_vsi_config_double_vlan(vsi, FALSE); /* Disable S-TAG identification when floating_veb is disabled */ if (!pf->floating_veb) { ret = I40E_READ_REG(hw, I40E_PRT_L2TAGSEN); if (ret & I40E_L2_TAGS_S_TAG_MASK) { ret &= ~I40E_L2_TAGS_S_TAG_MASK; I40E_WRITE_REG(hw, I40E_PRT_L2TAGSEN, ret); } } if (!vsi->max_macaddrs) len = ETHER_ADDR_LEN; else len = ETHER_ADDR_LEN * vsi->max_macaddrs; /* Should be after VSI initialized */ dev->data->mac_addrs = rte_zmalloc("i40e", len, 0); if (!dev->data->mac_addrs) { PMD_INIT_LOG(ERR, "Failed to allocated memory for storing mac address"); goto err_mac_alloc; } ether_addr_copy((struct ether_addr *)hw->mac.perm_addr, &dev->data->mac_addrs[0]); /* Init dcb to sw mode by default */ ret = i40e_dcb_init_configure(dev, TRUE); if (ret != I40E_SUCCESS) { PMD_INIT_LOG(INFO, "Failed to init dcb."); pf->flags &= ~I40E_FLAG_DCB; } /* Update HW struct after DCB configuration */ i40e_get_cap(hw); /* initialize pf host driver to setup SRIOV resource if applicable */ i40e_pf_host_init(dev); /* register callback func to eal lib */ rte_intr_callback_register(intr_handle, i40e_dev_interrupt_handler, dev); /* configure and enable device interrupt */ i40e_pf_config_irq0(hw, TRUE); i40e_pf_enable_irq0(hw); /* enable uio intr after callback register */ rte_intr_enable(intr_handle); /* * Add an ethertype filter to drop all flow control frames transmitted * from VSIs. By doing so, we stop VF from sending out PAUSE or PFC * frames to wire. */ i40e_add_tx_flow_control_drop_filter(pf); /* Set the max frame size to 0x2600 by default, * in case other drivers changed the default value. */ i40e_aq_set_mac_config(hw, I40E_FRAME_SIZE_MAX, TRUE, 0, NULL); /* initialize mirror rule list */ TAILQ_INIT(&pf->mirror_list); ret = i40e_init_ethtype_filter_list(dev); if (ret < 0) goto err_init_ethtype_filter_list; ret = i40e_init_tunnel_filter_list(dev); if (ret < 0) goto err_init_tunnel_filter_list; ret = i40e_init_fdir_filter_list(dev); if (ret < 0) goto err_init_fdir_filter_list; return 0; err_init_fdir_filter_list: rte_free(pf->tunnel.hash_table); rte_free(pf->tunnel.hash_map); err_init_tunnel_filter_list: rte_free(pf->ethertype.hash_table); rte_free(pf->ethertype.hash_map); err_init_ethtype_filter_list: rte_free(dev->data->mac_addrs); err_mac_alloc: i40e_vsi_release(pf->main_vsi); err_setup_pf_switch: err_get_mac_addr: err_configure_lan_hmc: (void)i40e_shutdown_lan_hmc(hw); err_init_lan_hmc: i40e_res_pool_destroy(&pf->msix_pool); err_msix_pool_init: i40e_res_pool_destroy(&pf->qp_pool); err_qp_pool_init: err_parameter_init: err_get_capabilities: err_sync_phy_type: (void)i40e_shutdown_adminq(hw); return ret; } static void i40e_rm_ethtype_filter_list(struct i40e_pf *pf) { struct i40e_ethertype_filter *p_ethertype; struct i40e_ethertype_rule *ethertype_rule; ethertype_rule = &pf->ethertype; /* Remove all ethertype filter rules and hash */ if (ethertype_rule->hash_map) rte_free(ethertype_rule->hash_map); if (ethertype_rule->hash_table) rte_hash_free(ethertype_rule->hash_table); while ((p_ethertype = TAILQ_FIRST(ðertype_rule->ethertype_list))) { TAILQ_REMOVE(ðertype_rule->ethertype_list, p_ethertype, rules); rte_free(p_ethertype); } } static void i40e_rm_tunnel_filter_list(struct i40e_pf *pf) { struct i40e_tunnel_filter *p_tunnel; struct i40e_tunnel_rule *tunnel_rule; tunnel_rule = &pf->tunnel; /* Remove all tunnel director rules and hash */ if (tunnel_rule->hash_map) rte_free(tunnel_rule->hash_map); if (tunnel_rule->hash_table) rte_hash_free(tunnel_rule->hash_table); while ((p_tunnel = TAILQ_FIRST(&tunnel_rule->tunnel_list))) { TAILQ_REMOVE(&tunnel_rule->tunnel_list, p_tunnel, rules); rte_free(p_tunnel); } } static void i40e_rm_fdir_filter_list(struct i40e_pf *pf) { struct i40e_fdir_filter *p_fdir; struct i40e_fdir_info *fdir_info; fdir_info = &pf->fdir; /* Remove all flow director rules and hash */ if (fdir_info->hash_map) rte_free(fdir_info->hash_map); if (fdir_info->hash_table) rte_hash_free(fdir_info->hash_table); while ((p_fdir = TAILQ_FIRST(&fdir_info->fdir_list))) { TAILQ_REMOVE(&fdir_info->fdir_list, p_fdir, rules); rte_free(p_fdir); } } static int eth_i40e_dev_uninit(struct rte_eth_dev *dev) { struct i40e_pf *pf; struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct i40e_hw *hw; struct i40e_filter_control_settings settings; struct rte_flow *p_flow; int ret; uint8_t aq_fail = 0; PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); pci_dev = I40E_DEV_TO_PCI(dev); intr_handle = &pci_dev->intr_handle; if (hw->adapter_stopped == 0) i40e_dev_close(dev); dev->dev_ops = NULL; dev->rx_pkt_burst = NULL; dev->tx_pkt_burst = NULL; /* Clear PXE mode */ i40e_clear_pxe_mode(hw); /* Unconfigure filter control */ memset(&settings, 0, sizeof(settings)); ret = i40e_set_filter_control(hw, &settings); if (ret) PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d", ret); /* Disable flow control */ hw->fc.requested_mode = I40E_FC_NONE; i40e_set_fc(hw, &aq_fail, TRUE); /* uninitialize pf host driver */ i40e_pf_host_uninit(dev); rte_free(dev->data->mac_addrs); dev->data->mac_addrs = NULL; /* disable uio intr before callback unregister */ rte_intr_disable(intr_handle); /* register callback func to eal lib */ rte_intr_callback_unregister(intr_handle, i40e_dev_interrupt_handler, dev); i40e_rm_ethtype_filter_list(pf); i40e_rm_tunnel_filter_list(pf); i40e_rm_fdir_filter_list(pf); /* Remove all flows */ while ((p_flow = TAILQ_FIRST(&pf->flow_list))) { TAILQ_REMOVE(&pf->flow_list, p_flow, node); rte_free(p_flow); } return 0; } static int i40e_dev_configure(struct rte_eth_dev *dev) { struct i40e_adapter *ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode; int i, ret; /* Initialize to TRUE. If any of Rx queues doesn't meet the * bulk allocation or vector Rx preconditions we will reset it. */ ad->rx_bulk_alloc_allowed = true; ad->rx_vec_allowed = true; ad->tx_simple_allowed = true; ad->tx_vec_allowed = true; if (dev->data->dev_conf.fdir_conf.mode == RTE_FDIR_MODE_PERFECT) { ret = i40e_fdir_setup(pf); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to setup flow director."); return -ENOTSUP; } ret = i40e_fdir_configure(dev); if (ret < 0) { PMD_DRV_LOG(ERR, "failed to configure fdir."); goto err; } } else i40e_fdir_teardown(pf); ret = i40e_dev_init_vlan(dev); if (ret < 0) goto err; /* VMDQ setup. * Needs to move VMDQ setting out of i40e_pf_config_mq_rx() as VMDQ and * RSS setting have different requirements. * General PMD driver call sequence are NIC init, configure, * rx/tx_queue_setup and dev_start. In rx/tx_queue_setup() function, it * will try to lookup the VSI that specific queue belongs to if VMDQ * applicable. So, VMDQ setting has to be done before * rx/tx_queue_setup(). This function is good to place vmdq_setup. * For RSS setting, it will try to calculate actual configured RX queue * number, which will be available after rx_queue_setup(). dev_start() * function is good to place RSS setup. */ if (mq_mode & ETH_MQ_RX_VMDQ_FLAG) { ret = i40e_vmdq_setup(dev); if (ret) goto err; } if (mq_mode & ETH_MQ_RX_DCB_FLAG) { ret = i40e_dcb_setup(dev); if (ret) { PMD_DRV_LOG(ERR, "failed to configure DCB."); goto err_dcb; } } TAILQ_INIT(&pf->flow_list); return 0; err_dcb: /* need to release vmdq resource if exists */ for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) { i40e_vsi_release(pf->vmdq[i].vsi); pf->vmdq[i].vsi = NULL; } rte_free(pf->vmdq); pf->vmdq = NULL; err: /* need to release fdir resource if exists */ i40e_fdir_teardown(pf); return ret; } void i40e_vsi_queues_unbind_intr(struct i40e_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); uint16_t msix_vect = vsi->msix_intr; uint16_t i; for (i = 0; i < vsi->nb_qps; i++) { I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0); I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), 0); rte_wmb(); } if (vsi->type != I40E_VSI_SRIOV) { if (!rte_intr_allow_others(intr_handle)) { I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, I40E_PFINT_LNKLST0_FIRSTQ_INDX_MASK); I40E_WRITE_REG(hw, I40E_PFINT_ITR0(I40E_ITR_INDEX_DEFAULT), 0); } else { I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1), I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK); I40E_WRITE_REG(hw, I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT, msix_vect - 1), 0); } } else { uint32_t reg; reg = (hw->func_caps.num_msix_vectors_vf - 1) * vsi->user_param + (msix_vect - 1); I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg), I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK); } I40E_WRITE_FLUSH(hw); } static void __vsi_queues_bind_intr(struct i40e_vsi *vsi, uint16_t msix_vect, int base_queue, int nb_queue) { int i; uint32_t val; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); /* Bind all RX queues to allocated MSIX interrupt */ for (i = 0; i < nb_queue; i++) { val = (msix_vect << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | I40E_QINT_RQCTL_ITR_INDX_MASK | ((base_queue + i + 1) << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | (0 << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) | I40E_QINT_RQCTL_CAUSE_ENA_MASK; if (i == nb_queue - 1) val |= I40E_QINT_RQCTL_NEXTQ_INDX_MASK; I40E_WRITE_REG(hw, I40E_QINT_RQCTL(base_queue + i), val); } /* Write first RX queue to Link list register as the head element */ if (vsi->type != I40E_VSI_SRIOV) { uint16_t interval = i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL); if (msix_vect == I40E_MISC_VEC_ID) { I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, (base_queue << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT) | (0x0 << I40E_PFINT_LNKLST0_FIRSTQ_TYPE_SHIFT)); I40E_WRITE_REG(hw, I40E_PFINT_ITR0(I40E_ITR_INDEX_DEFAULT), interval); } else { I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1), (base_queue << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) | (0x0 << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT)); I40E_WRITE_REG(hw, I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT, msix_vect - 1), interval); } } else { uint32_t reg; if (msix_vect == I40E_MISC_VEC_ID) { I40E_WRITE_REG(hw, I40E_VPINT_LNKLST0(vsi->user_param), (base_queue << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT) | (0x0 << I40E_VPINT_LNKLST0_FIRSTQ_TYPE_SHIFT)); } else { /* num_msix_vectors_vf needs to minus irq0 */ reg = (hw->func_caps.num_msix_vectors_vf - 1) * vsi->user_param + (msix_vect - 1); I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg), (base_queue << I40E_VPINT_LNKLSTN_FIRSTQ_INDX_SHIFT) | (0x0 << I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT)); } } I40E_WRITE_FLUSH(hw); } void i40e_vsi_queues_bind_intr(struct i40e_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); uint16_t msix_vect = vsi->msix_intr; uint16_t nb_msix = RTE_MIN(vsi->nb_msix, intr_handle->nb_efd); uint16_t queue_idx = 0; int record = 0; uint32_t val; int i; for (i = 0; i < vsi->nb_qps; i++) { I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0); I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), 0); } /* INTENA flag is not auto-cleared for interrupt */ val = I40E_READ_REG(hw, I40E_GLINT_CTL); val |= I40E_GLINT_CTL_DIS_AUTOMASK_PF0_MASK | I40E_GLINT_CTL_DIS_AUTOMASK_N_MASK | I40E_GLINT_CTL_DIS_AUTOMASK_VF0_MASK; I40E_WRITE_REG(hw, I40E_GLINT_CTL, val); /* VF bind interrupt */ if (vsi->type == I40E_VSI_SRIOV) { __vsi_queues_bind_intr(vsi, msix_vect, vsi->base_queue, vsi->nb_qps); return; } /* PF & VMDq bind interrupt */ if (rte_intr_dp_is_en(intr_handle)) { if (vsi->type == I40E_VSI_MAIN) { queue_idx = 0; record = 1; } else if (vsi->type == I40E_VSI_VMDQ2) { struct i40e_vsi *main_vsi = I40E_DEV_PRIVATE_TO_MAIN_VSI(vsi->adapter); queue_idx = vsi->base_queue - main_vsi->nb_qps; record = 1; } } for (i = 0; i < vsi->nb_used_qps; i++) { if (nb_msix <= 1) { if (!rte_intr_allow_others(intr_handle)) /* allow to share MISC_VEC_ID */ msix_vect = I40E_MISC_VEC_ID; /* no enough msix_vect, map all to one */ __vsi_queues_bind_intr(vsi, msix_vect, vsi->base_queue + i, vsi->nb_used_qps - i); for (; !!record && i < vsi->nb_used_qps; i++) intr_handle->intr_vec[queue_idx + i] = msix_vect; break; } /* 1:1 queue/msix_vect mapping */ __vsi_queues_bind_intr(vsi, msix_vect, vsi->base_queue + i, 1); if (!!record) intr_handle->intr_vec[queue_idx + i] = msix_vect; msix_vect++; nb_msix--; } } static void i40e_vsi_enable_queues_intr(struct i40e_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); uint16_t interval = i40e_calc_itr_interval(\ RTE_LIBRTE_I40E_ITR_INTERVAL); uint16_t msix_intr, i; if (rte_intr_allow_others(intr_handle)) for (i = 0; i < vsi->nb_msix; i++) { msix_intr = vsi->msix_intr + i; I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - 1), I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | (0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | (interval << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT)); } else I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_INTENA_MASK | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | (0 << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT) | (interval << I40E_PFINT_DYN_CTL0_INTERVAL_SHIFT)); I40E_WRITE_FLUSH(hw); } static void i40e_vsi_disable_queues_intr(struct i40e_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); uint16_t msix_intr, i; if (rte_intr_allow_others(intr_handle)) for (i = 0; i < vsi->nb_msix; i++) { msix_intr = vsi->msix_intr + i; I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - 1), 0); } else I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0); I40E_WRITE_FLUSH(hw); } static inline uint8_t i40e_parse_link_speeds(uint16_t link_speeds) { uint8_t link_speed = I40E_LINK_SPEED_UNKNOWN; if (link_speeds & ETH_LINK_SPEED_40G) link_speed |= I40E_LINK_SPEED_40GB; if (link_speeds & ETH_LINK_SPEED_25G) link_speed |= I40E_LINK_SPEED_25GB; if (link_speeds & ETH_LINK_SPEED_20G) link_speed |= I40E_LINK_SPEED_20GB; if (link_speeds & ETH_LINK_SPEED_10G) link_speed |= I40E_LINK_SPEED_10GB; if (link_speeds & ETH_LINK_SPEED_1G) link_speed |= I40E_LINK_SPEED_1GB; if (link_speeds & ETH_LINK_SPEED_100M) link_speed |= I40E_LINK_SPEED_100MB; return link_speed; } static int i40e_phy_conf_link(struct i40e_hw *hw, uint8_t abilities, uint8_t force_speed) { enum i40e_status_code status; struct i40e_aq_get_phy_abilities_resp phy_ab; struct i40e_aq_set_phy_config phy_conf; const uint8_t mask = I40E_AQ_PHY_FLAG_PAUSE_TX | I40E_AQ_PHY_FLAG_PAUSE_RX | I40E_AQ_PHY_FLAG_PAUSE_RX | I40E_AQ_PHY_FLAG_LOW_POWER; const uint8_t advt = I40E_LINK_SPEED_40GB | I40E_LINK_SPEED_25GB | I40E_LINK_SPEED_10GB | I40E_LINK_SPEED_1GB | I40E_LINK_SPEED_100MB; int ret = -ENOTSUP; status = i40e_aq_get_phy_capabilities(hw, false, false, &phy_ab, NULL); if (status) return ret; memset(&phy_conf, 0, sizeof(phy_conf)); /* bits 0-2 use the values from get_phy_abilities_resp */ abilities &= ~mask; abilities |= phy_ab.abilities & mask; /* update ablities and speed */ if (abilities & I40E_AQ_PHY_AN_ENABLED) phy_conf.link_speed = advt; else phy_conf.link_speed = force_speed; phy_conf.abilities = abilities; /* use get_phy_abilities_resp value for the rest */ phy_conf.phy_type = phy_ab.phy_type; phy_conf.phy_type_ext = phy_ab.phy_type_ext; phy_conf.fec_config = phy_ab.fec_cfg_curr_mod_ext_info; phy_conf.eee_capability = phy_ab.eee_capability; phy_conf.eeer = phy_ab.eeer_val; phy_conf.low_power_ctrl = phy_ab.d3_lpan; PMD_DRV_LOG(DEBUG, "\tCurrent: abilities %x, link_speed %x", phy_ab.abilities, phy_ab.link_speed); PMD_DRV_LOG(DEBUG, "\tConfig: abilities %x, link_speed %x", phy_conf.abilities, phy_conf.link_speed); status = i40e_aq_set_phy_config(hw, &phy_conf, NULL); if (status) return ret; return I40E_SUCCESS; } static int i40e_apply_link_speed(struct rte_eth_dev *dev) { uint8_t speed; uint8_t abilities = 0; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_conf *conf = &dev->data->dev_conf; speed = i40e_parse_link_speeds(conf->link_speeds); abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK; if (!(conf->link_speeds & ETH_LINK_SPEED_FIXED)) abilities |= I40E_AQ_PHY_AN_ENABLED; abilities |= I40E_AQ_PHY_LINK_ENABLED; /* Skip changing speed on 40G interfaces, FW does not support */ if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types)) { speed = I40E_LINK_SPEED_UNKNOWN; abilities |= I40E_AQ_PHY_AN_ENABLED; } return i40e_phy_conf_link(hw, abilities, speed); } static int i40e_dev_start(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *main_vsi = pf->main_vsi; int ret, i; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t intr_vector = 0; struct i40e_vsi *vsi; hw->adapter_stopped = 0; if (dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED) { PMD_INIT_LOG(ERR, "Invalid link_speeds for port %hhu; autonegotiation disabled", dev->data->port_id); return -EINVAL; } rte_intr_disable(intr_handle); if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(dev).active) && dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = dev->data->nb_rx_queues; ret = rte_intr_efd_enable(intr_handle, intr_vector); if (ret) return ret; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues intr_vec", dev->data->nb_rx_queues); return -ENOMEM; } } /* Initialize VSI */ ret = i40e_dev_rxtx_init(pf); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to init rx/tx queues"); goto err_up; } /* Map queues with MSIX interrupt */ main_vsi->nb_used_qps = dev->data->nb_rx_queues - pf->nb_cfg_vmdq_vsi * RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM; i40e_vsi_queues_bind_intr(main_vsi); i40e_vsi_enable_queues_intr(main_vsi); /* Map VMDQ VSI queues with MSIX interrupt */ for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) { pf->vmdq[i].vsi->nb_used_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM; i40e_vsi_queues_bind_intr(pf->vmdq[i].vsi); i40e_vsi_enable_queues_intr(pf->vmdq[i].vsi); } /* enable FDIR MSIX interrupt */ if (pf->fdir.fdir_vsi) { i40e_vsi_queues_bind_intr(pf->fdir.fdir_vsi); i40e_vsi_enable_queues_intr(pf->fdir.fdir_vsi); } /* Enable all queues which have been configured */ ret = i40e_dev_switch_queues(pf, TRUE); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to enable VSI"); goto err_up; } /* Enable receiving broadcast packets */ ret = i40e_aq_set_vsi_broadcast(hw, main_vsi->seid, true, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(INFO, "fail to set vsi broadcast"); for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) { ret = i40e_aq_set_vsi_broadcast(hw, pf->vmdq[i].vsi->seid, true, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(INFO, "fail to set vsi broadcast"); } /* Enable the VLAN promiscuous mode. */ if (pf->vfs) { for (i = 0; i < pf->vf_num; i++) { vsi = pf->vfs[i].vsi; i40e_aq_set_vsi_vlan_promisc(hw, vsi->seid, true, NULL); } } /* Apply link configure */ if (dev->data->dev_conf.link_speeds & ~(ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G | ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G)) { PMD_DRV_LOG(ERR, "Invalid link setting"); goto err_up; } ret = i40e_apply_link_speed(dev); if (I40E_SUCCESS != ret) { PMD_DRV_LOG(ERR, "Fail to apply link setting"); goto err_up; } if (!rte_intr_allow_others(intr_handle)) { rte_intr_callback_unregister(intr_handle, i40e_dev_interrupt_handler, (void *)dev); /* configure and enable device interrupt */ i40e_pf_config_irq0(hw, FALSE); i40e_pf_enable_irq0(hw); if (dev->data->dev_conf.intr_conf.lsc != 0) PMD_INIT_LOG(INFO, "lsc won't enable because of no intr multiplex"); } else if (dev->data->dev_conf.intr_conf.lsc != 0) { ret = i40e_aq_set_phy_int_mask(hw, ~(I40E_AQ_EVENT_LINK_UPDOWN | I40E_AQ_EVENT_MODULE_QUAL_FAIL | I40E_AQ_EVENT_MEDIA_NA), NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(WARNING, "Fail to set phy mask"); /* Call get_link_info aq commond to enable LSE */ i40e_dev_link_update(dev, 0); } /* enable uio intr after callback register */ rte_intr_enable(intr_handle); i40e_filter_restore(pf); return I40E_SUCCESS; err_up: i40e_dev_switch_queues(pf, FALSE); i40e_dev_clear_queues(dev); return ret; } static void i40e_dev_stop(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_vsi *main_vsi = pf->main_vsi; struct i40e_mirror_rule *p_mirror; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; int i; /* Disable all queues */ i40e_dev_switch_queues(pf, FALSE); /* un-map queues with interrupt registers */ i40e_vsi_disable_queues_intr(main_vsi); i40e_vsi_queues_unbind_intr(main_vsi); for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) { i40e_vsi_disable_queues_intr(pf->vmdq[i].vsi); i40e_vsi_queues_unbind_intr(pf->vmdq[i].vsi); } if (pf->fdir.fdir_vsi) { i40e_vsi_queues_unbind_intr(pf->fdir.fdir_vsi); i40e_vsi_disable_queues_intr(pf->fdir.fdir_vsi); } /* Clear all queues and release memory */ i40e_dev_clear_queues(dev); /* Set link down */ i40e_dev_set_link_down(dev); /* Remove all mirror rules */ while ((p_mirror = TAILQ_FIRST(&pf->mirror_list))) { TAILQ_REMOVE(&pf->mirror_list, p_mirror, rules); rte_free(p_mirror); } pf->nb_mirror_rule = 0; if (!rte_intr_allow_others(intr_handle)) /* resume to the default handler */ rte_intr_callback_register(intr_handle, i40e_dev_interrupt_handler, (void *)dev); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } } static void i40e_dev_close(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t reg; int i; PMD_INIT_FUNC_TRACE(); i40e_dev_stop(dev); hw->adapter_stopped = 1; i40e_dev_free_queues(dev); /* Disable interrupt */ i40e_pf_disable_irq0(hw); rte_intr_disable(intr_handle); /* shutdown and destroy the HMC */ i40e_shutdown_lan_hmc(hw); for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) { i40e_vsi_release(pf->vmdq[i].vsi); pf->vmdq[i].vsi = NULL; } rte_free(pf->vmdq); pf->vmdq = NULL; /* release all the existing VSIs and VEBs */ i40e_fdir_teardown(pf); i40e_vsi_release(pf->main_vsi); /* shutdown the adminq */ i40e_aq_queue_shutdown(hw, true); i40e_shutdown_adminq(hw); i40e_res_pool_destroy(&pf->qp_pool); i40e_res_pool_destroy(&pf->msix_pool); /* force a PF reset to clean anything leftover */ reg = I40E_READ_REG(hw, I40E_PFGEN_CTRL); I40E_WRITE_REG(hw, I40E_PFGEN_CTRL, (reg | I40E_PFGEN_CTRL_PFSWR_MASK)); I40E_WRITE_FLUSH(hw); } static void i40e_dev_promiscuous_enable(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; int status; status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid, true, NULL, true); if (status != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to enable unicast promiscuous"); status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, TRUE, NULL); if (status != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous"); } static void i40e_dev_promiscuous_disable(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; int status; status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid, false, NULL, true); if (status != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to disable unicast promiscuous"); status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, false, NULL); if (status != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous"); } static void i40e_dev_allmulticast_enable(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; int ret; ret = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, TRUE, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous"); } static void i40e_dev_allmulticast_disable(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; int ret; if (dev->data->promiscuous == 1) return; /* must remain in all_multicast mode */ ret = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, FALSE, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous"); } /* * Set device link up. */ static int i40e_dev_set_link_up(struct rte_eth_dev *dev) { /* re-apply link speed setting */ return i40e_apply_link_speed(dev); } /* * Set device link down. */ static int i40e_dev_set_link_down(struct rte_eth_dev *dev) { uint8_t speed = I40E_LINK_SPEED_UNKNOWN; uint8_t abilities = 0; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); abilities = I40E_AQ_PHY_ENABLE_ATOMIC_LINK; return i40e_phy_conf_link(hw, abilities, speed); } int i40e_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_REPEAT_TIME 10 /* 1s (10 * 100ms) in total */ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_link_status link_status; struct rte_eth_link link, old; int status; unsigned rep_cnt = MAX_REPEAT_TIME; bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false; memset(&link, 0, sizeof(link)); memset(&old, 0, sizeof(old)); memset(&link_status, 0, sizeof(link_status)); rte_i40e_dev_atomic_read_link_status(dev, &old); do { /* Get link status information from hardware */ status = i40e_aq_get_link_info(hw, enable_lse, &link_status, NULL); if (status != I40E_SUCCESS) { link.link_speed = ETH_SPEED_NUM_100M; link.link_duplex = ETH_LINK_FULL_DUPLEX; PMD_DRV_LOG(ERR, "Failed to get link info"); goto out; } link.link_status = link_status.link_info & I40E_AQ_LINK_UP; if (!wait_to_complete || link.link_status) break; rte_delay_ms(CHECK_INTERVAL); } while (--rep_cnt); if (!link.link_status) goto out; /* i40e uses full duplex only */ link.link_duplex = ETH_LINK_FULL_DUPLEX; /* Parse the link status */ switch (link_status.link_speed) { case I40E_LINK_SPEED_100MB: link.link_speed = ETH_SPEED_NUM_100M; break; case I40E_LINK_SPEED_1GB: link.link_speed = ETH_SPEED_NUM_1G; break; case I40E_LINK_SPEED_10GB: link.link_speed = ETH_SPEED_NUM_10G; break; case I40E_LINK_SPEED_20GB: link.link_speed = ETH_SPEED_NUM_20G; break; case I40E_LINK_SPEED_25GB: link.link_speed = ETH_SPEED_NUM_25G; break; case I40E_LINK_SPEED_40GB: link.link_speed = ETH_SPEED_NUM_40G; break; default: link.link_speed = ETH_SPEED_NUM_100M; break; } link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); out: rte_i40e_dev_atomic_write_link_status(dev, &link); if (link.link_status == old.link_status) return -1; i40e_notify_all_vfs_link_status(dev); return 0; } /* Get all the statistics of a VSI */ void i40e_update_vsi_stats(struct i40e_vsi *vsi) { struct i40e_eth_stats *oes = &vsi->eth_stats_offset; struct i40e_eth_stats *nes = &vsi->eth_stats; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int idx = rte_le_to_cpu_16(vsi->info.stat_counter_idx); i40e_stat_update_48(hw, I40E_GLV_GORCH(idx), I40E_GLV_GORCL(idx), vsi->offset_loaded, &oes->rx_bytes, &nes->rx_bytes); i40e_stat_update_48(hw, I40E_GLV_UPRCH(idx), I40E_GLV_UPRCL(idx), vsi->offset_loaded, &oes->rx_unicast, &nes->rx_unicast); i40e_stat_update_48(hw, I40E_GLV_MPRCH(idx), I40E_GLV_MPRCL(idx), vsi->offset_loaded, &oes->rx_multicast, &nes->rx_multicast); i40e_stat_update_48(hw, I40E_GLV_BPRCH(idx), I40E_GLV_BPRCL(idx), vsi->offset_loaded, &oes->rx_broadcast, &nes->rx_broadcast); i40e_stat_update_32(hw, I40E_GLV_RDPC(idx), vsi->offset_loaded, &oes->rx_discards, &nes->rx_discards); /* GLV_REPC not supported */ /* GLV_RMPC not supported */ i40e_stat_update_32(hw, I40E_GLV_RUPP(idx), vsi->offset_loaded, &oes->rx_unknown_protocol, &nes->rx_unknown_protocol); i40e_stat_update_48(hw, I40E_GLV_GOTCH(idx), I40E_GLV_GOTCL(idx), vsi->offset_loaded, &oes->tx_bytes, &nes->tx_bytes); i40e_stat_update_48(hw, I40E_GLV_UPTCH(idx), I40E_GLV_UPTCL(idx), vsi->offset_loaded, &oes->tx_unicast, &nes->tx_unicast); i40e_stat_update_48(hw, I40E_GLV_MPTCH(idx), I40E_GLV_MPTCL(idx), vsi->offset_loaded, &oes->tx_multicast, &nes->tx_multicast); i40e_stat_update_48(hw, I40E_GLV_BPTCH(idx), I40E_GLV_BPTCL(idx), vsi->offset_loaded, &oes->tx_broadcast, &nes->tx_broadcast); /* GLV_TDPC not supported */ i40e_stat_update_32(hw, I40E_GLV_TEPC(idx), vsi->offset_loaded, &oes->tx_errors, &nes->tx_errors); vsi->offset_loaded = true; PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats start *******************", vsi->vsi_id); PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", nes->rx_bytes); PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", nes->rx_unicast); PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", nes->rx_multicast); PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", nes->rx_broadcast); PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", nes->rx_discards); PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"", nes->rx_unknown_protocol); PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", nes->tx_bytes); PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", nes->tx_unicast); PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", nes->tx_multicast); PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", nes->tx_broadcast); PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", nes->tx_discards); PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", nes->tx_errors); PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats end *******************", vsi->vsi_id); } static void i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw) { unsigned int i; struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */ struct i40e_hw_port_stats *os = &pf->stats_offset; /* old stats */ /* Get statistics of struct i40e_eth_stats */ i40e_stat_update_48(hw, I40E_GLPRT_GORCH(hw->port), I40E_GLPRT_GORCL(hw->port), pf->offset_loaded, &os->eth.rx_bytes, &ns->eth.rx_bytes); i40e_stat_update_48(hw, I40E_GLPRT_UPRCH(hw->port), I40E_GLPRT_UPRCL(hw->port), pf->offset_loaded, &os->eth.rx_unicast, &ns->eth.rx_unicast); i40e_stat_update_48(hw, I40E_GLPRT_MPRCH(hw->port), I40E_GLPRT_MPRCL(hw->port), pf->offset_loaded, &os->eth.rx_multicast, &ns->eth.rx_multicast); i40e_stat_update_48(hw, I40E_GLPRT_BPRCH(hw->port), I40E_GLPRT_BPRCL(hw->port), pf->offset_loaded, &os->eth.rx_broadcast, &ns->eth.rx_broadcast); /* Workaround: CRC size should not be included in byte statistics, * so subtract ETHER_CRC_LEN from the byte counter for each rx packet. */ ns->eth.rx_bytes -= (ns->eth.rx_unicast + ns->eth.rx_multicast + ns->eth.rx_broadcast) * ETHER_CRC_LEN; i40e_stat_update_32(hw, I40E_GLPRT_RDPC(hw->port), pf->offset_loaded, &os->eth.rx_discards, &ns->eth.rx_discards); /* GLPRT_REPC not supported */ /* GLPRT_RMPC not supported */ i40e_stat_update_32(hw, I40E_GLPRT_RUPP(hw->port), pf->offset_loaded, &os->eth.rx_unknown_protocol, &ns->eth.rx_unknown_protocol); i40e_stat_update_48(hw, I40E_GLPRT_GOTCH(hw->port), I40E_GLPRT_GOTCL(hw->port), pf->offset_loaded, &os->eth.tx_bytes, &ns->eth.tx_bytes); i40e_stat_update_48(hw, I40E_GLPRT_UPTCH(hw->port), I40E_GLPRT_UPTCL(hw->port), pf->offset_loaded, &os->eth.tx_unicast, &ns->eth.tx_unicast); i40e_stat_update_48(hw, I40E_GLPRT_MPTCH(hw->port), I40E_GLPRT_MPTCL(hw->port), pf->offset_loaded, &os->eth.tx_multicast, &ns->eth.tx_multicast); i40e_stat_update_48(hw, I40E_GLPRT_BPTCH(hw->port), I40E_GLPRT_BPTCL(hw->port), pf->offset_loaded, &os->eth.tx_broadcast, &ns->eth.tx_broadcast); ns->eth.tx_bytes -= (ns->eth.tx_unicast + ns->eth.tx_multicast + ns->eth.tx_broadcast) * ETHER_CRC_LEN; /* GLPRT_TEPC not supported */ /* additional port specific stats */ i40e_stat_update_32(hw, I40E_GLPRT_TDOLD(hw->port), pf->offset_loaded, &os->tx_dropped_link_down, &ns->tx_dropped_link_down); i40e_stat_update_32(hw, I40E_GLPRT_CRCERRS(hw->port), pf->offset_loaded, &os->crc_errors, &ns->crc_errors); i40e_stat_update_32(hw, I40E_GLPRT_ILLERRC(hw->port), pf->offset_loaded, &os->illegal_bytes, &ns->illegal_bytes); /* GLPRT_ERRBC not supported */ i40e_stat_update_32(hw, I40E_GLPRT_MLFC(hw->port), pf->offset_loaded, &os->mac_local_faults, &ns->mac_local_faults); i40e_stat_update_32(hw, I40E_GLPRT_MRFC(hw->port), pf->offset_loaded, &os->mac_remote_faults, &ns->mac_remote_faults); i40e_stat_update_32(hw, I40E_GLPRT_RLEC(hw->port), pf->offset_loaded, &os->rx_length_errors, &ns->rx_length_errors); i40e_stat_update_32(hw, I40E_GLPRT_LXONRXC(hw->port), pf->offset_loaded, &os->link_xon_rx, &ns->link_xon_rx); i40e_stat_update_32(hw, I40E_GLPRT_LXOFFRXC(hw->port), pf->offset_loaded, &os->link_xoff_rx, &ns->link_xoff_rx); for (i = 0; i < 8; i++) { i40e_stat_update_32(hw, I40E_GLPRT_PXONRXC(hw->port, i), pf->offset_loaded, &os->priority_xon_rx[i], &ns->priority_xon_rx[i]); i40e_stat_update_32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), pf->offset_loaded, &os->priority_xoff_rx[i], &ns->priority_xoff_rx[i]); } i40e_stat_update_32(hw, I40E_GLPRT_LXONTXC(hw->port), pf->offset_loaded, &os->link_xon_tx, &ns->link_xon_tx); i40e_stat_update_32(hw, I40E_GLPRT_LXOFFTXC(hw->port), pf->offset_loaded, &os->link_xoff_tx, &ns->link_xoff_tx); for (i = 0; i < 8; i++) { i40e_stat_update_32(hw, I40E_GLPRT_PXONTXC(hw->port, i), pf->offset_loaded, &os->priority_xon_tx[i], &ns->priority_xon_tx[i]); i40e_stat_update_32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), pf->offset_loaded, &os->priority_xoff_tx[i], &ns->priority_xoff_tx[i]); i40e_stat_update_32(hw, I40E_GLPRT_RXON2OFFCNT(hw->port, i), pf->offset_loaded, &os->priority_xon_2_xoff[i], &ns->priority_xon_2_xoff[i]); } i40e_stat_update_48(hw, I40E_GLPRT_PRC64H(hw->port), I40E_GLPRT_PRC64L(hw->port), pf->offset_loaded, &os->rx_size_64, &ns->rx_size_64); i40e_stat_update_48(hw, I40E_GLPRT_PRC127H(hw->port), I40E_GLPRT_PRC127L(hw->port), pf->offset_loaded, &os->rx_size_127, &ns->rx_size_127); i40e_stat_update_48(hw, I40E_GLPRT_PRC255H(hw->port), I40E_GLPRT_PRC255L(hw->port), pf->offset_loaded, &os->rx_size_255, &ns->rx_size_255); i40e_stat_update_48(hw, I40E_GLPRT_PRC511H(hw->port), I40E_GLPRT_PRC511L(hw->port), pf->offset_loaded, &os->rx_size_511, &ns->rx_size_511); i40e_stat_update_48(hw, I40E_GLPRT_PRC1023H(hw->port), I40E_GLPRT_PRC1023L(hw->port), pf->offset_loaded, &os->rx_size_1023, &ns->rx_size_1023); i40e_stat_update_48(hw, I40E_GLPRT_PRC1522H(hw->port), I40E_GLPRT_PRC1522L(hw->port), pf->offset_loaded, &os->rx_size_1522, &ns->rx_size_1522); i40e_stat_update_48(hw, I40E_GLPRT_PRC9522H(hw->port), I40E_GLPRT_PRC9522L(hw->port), pf->offset_loaded, &os->rx_size_big, &ns->rx_size_big); i40e_stat_update_32(hw, I40E_GLPRT_RUC(hw->port), pf->offset_loaded, &os->rx_undersize, &ns->rx_undersize); i40e_stat_update_32(hw, I40E_GLPRT_RFC(hw->port), pf->offset_loaded, &os->rx_fragments, &ns->rx_fragments); i40e_stat_update_32(hw, I40E_GLPRT_ROC(hw->port), pf->offset_loaded, &os->rx_oversize, &ns->rx_oversize); i40e_stat_update_32(hw, I40E_GLPRT_RJC(hw->port), pf->offset_loaded, &os->rx_jabber, &ns->rx_jabber); i40e_stat_update_48(hw, I40E_GLPRT_PTC64H(hw->port), I40E_GLPRT_PTC64L(hw->port), pf->offset_loaded, &os->tx_size_64, &ns->tx_size_64); i40e_stat_update_48(hw, I40E_GLPRT_PTC127H(hw->port), I40E_GLPRT_PTC127L(hw->port), pf->offset_loaded, &os->tx_size_127, &ns->tx_size_127); i40e_stat_update_48(hw, I40E_GLPRT_PTC255H(hw->port), I40E_GLPRT_PTC255L(hw->port), pf->offset_loaded, &os->tx_size_255, &ns->tx_size_255); i40e_stat_update_48(hw, I40E_GLPRT_PTC511H(hw->port), I40E_GLPRT_PTC511L(hw->port), pf->offset_loaded, &os->tx_size_511, &ns->tx_size_511); i40e_stat_update_48(hw, I40E_GLPRT_PTC1023H(hw->port), I40E_GLPRT_PTC1023L(hw->port), pf->offset_loaded, &os->tx_size_1023, &ns->tx_size_1023); i40e_stat_update_48(hw, I40E_GLPRT_PTC1522H(hw->port), I40E_GLPRT_PTC1522L(hw->port), pf->offset_loaded, &os->tx_size_1522, &ns->tx_size_1522); i40e_stat_update_48(hw, I40E_GLPRT_PTC9522H(hw->port), I40E_GLPRT_PTC9522L(hw->port), pf->offset_loaded, &os->tx_size_big, &ns->tx_size_big); i40e_stat_update_32(hw, I40E_GLQF_PCNT(pf->fdir.match_counter_index), pf->offset_loaded, &os->fd_sb_match, &ns->fd_sb_match); /* GLPRT_MSPDC not supported */ /* GLPRT_XEC not supported */ pf->offset_loaded = true; if (pf->main_vsi) i40e_update_vsi_stats(pf->main_vsi); } /* Get all statistics of a port */ static void i40e_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */ unsigned i; /* call read registers - updates values, now write them to struct */ i40e_read_stats_registers(pf, hw); stats->ipackets = pf->main_vsi->eth_stats.rx_unicast + pf->main_vsi->eth_stats.rx_multicast + pf->main_vsi->eth_stats.rx_broadcast - pf->main_vsi->eth_stats.rx_discards; stats->opackets = pf->main_vsi->eth_stats.tx_unicast + pf->main_vsi->eth_stats.tx_multicast + pf->main_vsi->eth_stats.tx_broadcast; stats->ibytes = ns->eth.rx_bytes; stats->obytes = ns->eth.tx_bytes; stats->oerrors = ns->eth.tx_errors + pf->main_vsi->eth_stats.tx_errors; /* Rx Errors */ stats->imissed = ns->eth.rx_discards + pf->main_vsi->eth_stats.rx_discards; stats->ierrors = ns->crc_errors + ns->rx_length_errors + ns->rx_undersize + ns->rx_oversize + ns->rx_fragments + ns->rx_jabber; PMD_DRV_LOG(DEBUG, "***************** PF stats start *******************"); PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", ns->eth.rx_bytes); PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", ns->eth.rx_unicast); PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", ns->eth.rx_multicast); PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", ns->eth.rx_broadcast); PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", ns->eth.rx_discards); PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"", ns->eth.rx_unknown_protocol); PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", ns->eth.tx_bytes); PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", ns->eth.tx_unicast); PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", ns->eth.tx_multicast); PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", ns->eth.tx_broadcast); PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", ns->eth.tx_discards); PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", ns->eth.tx_errors); PMD_DRV_LOG(DEBUG, "tx_dropped_link_down: %"PRIu64"", ns->tx_dropped_link_down); PMD_DRV_LOG(DEBUG, "crc_errors: %"PRIu64"", ns->crc_errors); PMD_DRV_LOG(DEBUG, "illegal_bytes: %"PRIu64"", ns->illegal_bytes); PMD_DRV_LOG(DEBUG, "error_bytes: %"PRIu64"", ns->error_bytes); PMD_DRV_LOG(DEBUG, "mac_local_faults: %"PRIu64"", ns->mac_local_faults); PMD_DRV_LOG(DEBUG, "mac_remote_faults: %"PRIu64"", ns->mac_remote_faults); PMD_DRV_LOG(DEBUG, "rx_length_errors: %"PRIu64"", ns->rx_length_errors); PMD_DRV_LOG(DEBUG, "link_xon_rx: %"PRIu64"", ns->link_xon_rx); PMD_DRV_LOG(DEBUG, "link_xoff_rx: %"PRIu64"", ns->link_xoff_rx); for (i = 0; i < 8; i++) { PMD_DRV_LOG(DEBUG, "priority_xon_rx[%d]: %"PRIu64"", i, ns->priority_xon_rx[i]); PMD_DRV_LOG(DEBUG, "priority_xoff_rx[%d]: %"PRIu64"", i, ns->priority_xoff_rx[i]); } PMD_DRV_LOG(DEBUG, "link_xon_tx: %"PRIu64"", ns->link_xon_tx); PMD_DRV_LOG(DEBUG, "link_xoff_tx: %"PRIu64"", ns->link_xoff_tx); for (i = 0; i < 8; i++) { PMD_DRV_LOG(DEBUG, "priority_xon_tx[%d]: %"PRIu64"", i, ns->priority_xon_tx[i]); PMD_DRV_LOG(DEBUG, "priority_xoff_tx[%d]: %"PRIu64"", i, ns->priority_xoff_tx[i]); PMD_DRV_LOG(DEBUG, "priority_xon_2_xoff[%d]: %"PRIu64"", i, ns->priority_xon_2_xoff[i]); } PMD_DRV_LOG(DEBUG, "rx_size_64: %"PRIu64"", ns->rx_size_64); PMD_DRV_LOG(DEBUG, "rx_size_127: %"PRIu64"", ns->rx_size_127); PMD_DRV_LOG(DEBUG, "rx_size_255: %"PRIu64"", ns->rx_size_255); PMD_DRV_LOG(DEBUG, "rx_size_511: %"PRIu64"", ns->rx_size_511); PMD_DRV_LOG(DEBUG, "rx_size_1023: %"PRIu64"", ns->rx_size_1023); PMD_DRV_LOG(DEBUG, "rx_size_1522: %"PRIu64"", ns->rx_size_1522); PMD_DRV_LOG(DEBUG, "rx_size_big: %"PRIu64"", ns->rx_size_big); PMD_DRV_LOG(DEBUG, "rx_undersize: %"PRIu64"", ns->rx_undersize); PMD_DRV_LOG(DEBUG, "rx_fragments: %"PRIu64"", ns->rx_fragments); PMD_DRV_LOG(DEBUG, "rx_oversize: %"PRIu64"", ns->rx_oversize); PMD_DRV_LOG(DEBUG, "rx_jabber: %"PRIu64"", ns->rx_jabber); PMD_DRV_LOG(DEBUG, "tx_size_64: %"PRIu64"", ns->tx_size_64); PMD_DRV_LOG(DEBUG, "tx_size_127: %"PRIu64"", ns->tx_size_127); PMD_DRV_LOG(DEBUG, "tx_size_255: %"PRIu64"", ns->tx_size_255); PMD_DRV_LOG(DEBUG, "tx_size_511: %"PRIu64"", ns->tx_size_511); PMD_DRV_LOG(DEBUG, "tx_size_1023: %"PRIu64"", ns->tx_size_1023); PMD_DRV_LOG(DEBUG, "tx_size_1522: %"PRIu64"", ns->tx_size_1522); PMD_DRV_LOG(DEBUG, "tx_size_big: %"PRIu64"", ns->tx_size_big); PMD_DRV_LOG(DEBUG, "mac_short_packet_dropped: %"PRIu64"", ns->mac_short_packet_dropped); PMD_DRV_LOG(DEBUG, "checksum_error: %"PRIu64"", ns->checksum_error); PMD_DRV_LOG(DEBUG, "fdir_match: %"PRIu64"", ns->fd_sb_match); PMD_DRV_LOG(DEBUG, "***************** PF stats end ********************"); } /* Reset the statistics */ static void i40e_dev_stats_reset(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Mark PF and VSI stats to update the offset, aka "reset" */ pf->offset_loaded = false; if (pf->main_vsi) pf->main_vsi->offset_loaded = false; /* read the stats, reading current register values into offset */ i40e_read_stats_registers(pf, hw); } static uint32_t i40e_xstats_calc_num(void) { return I40E_NB_ETH_XSTATS + I40E_NB_HW_PORT_XSTATS + (I40E_NB_RXQ_PRIO_XSTATS * 8) + (I40E_NB_TXQ_PRIO_XSTATS * 8); } static int i40e_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned limit) { unsigned count = 0; unsigned i, prio; if (xstats_names == NULL) return i40e_xstats_calc_num(); /* Note: limit checked in rte_eth_xstats_names() */ /* Get stats from i40e_eth_stats struct */ for (i = 0; i < I40E_NB_ETH_XSTATS; i++) { snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "%s", rte_i40e_stats_strings[i].name); count++; } /* Get individiual stats from i40e_hw_port struct */ for (i = 0; i < I40E_NB_HW_PORT_XSTATS; i++) { snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "%s", rte_i40e_hw_port_strings[i].name); count++; } for (i = 0; i < I40E_NB_RXQ_PRIO_XSTATS; i++) { for (prio = 0; prio < 8; prio++) { snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "rx_priority%u_%s", prio, rte_i40e_rxq_prio_strings[i].name); count++; } } for (i = 0; i < I40E_NB_TXQ_PRIO_XSTATS; i++) { for (prio = 0; prio < 8; prio++) { snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "tx_priority%u_%s", prio, rte_i40e_txq_prio_strings[i].name); count++; } } return count; } static int i40e_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); unsigned i, count, prio; struct i40e_hw_port_stats *hw_stats = &pf->stats; count = i40e_xstats_calc_num(); if (n < count) return count; i40e_read_stats_registers(pf, hw); if (xstats == NULL) return 0; count = 0; /* Get stats from i40e_eth_stats struct */ for (i = 0; i < I40E_NB_ETH_XSTATS; i++) { xstats[count].value = *(uint64_t *)(((char *)&hw_stats->eth) + rte_i40e_stats_strings[i].offset); xstats[count].id = count; count++; } /* Get individiual stats from i40e_hw_port struct */ for (i = 0; i < I40E_NB_HW_PORT_XSTATS; i++) { xstats[count].value = *(uint64_t *)(((char *)hw_stats) + rte_i40e_hw_port_strings[i].offset); xstats[count].id = count; count++; } for (i = 0; i < I40E_NB_RXQ_PRIO_XSTATS; i++) { for (prio = 0; prio < 8; prio++) { xstats[count].value = *(uint64_t *)(((char *)hw_stats) + rte_i40e_rxq_prio_strings[i].offset + (sizeof(uint64_t) * prio)); xstats[count].id = count; count++; } } for (i = 0; i < I40E_NB_TXQ_PRIO_XSTATS; i++) { for (prio = 0; prio < 8; prio++) { xstats[count].value = *(uint64_t *)(((char *)hw_stats) + rte_i40e_txq_prio_strings[i].offset + (sizeof(uint64_t) * prio)); xstats[count].id = count; count++; } } return count; } static int i40e_dev_queue_stats_mapping_set(__rte_unused struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, __rte_unused uint8_t stat_idx, __rte_unused uint8_t is_rx) { PMD_INIT_FUNC_TRACE(); return -ENOSYS; } static int i40e_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); u32 full_ver; u8 ver, patch; u16 build; int ret; full_ver = hw->nvm.oem_ver; ver = (u8)(full_ver >> 24); build = (u16)((full_ver >> 8) & 0xffff); patch = (u8)(full_ver & 0xff); ret = snprintf(fw_version, fw_size, "%d.%d%d 0x%08x %d.%d.%d", ((hw->nvm.version >> 12) & 0xf), ((hw->nvm.version >> 4) & 0xff), (hw->nvm.version & 0xf), hw->nvm.eetrack, ver, build, patch); ret += 1; /* add the size of '\0' */ if (fw_size < (u32)ret) return ret; else return 0; } static void i40e_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); dev_info->pci_dev = pci_dev; dev_info->max_rx_queues = vsi->nb_qps; dev_info->max_tx_queues = vsi->nb_qps; dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN; dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX; dev_info->max_mac_addrs = vsi->max_macaddrs; dev_info->max_vfs = pci_dev->max_vfs; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO; dev_info->hash_key_size = (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); dev_info->reta_size = pf->hash_lut_size; dev_info->flow_type_rss_offloads = I40E_RSS_OFFLOAD_ALL; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = I40E_DEFAULT_RX_PTHRESH, .hthresh = I40E_DEFAULT_RX_HTHRESH, .wthresh = I40E_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = I40E_DEFAULT_TX_PTHRESH, .hthresh = I40E_DEFAULT_TX_HTHRESH, .wthresh = I40E_DEFAULT_TX_WTHRESH, }, .tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH, .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS | ETH_TXQ_FLAGS_NOOFFLOADS, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = I40E_MAX_RING_DESC, .nb_min = I40E_MIN_RING_DESC, .nb_align = I40E_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = I40E_MAX_RING_DESC, .nb_min = I40E_MIN_RING_DESC, .nb_align = I40E_ALIGN_RING_DESC, .nb_seg_max = I40E_TX_MAX_SEG, .nb_mtu_seg_max = I40E_TX_MAX_MTU_SEG, }; if (pf->flags & I40E_FLAG_VMDQ) { dev_info->max_vmdq_pools = pf->max_nb_vmdq_vsi; dev_info->vmdq_queue_base = dev_info->max_rx_queues; dev_info->vmdq_queue_num = pf->vmdq_nb_qps * pf->max_nb_vmdq_vsi; dev_info->vmdq_pool_base = I40E_VMDQ_POOL_BASE; dev_info->max_rx_queues += dev_info->vmdq_queue_num; dev_info->max_tx_queues += dev_info->vmdq_queue_num; } if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types)) /* For XL710 */ dev_info->speed_capa = ETH_LINK_SPEED_40G; else if (I40E_PHY_TYPE_SUPPORT_25G(hw->phy.phy_types)) /* For XXV710 */ dev_info->speed_capa = ETH_LINK_SPEED_25G; else /* For X710 */ dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G; } static int i40e_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; PMD_INIT_FUNC_TRACE(); if (on) return i40e_vsi_add_vlan(vsi, vlan_id); else return i40e_vsi_delete_vlan(vsi, vlan_id); } static int i40e_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t reg_r = 0, reg_w = 0; uint16_t reg_id = 0; int ret = 0; int qinq = dev->data->dev_conf.rxmode.hw_vlan_extend; switch (vlan_type) { case ETH_VLAN_TYPE_OUTER: if (qinq) reg_id = 2; else reg_id = 3; break; case ETH_VLAN_TYPE_INNER: if (qinq) reg_id = 3; else { ret = -EINVAL; PMD_DRV_LOG(ERR, "Unsupported vlan type in single vlan."); return ret; } break; default: ret = -EINVAL; PMD_DRV_LOG(ERR, "Unsupported vlan type %d", vlan_type); return ret; } ret = i40e_aq_debug_read_register(hw, I40E_GL_SWT_L2TAGCTRL(reg_id), ®_r, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Fail to debug read from I40E_GL_SWT_L2TAGCTRL[%d]", reg_id); ret = -EIO; return ret; } PMD_DRV_LOG(DEBUG, "Debug read from I40E_GL_SWT_L2TAGCTRL[%d]: 0x%08"PRIx64, reg_id, reg_r); reg_w = reg_r & (~(I40E_GL_SWT_L2TAGCTRL_ETHERTYPE_MASK)); reg_w |= ((uint64_t)tpid << I40E_GL_SWT_L2TAGCTRL_ETHERTYPE_SHIFT); if (reg_r == reg_w) { ret = 0; PMD_DRV_LOG(DEBUG, "No need to write"); return ret; } ret = i40e_aq_debug_write_register(hw, I40E_GL_SWT_L2TAGCTRL(reg_id), reg_w, NULL); if (ret != I40E_SUCCESS) { ret = -EIO; PMD_DRV_LOG(ERR, "Fail to debug write to I40E_GL_SWT_L2TAGCTRL[%d]", reg_id); return ret; } PMD_DRV_LOG(DEBUG, "Debug write 0x%08"PRIx64" to I40E_GL_SWT_L2TAGCTRL[%d]", reg_w, reg_id); return ret; } static void i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; if (mask & ETH_VLAN_FILTER_MASK) { if (dev->data->dev_conf.rxmode.hw_vlan_filter) i40e_vsi_config_vlan_filter(vsi, TRUE); else i40e_vsi_config_vlan_filter(vsi, FALSE); } if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ if (dev->data->dev_conf.rxmode.hw_vlan_strip) i40e_vsi_config_vlan_stripping(vsi, TRUE); else i40e_vsi_config_vlan_stripping(vsi, FALSE); } if (mask & ETH_VLAN_EXTEND_MASK) { if (dev->data->dev_conf.rxmode.hw_vlan_extend) { i40e_vsi_config_double_vlan(vsi, TRUE); /* Set global registers with default ether type value */ i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_OUTER, ETHER_TYPE_VLAN); i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_INNER, ETHER_TYPE_VLAN); } else i40e_vsi_config_double_vlan(vsi, FALSE); } } static void i40e_vlan_strip_queue_set(__rte_unused struct rte_eth_dev *dev, __rte_unused uint16_t queue, __rte_unused int on) { PMD_INIT_FUNC_TRACE(); } static int i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; struct rte_eth_dev_data *data = I40E_VSI_TO_DEV_DATA(vsi); struct i40e_vsi_vlan_pvid_info info; memset(&info, 0, sizeof(info)); info.on = on; if (info.on) info.config.pvid = pvid; else { info.config.reject.tagged = data->dev_conf.txmode.hw_vlan_reject_tagged; info.config.reject.untagged = data->dev_conf.txmode.hw_vlan_reject_untagged; } return i40e_vsi_vlan_pvid_set(vsi, &info); } static int i40e_dev_led_on(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t mode = i40e_led_get(hw); if (mode == 0) i40e_led_set(hw, 0xf, true); /* 0xf means led always true */ return 0; } static int i40e_dev_led_off(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t mode = i40e_led_get(hw); if (mode != 0) i40e_led_set(hw, 0, false); return 0; } static int i40e_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); fc_conf->pause_time = pf->fc_conf.pause_time; fc_conf->high_water = pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS]; fc_conf->low_water = pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS]; /* Return current mode according to actual setting*/ switch (hw->fc.current_mode) { case I40E_FC_FULL: fc_conf->mode = RTE_FC_FULL; break; case I40E_FC_TX_PAUSE: fc_conf->mode = RTE_FC_TX_PAUSE; break; case I40E_FC_RX_PAUSE: fc_conf->mode = RTE_FC_RX_PAUSE; break; case I40E_FC_NONE: default: fc_conf->mode = RTE_FC_NONE; }; return 0; } static int i40e_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { uint32_t mflcn_reg, fctrl_reg, reg; uint32_t max_high_water; uint8_t i, aq_failure; int err; struct i40e_hw *hw; struct i40e_pf *pf; enum i40e_fc_mode rte_fcmode_2_i40e_fcmode[] = { [RTE_FC_NONE] = I40E_FC_NONE, [RTE_FC_RX_PAUSE] = I40E_FC_RX_PAUSE, [RTE_FC_TX_PAUSE] = I40E_FC_TX_PAUSE, [RTE_FC_FULL] = I40E_FC_FULL }; /* high_water field in the rte_eth_fc_conf using the kilobytes unit */ max_high_water = I40E_RXPBSIZE >> I40E_KILOSHIFT; if ((fc_conf->high_water > max_high_water) || (fc_conf->high_water < fc_conf->low_water)) { PMD_INIT_LOG(ERR, "Invalid high/low water setup value in KB, High_water must be <= %d.", max_high_water); return -EINVAL; } hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); hw->fc.requested_mode = rte_fcmode_2_i40e_fcmode[fc_conf->mode]; pf->fc_conf.pause_time = fc_conf->pause_time; pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->high_water; pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->low_water; PMD_INIT_FUNC_TRACE(); /* All the link flow control related enable/disable register * configuration is handle by the F/W */ err = i40e_set_fc(hw, &aq_failure, true); if (err < 0) return -ENOSYS; if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types)) { /* Configure flow control refresh threshold, * the value for stat_tx_pause_refresh_timer[8] * is used for global pause operation. */ I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(8), pf->fc_conf.pause_time); /* configure the timer value included in transmitted pause * frame, * the value for stat_tx_pause_quanta[8] is used for global * pause operation */ I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(8), pf->fc_conf.pause_time); fctrl_reg = I40E_READ_REG(hw, I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL); if (fc_conf->mac_ctrl_frame_fwd != 0) fctrl_reg |= I40E_PRTMAC_FWD_CTRL; else fctrl_reg &= ~I40E_PRTMAC_FWD_CTRL; I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL, fctrl_reg); } else { /* Configure pause time (2 TCs per register) */ reg = (uint32_t)pf->fc_conf.pause_time * (uint32_t)0x00010001; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS / 2; i++) I40E_WRITE_REG(hw, I40E_PRTDCB_FCTTVN(i), reg); /* Configure flow control refresh threshold value */ I40E_WRITE_REG(hw, I40E_PRTDCB_FCRTV, pf->fc_conf.pause_time / 2); mflcn_reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN); /* set or clear MFLCN.PMCF & MFLCN.DPF bits *depending on configuration */ if (fc_conf->mac_ctrl_frame_fwd != 0) { mflcn_reg |= I40E_PRTDCB_MFLCN_PMCF_MASK; mflcn_reg &= ~I40E_PRTDCB_MFLCN_DPF_MASK; } else { mflcn_reg &= ~I40E_PRTDCB_MFLCN_PMCF_MASK; mflcn_reg |= I40E_PRTDCB_MFLCN_DPF_MASK; } I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, mflcn_reg); } /* config the water marker both based on the packets and bytes */ I40E_WRITE_REG(hw, I40E_GLRPB_PHW, (pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] << I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE); I40E_WRITE_REG(hw, I40E_GLRPB_PLW, (pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] << I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE); I40E_WRITE_REG(hw, I40E_GLRPB_GHW, pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] << I40E_KILOSHIFT); I40E_WRITE_REG(hw, I40E_GLRPB_GLW, pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] << I40E_KILOSHIFT); I40E_WRITE_FLUSH(hw); return 0; } static int i40e_priority_flow_ctrl_set(__rte_unused struct rte_eth_dev *dev, __rte_unused struct rte_eth_pfc_conf *pfc_conf) { PMD_INIT_FUNC_TRACE(); return -ENOSYS; } /* Add a MAC address, and update filters */ static int i40e_macaddr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr, __rte_unused uint32_t index, uint32_t pool) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_mac_filter_info mac_filter; struct i40e_vsi *vsi; int ret; /* If VMDQ not enabled or configured, return */ if (pool != 0 && (!(pf->flags & I40E_FLAG_VMDQ) || !pf->nb_cfg_vmdq_vsi)) { PMD_DRV_LOG(ERR, "VMDQ not %s, can't set mac to pool %u", pf->flags & I40E_FLAG_VMDQ ? "configured" : "enabled", pool); return -ENOTSUP; } if (pool > pf->nb_cfg_vmdq_vsi) { PMD_DRV_LOG(ERR, "Pool number %u invalid. Max pool is %u", pool, pf->nb_cfg_vmdq_vsi); return -EINVAL; } (void)rte_memcpy(&mac_filter.mac_addr, mac_addr, ETHER_ADDR_LEN); if (dev->data->dev_conf.rxmode.hw_vlan_filter) mac_filter.filter_type = RTE_MACVLAN_PERFECT_MATCH; else mac_filter.filter_type = RTE_MAC_PERFECT_MATCH; if (pool == 0) vsi = pf->main_vsi; else vsi = pf->vmdq[pool - 1].vsi; ret = i40e_vsi_add_mac(vsi, &mac_filter); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter"); return -ENODEV; } return 0; } /* Remove a MAC address, and update filters */ static void i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_vsi *vsi; struct rte_eth_dev_data *data = dev->data; struct ether_addr *macaddr; int ret; uint32_t i; uint64_t pool_sel; macaddr = &(data->mac_addrs[index]); pool_sel = dev->data->mac_pool_sel[index]; for (i = 0; i < sizeof(pool_sel) * CHAR_BIT; i++) { if (pool_sel & (1ULL << i)) { if (i == 0) vsi = pf->main_vsi; else { /* No VMDQ pool enabled or configured */ if (!(pf->flags & I40E_FLAG_VMDQ) || (i > pf->nb_cfg_vmdq_vsi)) { PMD_DRV_LOG(ERR, "No VMDQ pool enabled/configured"); return; } vsi = pf->vmdq[i - 1].vsi; } ret = i40e_vsi_delete_mac(vsi, macaddr); if (ret) { PMD_DRV_LOG(ERR, "Failed to remove MACVLAN filter"); return; } } } } /* Set perfect match or hash match of MAC and VLAN for a VF */ static int i40e_vf_mac_filter_set(struct i40e_pf *pf, struct rte_eth_mac_filter *filter, bool add) { struct i40e_hw *hw; struct i40e_mac_filter_info mac_filter; struct ether_addr old_mac; struct ether_addr *new_mac; struct i40e_pf_vf *vf = NULL; uint16_t vf_id; int ret; if (pf == NULL) { PMD_DRV_LOG(ERR, "Invalid PF argument."); return -EINVAL; } hw = I40E_PF_TO_HW(pf); if (filter == NULL) { PMD_DRV_LOG(ERR, "Invalid mac filter argument."); return -EINVAL; } new_mac = &filter->mac_addr; if (is_zero_ether_addr(new_mac)) { PMD_DRV_LOG(ERR, "Invalid ethernet address."); return -EINVAL; } vf_id = filter->dst_id; if (vf_id > pf->vf_num - 1 || !pf->vfs) { PMD_DRV_LOG(ERR, "Invalid argument."); return -EINVAL; } vf = &pf->vfs[vf_id]; if (add && is_same_ether_addr(new_mac, &(pf->dev_addr))) { PMD_DRV_LOG(INFO, "Ignore adding permanent MAC address."); return -EINVAL; } if (add) { (void)rte_memcpy(&old_mac, hw->mac.addr, ETHER_ADDR_LEN); (void)rte_memcpy(hw->mac.addr, new_mac->addr_bytes, ETHER_ADDR_LEN); (void)rte_memcpy(&mac_filter.mac_addr, &filter->mac_addr, ETHER_ADDR_LEN); mac_filter.filter_type = filter->filter_type; ret = i40e_vsi_add_mac(vf->vsi, &mac_filter); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add MAC filter."); return -1; } ether_addr_copy(new_mac, &pf->dev_addr); } else { (void)rte_memcpy(hw->mac.addr, hw->mac.perm_addr, ETHER_ADDR_LEN); ret = i40e_vsi_delete_mac(vf->vsi, &filter->mac_addr); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to delete MAC filter."); return -1; } /* Clear device address as it has been removed */ if (is_same_ether_addr(&(pf->dev_addr), new_mac)) memset(&pf->dev_addr, 0, sizeof(struct ether_addr)); } return 0; } /* MAC filter handle */ static int i40e_mac_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct rte_eth_mac_filter *filter; struct i40e_hw *hw = I40E_PF_TO_HW(pf); int ret = I40E_NOT_SUPPORTED; filter = (struct rte_eth_mac_filter *)(arg); switch (filter_op) { case RTE_ETH_FILTER_NOP: ret = I40E_SUCCESS; break; case RTE_ETH_FILTER_ADD: i40e_pf_disable_irq0(hw); if (filter->is_vf) ret = i40e_vf_mac_filter_set(pf, filter, 1); i40e_pf_enable_irq0(hw); break; case RTE_ETH_FILTER_DELETE: i40e_pf_disable_irq0(hw); if (filter->is_vf) ret = i40e_vf_mac_filter_set(pf, filter, 0); i40e_pf_enable_irq0(hw); break; default: PMD_DRV_LOG(ERR, "unknown operation %u", filter_op); ret = I40E_ERR_PARAM; break; } return ret; } static int i40e_get_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct i40e_pf *pf = I40E_VSI_TO_PF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret; if (!lut) return -EINVAL; if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_get_rss_lut(hw, vsi->vsi_id, TRUE, lut, lut_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS lookup table"); return ret; } } else { uint32_t *lut_dw = (uint32_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) lut_dw[i] = I40E_READ_REG(hw, I40E_PFQF_HLUT(i)); } return 0; } static int i40e_set_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct i40e_pf *pf; struct i40e_hw *hw; int ret; if (!vsi || !lut) return -EINVAL; pf = I40E_VSI_TO_PF(vsi); hw = I40E_VSI_TO_HW(vsi); if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_set_rss_lut(hw, vsi->vsi_id, TRUE, lut, lut_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to set RSS lookup table"); return ret; } } else { uint32_t *lut_dw = (uint32_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), lut_dw[i]); I40E_WRITE_FLUSH(hw); } return 0; } static int i40e_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); uint16_t i, lut_size = pf->hash_lut_size; uint16_t idx, shift; uint8_t *lut; int ret; if (reta_size != lut_size || reta_size > ETH_RSS_RETA_SIZE_512) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured (%d) doesn't match the number hardware can supported (%d)", reta_size, lut_size); return -EINVAL; } lut = rte_zmalloc("i40e_rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = i40e_get_rss_lut(pf->main_vsi, lut, reta_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) lut[i] = reta_conf[idx].reta[shift]; } ret = i40e_set_rss_lut(pf->main_vsi, lut, reta_size); out: rte_free(lut); return ret; } static int i40e_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); uint16_t i, lut_size = pf->hash_lut_size; uint16_t idx, shift; uint8_t *lut; int ret; if (reta_size != lut_size || reta_size > ETH_RSS_RETA_SIZE_512) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured (%d) doesn't match the number hardware can supported (%d)", reta_size, lut_size); return -EINVAL; } lut = rte_zmalloc("i40e_rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = i40e_get_rss_lut(pf->main_vsi, lut, reta_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = lut[i]; } out: rte_free(lut); return ret; } /** * i40e_allocate_dma_mem_d - specific memory alloc for shared code (base driver) * @hw: pointer to the HW structure * @mem: pointer to mem struct to fill out * @size: size of memory requested * @alignment: what to align the allocation to **/ enum i40e_status_code i40e_allocate_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw, struct i40e_dma_mem *mem, u64 size, u32 alignment) { const struct rte_memzone *mz = NULL; char z_name[RTE_MEMZONE_NAMESIZE]; if (!mem) return I40E_ERR_PARAM; snprintf(z_name, sizeof(z_name), "i40e_dma_%"PRIu64, rte_rand()); mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0, alignment, RTE_PGSIZE_2M); if (!mz) return I40E_ERR_NO_MEMORY; mem->size = size; mem->va = mz->addr; mem->pa = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr); mem->zone = (const void *)mz; PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: %"PRIu64, mz->name, mem->pa); return I40E_SUCCESS; } /** * i40e_free_dma_mem_d - specific memory free for shared code (base driver) * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ enum i40e_status_code i40e_free_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw, struct i40e_dma_mem *mem) { if (!mem) return I40E_ERR_PARAM; PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: %"PRIu64, ((const struct rte_memzone *)mem->zone)->name, mem->pa); rte_memzone_free((const struct rte_memzone *)mem->zone); mem->zone = NULL; mem->va = NULL; mem->pa = (u64)0; return I40E_SUCCESS; } /** * i40e_allocate_virt_mem_d - specific memory alloc for shared code (base driver) * @hw: pointer to the HW structure * @mem: pointer to mem struct to fill out * @size: size of memory requested **/ enum i40e_status_code i40e_allocate_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw, struct i40e_virt_mem *mem, u32 size) { if (!mem) return I40E_ERR_PARAM; mem->size = size; mem->va = rte_zmalloc("i40e", size, 0); if (mem->va) return I40E_SUCCESS; else return I40E_ERR_NO_MEMORY; } /** * i40e_free_virt_mem_d - specific memory free for shared code (base driver) * @hw: pointer to the HW structure * @mem: pointer to mem struct to free **/ enum i40e_status_code i40e_free_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw, struct i40e_virt_mem *mem) { if (!mem) return I40E_ERR_PARAM; rte_free(mem->va); mem->va = NULL; return I40E_SUCCESS; } void i40e_init_spinlock_d(struct i40e_spinlock *sp) { rte_spinlock_init(&sp->spinlock); } void i40e_acquire_spinlock_d(struct i40e_spinlock *sp) { rte_spinlock_lock(&sp->spinlock); } void i40e_release_spinlock_d(struct i40e_spinlock *sp) { rte_spinlock_unlock(&sp->spinlock); } void i40e_destroy_spinlock_d(__attribute__((unused)) struct i40e_spinlock *sp) { return; } /** * Get the hardware capabilities, which will be parsed * and saved into struct i40e_hw. */ static int i40e_get_cap(struct i40e_hw *hw) { struct i40e_aqc_list_capabilities_element_resp *buf; uint16_t len, size = 0; int ret; /* Calculate a huge enough buff for saving response data temporarily */ len = sizeof(struct i40e_aqc_list_capabilities_element_resp) * I40E_MAX_CAP_ELE_NUM; buf = rte_zmalloc("i40e", len, 0); if (!buf) { PMD_DRV_LOG(ERR, "Failed to allocate memory"); return I40E_ERR_NO_MEMORY; } /* Get, parse the capabilities and save it to hw */ ret = i40e_aq_discover_capabilities(hw, buf, len, &size, i40e_aqc_opc_list_func_capabilities, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to discover capabilities"); /* Free the temporary buffer after being used */ rte_free(buf); return ret; } static int i40e_pf_parameter_init(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); uint16_t qp_count = 0, vsi_count = 0; if (pci_dev->max_vfs && !hw->func_caps.sr_iov_1_1) { PMD_INIT_LOG(ERR, "HW configuration doesn't support SRIOV"); return -EINVAL; } /* Add the parameter init for LFC */ pf->fc_conf.pause_time = I40E_DEFAULT_PAUSE_TIME; pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_HIGH_WATER; pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_LOW_WATER; pf->flags = I40E_FLAG_HEADER_SPLIT_DISABLED; pf->max_num_vsi = hw->func_caps.num_vsis; pf->lan_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF; pf->vmdq_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM; pf->vf_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF; /* FDir queue/VSI allocation */ pf->fdir_qp_offset = 0; if (hw->func_caps.fd) { pf->flags |= I40E_FLAG_FDIR; pf->fdir_nb_qps = I40E_DEFAULT_QP_NUM_FDIR; } else { pf->fdir_nb_qps = 0; } qp_count += pf->fdir_nb_qps; vsi_count += 1; /* LAN queue/VSI allocation */ pf->lan_qp_offset = pf->fdir_qp_offset + pf->fdir_nb_qps; if (!hw->func_caps.rss) { pf->lan_nb_qps = 1; } else { pf->flags |= I40E_FLAG_RSS; if (hw->mac.type == I40E_MAC_X722) pf->flags |= I40E_FLAG_RSS_AQ_CAPABLE; pf->lan_nb_qps = pf->lan_nb_qp_max; } qp_count += pf->lan_nb_qps; vsi_count += 1; /* VF queue/VSI allocation */ pf->vf_qp_offset = pf->lan_qp_offset + pf->lan_nb_qps; if (hw->func_caps.sr_iov_1_1 && pci_dev->max_vfs) { pf->flags |= I40E_FLAG_SRIOV; pf->vf_nb_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF; pf->vf_num = pci_dev->max_vfs; PMD_DRV_LOG(DEBUG, "%u VF VSIs, %u queues per VF VSI, in total %u queues", pf->vf_num, pf->vf_nb_qps, pf->vf_nb_qps * pf->vf_num); } else { pf->vf_nb_qps = 0; pf->vf_num = 0; } qp_count += pf->vf_nb_qps * pf->vf_num; vsi_count += pf->vf_num; /* VMDq queue/VSI allocation */ pf->vmdq_qp_offset = pf->vf_qp_offset + pf->vf_nb_qps * pf->vf_num; pf->vmdq_nb_qps = 0; pf->max_nb_vmdq_vsi = 0; if (hw->func_caps.vmdq) { if (qp_count < hw->func_caps.num_tx_qp && vsi_count < hw->func_caps.num_vsis) { pf->max_nb_vmdq_vsi = (hw->func_caps.num_tx_qp - qp_count) / pf->vmdq_nb_qp_max; /* Limit the maximum number of VMDq vsi to the maximum * ethdev can support */ pf->max_nb_vmdq_vsi = RTE_MIN(pf->max_nb_vmdq_vsi, hw->func_caps.num_vsis - vsi_count); pf->max_nb_vmdq_vsi = RTE_MIN(pf->max_nb_vmdq_vsi, ETH_64_POOLS); if (pf->max_nb_vmdq_vsi) { pf->flags |= I40E_FLAG_VMDQ; pf->vmdq_nb_qps = pf->vmdq_nb_qp_max; PMD_DRV_LOG(DEBUG, "%u VMDQ VSIs, %u queues per VMDQ VSI, in total %u queues", pf->max_nb_vmdq_vsi, pf->vmdq_nb_qps, pf->vmdq_nb_qps * pf->max_nb_vmdq_vsi); } else { PMD_DRV_LOG(INFO, "No enough queues left for VMDq"); } } else { PMD_DRV_LOG(INFO, "No queue or VSI left for VMDq"); } } qp_count += pf->vmdq_nb_qps * pf->max_nb_vmdq_vsi; vsi_count += pf->max_nb_vmdq_vsi; if (hw->func_caps.dcb) pf->flags |= I40E_FLAG_DCB; if (qp_count > hw->func_caps.num_tx_qp) { PMD_DRV_LOG(ERR, "Failed to allocate %u queues, which exceeds the hardware maximum %u", qp_count, hw->func_caps.num_tx_qp); return -EINVAL; } if (vsi_count > hw->func_caps.num_vsis) { PMD_DRV_LOG(ERR, "Failed to allocate %u VSIs, which exceeds the hardware maximum %u", vsi_count, hw->func_caps.num_vsis); return -EINVAL; } return 0; } static int i40e_pf_get_switch_config(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_aqc_get_switch_config_resp *switch_config; struct i40e_aqc_switch_config_element_resp *element; uint16_t start_seid = 0, num_reported; int ret; switch_config = (struct i40e_aqc_get_switch_config_resp *)\ rte_zmalloc("i40e", I40E_AQ_LARGE_BUF, 0); if (!switch_config) { PMD_DRV_LOG(ERR, "Failed to allocated memory"); return -ENOMEM; } /* Get the switch configurations */ ret = i40e_aq_get_switch_config(hw, switch_config, I40E_AQ_LARGE_BUF, &start_seid, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get switch configurations"); goto fail; } num_reported = rte_le_to_cpu_16(switch_config->header.num_reported); if (num_reported != 1) { /* The number should be 1 */ PMD_DRV_LOG(ERR, "Wrong number of switch config reported"); goto fail; } /* Parse the switch configuration elements */ element = &(switch_config->element[0]); if (element->element_type == I40E_SWITCH_ELEMENT_TYPE_VSI) { pf->mac_seid = rte_le_to_cpu_16(element->uplink_seid); pf->main_vsi_seid = rte_le_to_cpu_16(element->seid); } else PMD_DRV_LOG(INFO, "Unknown element type"); fail: rte_free(switch_config); return ret; } static int i40e_res_pool_init (struct i40e_res_pool_info *pool, uint32_t base, uint32_t num) { struct pool_entry *entry; if (pool == NULL || num == 0) return -EINVAL; entry = rte_zmalloc("i40e", sizeof(*entry), 0); if (entry == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate memory for resource pool"); return -ENOMEM; } /* queue heap initialize */ pool->num_free = num; pool->num_alloc = 0; pool->base = base; LIST_INIT(&pool->alloc_list); LIST_INIT(&pool->free_list); /* Initialize element */ entry->base = 0; entry->len = num; LIST_INSERT_HEAD(&pool->free_list, entry, next); return 0; } static void i40e_res_pool_destroy(struct i40e_res_pool_info *pool) { struct pool_entry *entry, *next_entry; if (pool == NULL) return; for (entry = LIST_FIRST(&pool->alloc_list); entry && (next_entry = LIST_NEXT(entry, next), 1); entry = next_entry) { LIST_REMOVE(entry, next); rte_free(entry); } for (entry = LIST_FIRST(&pool->free_list); entry && (next_entry = LIST_NEXT(entry, next), 1); entry = next_entry) { LIST_REMOVE(entry, next); rte_free(entry); } pool->num_free = 0; pool->num_alloc = 0; pool->base = 0; LIST_INIT(&pool->alloc_list); LIST_INIT(&pool->free_list); } static int i40e_res_pool_free(struct i40e_res_pool_info *pool, uint32_t base) { struct pool_entry *entry, *next, *prev, *valid_entry = NULL; uint32_t pool_offset; int insert; if (pool == NULL) { PMD_DRV_LOG(ERR, "Invalid parameter"); return -EINVAL; } pool_offset = base - pool->base; /* Lookup in alloc list */ LIST_FOREACH(entry, &pool->alloc_list, next) { if (entry->base == pool_offset) { valid_entry = entry; LIST_REMOVE(entry, next); break; } } /* Not find, return */ if (valid_entry == NULL) { PMD_DRV_LOG(ERR, "Failed to find entry"); return -EINVAL; } /** * Found it, move it to free list and try to merge. * In order to make merge easier, always sort it by qbase. * Find adjacent prev and last entries. */ prev = next = NULL; LIST_FOREACH(entry, &pool->free_list, next) { if (entry->base > valid_entry->base) { next = entry; break; } prev = entry; } insert = 0; /* Try to merge with next one*/ if (next != NULL) { /* Merge with next one */ if (valid_entry->base + valid_entry->len == next->base) { next->base = valid_entry->base; next->len += valid_entry->len; rte_free(valid_entry); valid_entry = next; insert = 1; } } if (prev != NULL) { /* Merge with previous one */ if (prev->base + prev->len == valid_entry->base) { prev->len += valid_entry->len; /* If it merge with next one, remove next node */ if (insert == 1) { LIST_REMOVE(valid_entry, next); rte_free(valid_entry); } else { rte_free(valid_entry); insert = 1; } } } /* Not find any entry to merge, insert */ if (insert == 0) { if (prev != NULL) LIST_INSERT_AFTER(prev, valid_entry, next); else if (next != NULL) LIST_INSERT_BEFORE(next, valid_entry, next); else /* It's empty list, insert to head */ LIST_INSERT_HEAD(&pool->free_list, valid_entry, next); } pool->num_free += valid_entry->len; pool->num_alloc -= valid_entry->len; return 0; } static int i40e_res_pool_alloc(struct i40e_res_pool_info *pool, uint16_t num) { struct pool_entry *entry, *valid_entry; if (pool == NULL || num == 0) { PMD_DRV_LOG(ERR, "Invalid parameter"); return -EINVAL; } if (pool->num_free < num) { PMD_DRV_LOG(ERR, "No resource. ask:%u, available:%u", num, pool->num_free); return -ENOMEM; } valid_entry = NULL; /* Lookup in free list and find most fit one */ LIST_FOREACH(entry, &pool->free_list, next) { if (entry->len >= num) { /* Find best one */ if (entry->len == num) { valid_entry = entry; break; } if (valid_entry == NULL || valid_entry->len > entry->len) valid_entry = entry; } } /* Not find one to satisfy the request, return */ if (valid_entry == NULL) { PMD_DRV_LOG(ERR, "No valid entry found"); return -ENOMEM; } /** * The entry have equal queue number as requested, * remove it from alloc_list. */ if (valid_entry->len == num) { LIST_REMOVE(valid_entry, next); } else { /** * The entry have more numbers than requested, * create a new entry for alloc_list and minus its * queue base and number in free_list. */ entry = rte_zmalloc("res_pool", sizeof(*entry), 0); if (entry == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate memory for resource pool"); return -ENOMEM; } entry->base = valid_entry->base; entry->len = num; valid_entry->base += num; valid_entry->len -= num; valid_entry = entry; } /* Insert it into alloc list, not sorted */ LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next); pool->num_free -= valid_entry->len; pool->num_alloc += valid_entry->len; return valid_entry->base + pool->base; } /** * bitmap_is_subset - Check whether src2 is subset of src1 **/ static inline int bitmap_is_subset(uint8_t src1, uint8_t src2) { return !((src1 ^ src2) & src2); } static enum i40e_status_code validate_tcmap_parameter(struct i40e_vsi *vsi, uint8_t enabled_tcmap) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); /* If DCB is not supported, only default TC is supported */ if (!hw->func_caps.dcb && enabled_tcmap != I40E_DEFAULT_TCMAP) { PMD_DRV_LOG(ERR, "DCB is not enabled, only TC0 is supported"); return I40E_NOT_SUPPORTED; } if (!bitmap_is_subset(hw->func_caps.enabled_tcmap, enabled_tcmap)) { PMD_DRV_LOG(ERR, "Enabled TC map 0x%x not applicable to HW support 0x%x", hw->func_caps.enabled_tcmap, enabled_tcmap); return I40E_NOT_SUPPORTED; } return I40E_SUCCESS; } int i40e_vsi_vlan_pvid_set(struct i40e_vsi *vsi, struct i40e_vsi_vlan_pvid_info *info) { struct i40e_hw *hw; struct i40e_vsi_context ctxt; uint8_t vlan_flags = 0; int ret; if (vsi == NULL || info == NULL) { PMD_DRV_LOG(ERR, "invalid parameters"); return I40E_ERR_PARAM; } if (info->on) { vsi->info.pvid = info->config.pvid; /** * If insert pvid is enabled, only tagged pkts are * allowed to be sent out. */ vlan_flags |= I40E_AQ_VSI_PVLAN_INSERT_PVID | I40E_AQ_VSI_PVLAN_MODE_TAGGED; } else { vsi->info.pvid = 0; if (info->config.reject.tagged == 0) vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_TAGGED; if (info->config.reject.untagged == 0) vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_UNTAGGED; } vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_INSERT_PVID | I40E_AQ_VSI_PVLAN_MODE_MASK); vsi->info.port_vlan_flags |= vlan_flags; vsi->info.valid_sections = rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID); memset(&ctxt, 0, sizeof(ctxt)); (void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ctxt.seid = vsi->seid; hw = I40E_VSI_TO_HW(vsi); ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to update VSI params"); return ret; } static int i40e_vsi_update_tc_bandwidth(struct i40e_vsi *vsi, uint8_t enabled_tcmap) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int i, ret; struct i40e_aqc_configure_vsi_tc_bw_data tc_bw_data; ret = validate_tcmap_parameter(vsi, enabled_tcmap); if (ret != I40E_SUCCESS) return ret; if (!vsi->seid) { PMD_DRV_LOG(ERR, "seid not valid"); return -EINVAL; } memset(&tc_bw_data, 0, sizeof(tc_bw_data)); tc_bw_data.tc_valid_bits = enabled_tcmap; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) tc_bw_data.tc_bw_credits[i] = (enabled_tcmap & (1 << i)) ? 1 : 0; ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &tc_bw_data, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to configure TC BW"); return ret; } (void)rte_memcpy(vsi->info.qs_handle, tc_bw_data.qs_handles, sizeof(vsi->info.qs_handle)); return I40E_SUCCESS; } static enum i40e_status_code i40e_vsi_config_tc_queue_mapping(struct i40e_vsi *vsi, struct i40e_aqc_vsi_properties_data *info, uint8_t enabled_tcmap) { enum i40e_status_code ret; int i, total_tc = 0; uint16_t qpnum_per_tc, bsf, qp_idx; ret = validate_tcmap_parameter(vsi, enabled_tcmap); if (ret != I40E_SUCCESS) return ret; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) if (enabled_tcmap & (1 << i)) total_tc++; vsi->enabled_tc = enabled_tcmap; /* Number of queues per enabled TC */ qpnum_per_tc = i40e_align_floor(vsi->nb_qps / total_tc); qpnum_per_tc = RTE_MIN(qpnum_per_tc, I40E_MAX_Q_PER_TC); bsf = rte_bsf32(qpnum_per_tc); /* Adjust the queue number to actual queues that can be applied */ if (!(vsi->type == I40E_VSI_MAIN && total_tc == 1)) vsi->nb_qps = qpnum_per_tc * total_tc; /** * Configure TC and queue mapping parameters, for enabled TC, * allocate qpnum_per_tc queues to this traffic. For disabled TC, * default queue will serve it. */ qp_idx = 0; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (vsi->enabled_tc & (1 << i)) { info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | (bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT)); qp_idx += qpnum_per_tc; } else info->tc_mapping[i] = 0; } /* Associate queue number with VSI */ if (vsi->type == I40E_VSI_SRIOV) { info->mapping_flags |= rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); for (i = 0; i < vsi->nb_qps; i++) info->queue_mapping[i] = rte_cpu_to_le_16(vsi->base_queue + i); } else { info->mapping_flags |= rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG); info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue); } info->valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID); return I40E_SUCCESS; } static int i40e_veb_release(struct i40e_veb *veb) { struct i40e_vsi *vsi; struct i40e_hw *hw; if (veb == NULL) return -EINVAL; if (!TAILQ_EMPTY(&veb->head)) { PMD_DRV_LOG(ERR, "VEB still has VSI attached, can't remove"); return -EACCES; } /* associate_vsi field is NULL for floating VEB */ if (veb->associate_vsi != NULL) { vsi = veb->associate_vsi; hw = I40E_VSI_TO_HW(vsi); vsi->uplink_seid = veb->uplink_seid; vsi->veb = NULL; } else { veb->associate_pf->main_vsi->floating_veb = NULL; hw = I40E_VSI_TO_HW(veb->associate_pf->main_vsi); } i40e_aq_delete_element(hw, veb->seid, NULL); rte_free(veb); return I40E_SUCCESS; } /* Setup a veb */ static struct i40e_veb * i40e_veb_setup(struct i40e_pf *pf, struct i40e_vsi *vsi) { struct i40e_veb *veb; int ret; struct i40e_hw *hw; if (pf == NULL) { PMD_DRV_LOG(ERR, "veb setup failed, associated PF shouldn't null"); return NULL; } hw = I40E_PF_TO_HW(pf); veb = rte_zmalloc("i40e_veb", sizeof(struct i40e_veb), 0); if (!veb) { PMD_DRV_LOG(ERR, "Failed to allocate memory for veb"); goto fail; } veb->associate_vsi = vsi; veb->associate_pf = pf; TAILQ_INIT(&veb->head); veb->uplink_seid = vsi ? vsi->uplink_seid : 0; /* create floating veb if vsi is NULL */ if (vsi != NULL) { ret = i40e_aq_add_veb(hw, veb->uplink_seid, vsi->seid, I40E_DEFAULT_TCMAP, false, &veb->seid, false, NULL); } else { ret = i40e_aq_add_veb(hw, 0, 0, I40E_DEFAULT_TCMAP, true, &veb->seid, false, NULL); } if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Add veb failed, aq_err: %d", hw->aq.asq_last_status); goto fail; } veb->enabled_tc = I40E_DEFAULT_TCMAP; /* get statistics index */ ret = i40e_aq_get_veb_parameters(hw, veb->seid, NULL, NULL, &veb->stats_idx, NULL, NULL, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Get veb statistics index failed, aq_err: %d", hw->aq.asq_last_status); goto fail; } /* Get VEB bandwidth, to be implemented */ /* Now associated vsi binding to the VEB, set uplink to this VEB */ if (vsi) vsi->uplink_seid = veb->seid; return veb; fail: rte_free(veb); return NULL; } int i40e_vsi_release(struct i40e_vsi *vsi) { struct i40e_pf *pf; struct i40e_hw *hw; struct i40e_vsi_list *vsi_list; void *temp; int ret; struct i40e_mac_filter *f; uint16_t user_param; if (!vsi) return I40E_SUCCESS; if (!vsi->adapter) return -EFAULT; user_param = vsi->user_param; pf = I40E_VSI_TO_PF(vsi); hw = I40E_VSI_TO_HW(vsi); /* VSI has child to attach, release child first */ if (vsi->veb) { TAILQ_FOREACH_SAFE(vsi_list, &vsi->veb->head, list, temp) { if (i40e_vsi_release(vsi_list->vsi) != I40E_SUCCESS) return -1; } i40e_veb_release(vsi->veb); } if (vsi->floating_veb) { TAILQ_FOREACH_SAFE(vsi_list, &vsi->floating_veb->head, list, temp) { if (i40e_vsi_release(vsi_list->vsi) != I40E_SUCCESS) return -1; } } /* Remove all macvlan filters of the VSI */ i40e_vsi_remove_all_macvlan_filter(vsi); TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp) rte_free(f); if (vsi->type != I40E_VSI_MAIN && ((vsi->type != I40E_VSI_SRIOV) || !pf->floating_veb_list[user_param])) { /* Remove vsi from parent's sibling list */ if (vsi->parent_vsi == NULL || vsi->parent_vsi->veb == NULL) { PMD_DRV_LOG(ERR, "VSI's parent VSI is NULL"); return I40E_ERR_PARAM; } TAILQ_REMOVE(&vsi->parent_vsi->veb->head, &vsi->sib_vsi_list, list); /* Remove all switch element of the VSI */ ret = i40e_aq_delete_element(hw, vsi->seid, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to delete element"); } if ((vsi->type == I40E_VSI_SRIOV) && pf->floating_veb_list[user_param]) { /* Remove vsi from parent's sibling list */ if (vsi->parent_vsi == NULL || vsi->parent_vsi->floating_veb == NULL) { PMD_DRV_LOG(ERR, "VSI's parent VSI is NULL"); return I40E_ERR_PARAM; } TAILQ_REMOVE(&vsi->parent_vsi->floating_veb->head, &vsi->sib_vsi_list, list); /* Remove all switch element of the VSI */ ret = i40e_aq_delete_element(hw, vsi->seid, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to delete element"); } i40e_res_pool_free(&pf->qp_pool, vsi->base_queue); if (vsi->type != I40E_VSI_SRIOV) i40e_res_pool_free(&pf->msix_pool, vsi->msix_intr); rte_free(vsi); return I40E_SUCCESS; } static int i40e_update_default_filter_setting(struct i40e_vsi *vsi) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); struct i40e_aqc_remove_macvlan_element_data def_filter; struct i40e_mac_filter_info filter; int ret; if (vsi->type != I40E_VSI_MAIN) return I40E_ERR_CONFIG; memset(&def_filter, 0, sizeof(def_filter)); (void)rte_memcpy(def_filter.mac_addr, hw->mac.perm_addr, ETH_ADDR_LEN); def_filter.vlan_tag = 0; def_filter.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; ret = i40e_aq_remove_macvlan(hw, vsi->seid, &def_filter, 1, NULL); if (ret != I40E_SUCCESS) { struct i40e_mac_filter *f; struct ether_addr *mac; PMD_DRV_LOG(DEBUG, "Cannot remove the default macvlan filter"); /* It needs to add the permanent mac into mac list */ f = rte_zmalloc("macv_filter", sizeof(*f), 0); if (f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } mac = &f->mac_info.mac_addr; (void)rte_memcpy(&mac->addr_bytes, hw->mac.perm_addr, ETH_ADDR_LEN); f->mac_info.filter_type = RTE_MACVLAN_PERFECT_MATCH; TAILQ_INSERT_TAIL(&vsi->mac_list, f, next); vsi->mac_num++; return ret; } (void)rte_memcpy(&filter.mac_addr, (struct ether_addr *)(hw->mac.perm_addr), ETH_ADDR_LEN); filter.filter_type = RTE_MACVLAN_PERFECT_MATCH; return i40e_vsi_add_mac(vsi, &filter); } /* * i40e_vsi_get_bw_config - Query VSI BW Information * @vsi: the VSI to be queried * * Returns 0 on success, negative value on failure */ static enum i40e_status_code i40e_vsi_get_bw_config(struct i40e_vsi *vsi) { struct i40e_aqc_query_vsi_bw_config_resp bw_config; struct i40e_aqc_query_vsi_ets_sla_config_resp ets_sla_config; struct i40e_hw *hw = &vsi->adapter->hw; i40e_status ret; int i; uint32_t bw_max; memset(&bw_config, 0, sizeof(bw_config)); ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "VSI failed to get bandwidth configuration %u", hw->aq.asq_last_status); return ret; } memset(&ets_sla_config, 0, sizeof(ets_sla_config)); ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &ets_sla_config, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "VSI failed to get TC bandwdith configuration %u", hw->aq.asq_last_status); return ret; } /* store and print out BW info */ vsi->bw_info.bw_limit = rte_le_to_cpu_16(bw_config.port_bw_limit); vsi->bw_info.bw_max = bw_config.max_bw; PMD_DRV_LOG(DEBUG, "VSI bw limit:%u", vsi->bw_info.bw_limit); PMD_DRV_LOG(DEBUG, "VSI max_bw:%u", vsi->bw_info.bw_max); bw_max = rte_le_to_cpu_16(ets_sla_config.tc_bw_max[0]) | (rte_le_to_cpu_16(ets_sla_config.tc_bw_max[1]) << I40E_16_BIT_WIDTH); for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { vsi->bw_info.bw_ets_share_credits[i] = ets_sla_config.share_credits[i]; vsi->bw_info.bw_ets_credits[i] = rte_le_to_cpu_16(ets_sla_config.credits[i]); /* 4 bits per TC, 4th bit is reserved */ vsi->bw_info.bw_ets_max[i] = (uint8_t)((bw_max >> (i * I40E_4_BIT_WIDTH)) & RTE_LEN2MASK(3, uint8_t)); PMD_DRV_LOG(DEBUG, "\tVSI TC%u:share credits %u", i, vsi->bw_info.bw_ets_share_credits[i]); PMD_DRV_LOG(DEBUG, "\tVSI TC%u:credits %u", i, vsi->bw_info.bw_ets_credits[i]); PMD_DRV_LOG(DEBUG, "\tVSI TC%u: max credits: %u", i, vsi->bw_info.bw_ets_max[i]); } return I40E_SUCCESS; } /* i40e_enable_pf_lb * @pf: pointer to the pf structure * * allow loopback on pf */ static inline void i40e_enable_pf_lb(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_vsi_context ctxt; int ret; /* Use the FW API if FW >= v5.0 */ if (hw->aq.fw_maj_ver < 5) { PMD_INIT_LOG(ERR, "FW < v5.0, cannot enable loopback"); return; } memset(&ctxt, 0, sizeof(ctxt)); ctxt.seid = pf->main_vsi_seid; ctxt.pf_num = hw->pf_id; ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL); if (ret) { PMD_DRV_LOG(ERR, "cannot get pf vsi config, err %d, aq_err %d", ret, hw->aq.asq_last_status); return; } ctxt.flags = I40E_AQ_VSI_TYPE_PF; ctxt.info.valid_sections = rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID); ctxt.info.switch_id |= rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret) PMD_DRV_LOG(ERR, "update vsi switch failed, aq_err=%d", hw->aq.asq_last_status); } /* Setup a VSI */ struct i40e_vsi * i40e_vsi_setup(struct i40e_pf *pf, enum i40e_vsi_type type, struct i40e_vsi *uplink_vsi, uint16_t user_param) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_vsi *vsi; struct i40e_mac_filter_info filter; int ret; struct i40e_vsi_context ctxt; struct ether_addr broadcast = {.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}; if (type != I40E_VSI_MAIN && type != I40E_VSI_SRIOV && uplink_vsi == NULL) { PMD_DRV_LOG(ERR, "VSI setup failed, VSI link shouldn't be NULL"); return NULL; } if (type == I40E_VSI_MAIN && uplink_vsi != NULL) { PMD_DRV_LOG(ERR, "VSI setup failed, MAIN VSI uplink VSI should be NULL"); return NULL; } /* two situations * 1.type is not MAIN and uplink vsi is not NULL * If uplink vsi didn't setup VEB, create one first under veb field * 2.type is SRIOV and the uplink is NULL * If floating VEB is NULL, create one veb under floating veb field */ if (type != I40E_VSI_MAIN && uplink_vsi != NULL && uplink_vsi->veb == NULL) { uplink_vsi->veb = i40e_veb_setup(pf, uplink_vsi); if (uplink_vsi->veb == NULL) { PMD_DRV_LOG(ERR, "VEB setup failed"); return NULL; } /* set ALLOWLOOPBACk on pf, when veb is created */ i40e_enable_pf_lb(pf); } if (type == I40E_VSI_SRIOV && uplink_vsi == NULL && pf->main_vsi->floating_veb == NULL) { pf->main_vsi->floating_veb = i40e_veb_setup(pf, uplink_vsi); if (pf->main_vsi->floating_veb == NULL) { PMD_DRV_LOG(ERR, "VEB setup failed"); return NULL; } } vsi = rte_zmalloc("i40e_vsi", sizeof(struct i40e_vsi), 0); if (!vsi) { PMD_DRV_LOG(ERR, "Failed to allocate memory for vsi"); return NULL; } TAILQ_INIT(&vsi->mac_list); vsi->type = type; vsi->adapter = I40E_PF_TO_ADAPTER(pf); vsi->max_macaddrs = I40E_NUM_MACADDR_MAX; vsi->parent_vsi = uplink_vsi ? uplink_vsi : pf->main_vsi; vsi->user_param = user_param; vsi->vlan_anti_spoof_on = 0; vsi->vlan_filter_on = 0; /* Allocate queues */ switch (vsi->type) { case I40E_VSI_MAIN : vsi->nb_qps = pf->lan_nb_qps; break; case I40E_VSI_SRIOV : vsi->nb_qps = pf->vf_nb_qps; break; case I40E_VSI_VMDQ2: vsi->nb_qps = pf->vmdq_nb_qps; break; case I40E_VSI_FDIR: vsi->nb_qps = pf->fdir_nb_qps; break; default: goto fail_mem; } /* * The filter status descriptor is reported in rx queue 0, * while the tx queue for fdir filter programming has no * such constraints, can be non-zero queues. * To simplify it, choose FDIR vsi use queue 0 pair. * To make sure it will use queue 0 pair, queue allocation * need be done before this function is called */ if (type != I40E_VSI_FDIR) { ret = i40e_res_pool_alloc(&pf->qp_pool, vsi->nb_qps); if (ret < 0) { PMD_DRV_LOG(ERR, "VSI %d allocate queue failed %d", vsi->seid, ret); goto fail_mem; } vsi->base_queue = ret; } else vsi->base_queue = I40E_FDIR_QUEUE_ID; /* VF has MSIX interrupt in VF range, don't allocate here */ if (type == I40E_VSI_MAIN) { ret = i40e_res_pool_alloc(&pf->msix_pool, RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID)); if (ret < 0) { PMD_DRV_LOG(ERR, "VSI MAIN %d get heap failed %d", vsi->seid, ret); goto fail_queue_alloc; } vsi->msix_intr = ret; vsi->nb_msix = RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID); } else if (type != I40E_VSI_SRIOV) { ret = i40e_res_pool_alloc(&pf->msix_pool, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "VSI %d get heap failed %d", vsi->seid, ret); goto fail_queue_alloc; } vsi->msix_intr = ret; vsi->nb_msix = 1; } else { vsi->msix_intr = 0; vsi->nb_msix = 0; } /* Add VSI */ if (type == I40E_VSI_MAIN) { /* For main VSI, no need to add since it's default one */ vsi->uplink_seid = pf->mac_seid; vsi->seid = pf->main_vsi_seid; /* Bind queues with specific MSIX interrupt */ /** * Needs 2 interrupt at least, one for misc cause which will * enabled from OS side, Another for queues binding the * interrupt from device side only. */ /* Get default VSI parameters from hardware */ memset(&ctxt, 0, sizeof(ctxt)); ctxt.seid = vsi->seid; ctxt.pf_num = hw->pf_id; ctxt.uplink_seid = vsi->uplink_seid; ctxt.vf_num = 0; ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get VSI params"); goto fail_msix_alloc; } (void)rte_memcpy(&vsi->info, &ctxt.info, sizeof(struct i40e_aqc_vsi_properties_data)); vsi->vsi_id = ctxt.vsi_number; vsi->info.valid_sections = 0; /* Configure tc, enabled TC0 only */ if (i40e_vsi_update_tc_bandwidth(vsi, I40E_DEFAULT_TCMAP) != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to update TC bandwidth"); goto fail_msix_alloc; } /* TC, queue mapping */ memset(&ctxt, 0, sizeof(ctxt)); vsi->info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID); vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; (void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(struct i40e_aqc_vsi_properties_data)); ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info, I40E_DEFAULT_TCMAP); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to configure TC queue mapping"); goto fail_msix_alloc; } ctxt.seid = vsi->seid; ctxt.pf_num = hw->pf_id; ctxt.uplink_seid = vsi->uplink_seid; ctxt.vf_num = 0; /* Update VSI parameters */ ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to update VSI params"); goto fail_msix_alloc; } (void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping, sizeof(vsi->info.tc_mapping)); (void)rte_memcpy(&vsi->info.queue_mapping, &ctxt.info.queue_mapping, sizeof(vsi->info.queue_mapping)); vsi->info.mapping_flags = ctxt.info.mapping_flags; vsi->info.valid_sections = 0; (void)rte_memcpy(pf->dev_addr.addr_bytes, hw->mac.perm_addr, ETH_ADDR_LEN); /** * Updating default filter settings are necessary to prevent * reception of tagged packets. * Some old firmware configurations load a default macvlan * filter which accepts both tagged and untagged packets. * The updating is to use a normal filter instead if needed. * For NVM 4.2.2 or after, the updating is not needed anymore. * The firmware with correct configurations load the default * macvlan filter which is expected and cannot be removed. */ i40e_update_default_filter_setting(vsi); i40e_config_qinq(hw, vsi); } else if (type == I40E_VSI_SRIOV) { memset(&ctxt, 0, sizeof(ctxt)); /** * For other VSI, the uplink_seid equals to uplink VSI's * uplink_seid since they share same VEB */ if (uplink_vsi == NULL) vsi->uplink_seid = pf->main_vsi->floating_veb->seid; else vsi->uplink_seid = uplink_vsi->uplink_seid; ctxt.pf_num = hw->pf_id; ctxt.vf_num = hw->func_caps.vf_base_id + user_param; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; ctxt.flags = I40E_AQ_VSI_TYPE_VF; /* Use the VEB configuration if FW >= v5.0 */ if (hw->aq.fw_maj_ver >= 5) { /* Configure switch ID */ ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID); ctxt.info.switch_id = rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); } /* Configure port/vlan */ ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID); ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info, hw->func_caps.enabled_tcmap); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to configure TC queue mapping"); goto fail_msix_alloc; } ctxt.info.up_enable_bits = hw->func_caps.enabled_tcmap; ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID); /** * Since VSI is not created yet, only configure parameter, * will add vsi below. */ i40e_config_qinq(hw, vsi); } else if (type == I40E_VSI_VMDQ2) { memset(&ctxt, 0, sizeof(ctxt)); /* * For other VSI, the uplink_seid equals to uplink VSI's * uplink_seid since they share same VEB */ vsi->uplink_seid = uplink_vsi->uplink_seid; ctxt.pf_num = hw->pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID); /* user_param carries flag to enable loop back */ if (user_param) { ctxt.info.switch_id = rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); ctxt.info.switch_id |= rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); } /* Configure port/vlan */ ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID); ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info, I40E_DEFAULT_TCMAP); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to configure TC queue mapping"); goto fail_msix_alloc; } ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP; ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID); } else if (type == I40E_VSI_FDIR) { memset(&ctxt, 0, sizeof(ctxt)); vsi->uplink_seid = uplink_vsi->uplink_seid; ctxt.pf_num = hw->pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; /* regular data port */ ctxt.flags = I40E_AQ_VSI_TYPE_PF; ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info, I40E_DEFAULT_TCMAP); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to configure TC queue mapping."); goto fail_msix_alloc; } ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP; ctxt.info.valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID); } else { PMD_DRV_LOG(ERR, "VSI: Not support other type VSI yet"); goto fail_msix_alloc; } if (vsi->type != I40E_VSI_MAIN) { ret = i40e_aq_add_vsi(hw, &ctxt, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "add vsi failed, aq_err=%d", hw->aq.asq_last_status); goto fail_msix_alloc; } memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info)); vsi->info.valid_sections = 0; vsi->seid = ctxt.seid; vsi->vsi_id = ctxt.vsi_number; vsi->sib_vsi_list.vsi = vsi; if (vsi->type == I40E_VSI_SRIOV && uplink_vsi == NULL) { TAILQ_INSERT_TAIL(&pf->main_vsi->floating_veb->head, &vsi->sib_vsi_list, list); } else { TAILQ_INSERT_TAIL(&uplink_vsi->veb->head, &vsi->sib_vsi_list, list); } } /* MAC/VLAN configuration */ (void)rte_memcpy(&filter.mac_addr, &broadcast, ETHER_ADDR_LEN); filter.filter_type = RTE_MACVLAN_PERFECT_MATCH; ret = i40e_vsi_add_mac(vsi, &filter); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter"); goto fail_msix_alloc; } /* Get VSI BW information */ i40e_vsi_get_bw_config(vsi); return vsi; fail_msix_alloc: i40e_res_pool_free(&pf->msix_pool,vsi->msix_intr); fail_queue_alloc: i40e_res_pool_free(&pf->qp_pool,vsi->base_queue); fail_mem: rte_free(vsi); return NULL; } /* Configure vlan filter on or off */ int i40e_vsi_config_vlan_filter(struct i40e_vsi *vsi, bool on) { int i, num; struct i40e_mac_filter *f; void *temp; struct i40e_mac_filter_info *mac_filter; enum rte_mac_filter_type desired_filter; int ret = I40E_SUCCESS; if (on) { /* Filter to match MAC and VLAN */ desired_filter = RTE_MACVLAN_PERFECT_MATCH; } else { /* Filter to match only MAC */ desired_filter = RTE_MAC_PERFECT_MATCH; } num = vsi->mac_num; mac_filter = rte_zmalloc("mac_filter_info_data", num * sizeof(*mac_filter), 0); if (mac_filter == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } i = 0; /* Remove all existing mac */ TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp) { mac_filter[i] = f->mac_info; ret = i40e_vsi_delete_mac(vsi, &f->mac_info.mac_addr); if (ret) { PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan filter", on ? "enable" : "disable"); goto DONE; } i++; } /* Override with new filter */ for (i = 0; i < num; i++) { mac_filter[i].filter_type = desired_filter; ret = i40e_vsi_add_mac(vsi, &mac_filter[i]); if (ret) { PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan filter", on ? "enable" : "disable"); goto DONE; } } DONE: rte_free(mac_filter); return ret; } /* Configure vlan stripping on or off */ int i40e_vsi_config_vlan_stripping(struct i40e_vsi *vsi, bool on) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); struct i40e_vsi_context ctxt; uint8_t vlan_flags; int ret = I40E_SUCCESS; /* Check if it has been already on or off */ if (vsi->info.valid_sections & rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID)) { if (on) { if ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 0) return 0; /* already on */ } else { if ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == I40E_AQ_VSI_PVLAN_EMOD_MASK) return 0; /* already off */ } } if (on) vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; else vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_NOTHING; vsi->info.valid_sections = rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID); vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_EMOD_MASK); vsi->info.port_vlan_flags |= vlan_flags; ctxt.seid = vsi->seid; (void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret) PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan stripping", on ? "enable" : "disable"); return ret; } static int i40e_dev_init_vlan(struct rte_eth_dev *dev) { struct rte_eth_dev_data *data = dev->data; int ret; int mask = 0; /* Apply vlan offload setting */ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK; i40e_vlan_offload_set(dev, mask); /* Apply double-vlan setting, not implemented yet */ /* Apply pvid setting */ ret = i40e_vlan_pvid_set(dev, data->dev_conf.txmode.pvid, data->dev_conf.txmode.hw_vlan_insert_pvid); if (ret) PMD_DRV_LOG(INFO, "Failed to update VSI params"); return ret; } static int i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); return i40e_aq_set_port_parameters(hw, vsi->seid, 0, 1, on, NULL); } static int i40e_update_flow_control(struct i40e_hw *hw) { #define I40E_LINK_PAUSE_RXTX (I40E_AQ_LINK_PAUSE_RX | I40E_AQ_LINK_PAUSE_TX) struct i40e_link_status link_status; uint32_t rxfc = 0, txfc = 0, reg; uint8_t an_info; int ret; memset(&link_status, 0, sizeof(link_status)); ret = i40e_aq_get_link_info(hw, FALSE, &link_status, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get link status information"); goto write_reg; /* Disable flow control */ } an_info = hw->phy.link_info.an_info; if (!(an_info & I40E_AQ_AN_COMPLETED)) { PMD_DRV_LOG(INFO, "Link auto negotiation not completed"); ret = I40E_ERR_NOT_READY; goto write_reg; /* Disable flow control */ } /** * If link auto negotiation is enabled, flow control needs to * be configured according to it */ switch (an_info & I40E_LINK_PAUSE_RXTX) { case I40E_LINK_PAUSE_RXTX: rxfc = 1; txfc = 1; hw->fc.current_mode = I40E_FC_FULL; break; case I40E_AQ_LINK_PAUSE_RX: rxfc = 1; hw->fc.current_mode = I40E_FC_RX_PAUSE; break; case I40E_AQ_LINK_PAUSE_TX: txfc = 1; hw->fc.current_mode = I40E_FC_TX_PAUSE; break; default: hw->fc.current_mode = I40E_FC_NONE; break; } write_reg: I40E_WRITE_REG(hw, I40E_PRTDCB_FCCFG, txfc << I40E_PRTDCB_FCCFG_TFCE_SHIFT); reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN); reg &= ~I40E_PRTDCB_MFLCN_RFCE_MASK; reg |= rxfc << I40E_PRTDCB_MFLCN_RFCE_SHIFT; I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, reg); return ret; } /* PF setup */ static int i40e_pf_setup(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_filter_control_settings settings; struct i40e_vsi *vsi; int ret; /* Clear all stats counters */ pf->offset_loaded = FALSE; memset(&pf->stats, 0, sizeof(struct i40e_hw_port_stats)); memset(&pf->stats_offset, 0, sizeof(struct i40e_hw_port_stats)); ret = i40e_pf_get_switch_config(pf); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Could not get switch config, err %d", ret); return ret; } if (pf->flags & I40E_FLAG_FDIR) { /* make queue allocated first, let FDIR use queue pair 0*/ ret = i40e_res_pool_alloc(&pf->qp_pool, I40E_DEFAULT_QP_NUM_FDIR); if (ret != I40E_FDIR_QUEUE_ID) { PMD_DRV_LOG(ERR, "queue allocation fails for FDIR: ret =%d", ret); pf->flags &= ~I40E_FLAG_FDIR; } } /* main VSI setup */ vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, NULL, 0); if (!vsi) { PMD_DRV_LOG(ERR, "Setup of main vsi failed"); return I40E_ERR_NOT_READY; } pf->main_vsi = vsi; /* Configure filter control */ memset(&settings, 0, sizeof(settings)); if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_128) settings.hash_lut_size = I40E_HASH_LUT_SIZE_128; else if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_512) settings.hash_lut_size = I40E_HASH_LUT_SIZE_512; else { PMD_DRV_LOG(ERR, "Hash lookup table size (%u) not supported", hw->func_caps.rss_table_size); return I40E_ERR_PARAM; } PMD_DRV_LOG(INFO, "Hardware capability of hash lookup table size: %u", hw->func_caps.rss_table_size); pf->hash_lut_size = hw->func_caps.rss_table_size; /* Enable ethtype and macvlan filters */ settings.enable_ethtype = TRUE; settings.enable_macvlan = TRUE; ret = i40e_set_filter_control(hw, &settings); if (ret) PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d", ret); /* Update flow control according to the auto negotiation */ i40e_update_flow_control(hw); return I40E_SUCCESS; } int i40e_switch_tx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on) { uint32_t reg; uint16_t j; /** * Set or clear TX Queue Disable flags, * which is required by hardware. */ i40e_pre_tx_queue_cfg(hw, q_idx, on); rte_delay_us(I40E_PRE_TX_Q_CFG_WAIT_US); /* Wait until the request is finished */ for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) { rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US); reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx)); if (!(((reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 0x1) ^ ((reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 0x1))) { break; } } if (on) { if (reg & I40E_QTX_ENA_QENA_STAT_MASK) return I40E_SUCCESS; /* already on, skip next steps */ I40E_WRITE_REG(hw, I40E_QTX_HEAD(q_idx), 0); reg |= I40E_QTX_ENA_QENA_REQ_MASK; } else { if (!(reg & I40E_QTX_ENA_QENA_STAT_MASK)) return I40E_SUCCESS; /* already off, skip next steps */ reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; } /* Write the register */ I40E_WRITE_REG(hw, I40E_QTX_ENA(q_idx), reg); /* Check the result */ for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) { rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US); reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx)); if (on) { if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) && (reg & I40E_QTX_ENA_QENA_STAT_MASK)) break; } else { if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK) && !(reg & I40E_QTX_ENA_QENA_STAT_MASK)) break; } } /* Check if it is timeout */ if (j >= I40E_CHK_Q_ENA_COUNT) { PMD_DRV_LOG(ERR, "Failed to %s tx queue[%u]", (on ? "enable" : "disable"), q_idx); return I40E_ERR_TIMEOUT; } return I40E_SUCCESS; } /* Swith on or off the tx queues */ static int i40e_dev_switch_tx_queues(struct i40e_pf *pf, bool on) { struct rte_eth_dev_data *dev_data = pf->dev_data; struct i40e_tx_queue *txq; struct rte_eth_dev *dev = pf->adapter->eth_dev; uint16_t i; int ret; for (i = 0; i < dev_data->nb_tx_queues; i++) { txq = dev_data->tx_queues[i]; /* Don't operate the queue if not configured or * if starting only per queue */ if (!txq || !txq->q_set || (on && txq->tx_deferred_start)) continue; if (on) ret = i40e_dev_tx_queue_start(dev, i); else ret = i40e_dev_tx_queue_stop(dev, i); if ( ret != I40E_SUCCESS) return ret; } return I40E_SUCCESS; } int i40e_switch_rx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on) { uint32_t reg; uint16_t j; /* Wait until the request is finished */ for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) { rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US); reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx)); if (!((reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 0x1) ^ ((reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 0x1)) break; } if (on) { if (reg & I40E_QRX_ENA_QENA_STAT_MASK) return I40E_SUCCESS; /* Already on, skip next steps */ reg |= I40E_QRX_ENA_QENA_REQ_MASK; } else { if (!(reg & I40E_QRX_ENA_QENA_STAT_MASK)) return I40E_SUCCESS; /* Already off, skip next steps */ reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; } /* Write the register */ I40E_WRITE_REG(hw, I40E_QRX_ENA(q_idx), reg); /* Check the result */ for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) { rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US); reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx)); if (on) { if ((reg & I40E_QRX_ENA_QENA_REQ_MASK) && (reg & I40E_QRX_ENA_QENA_STAT_MASK)) break; } else { if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK) && !(reg & I40E_QRX_ENA_QENA_STAT_MASK)) break; } } /* Check if it is timeout */ if (j >= I40E_CHK_Q_ENA_COUNT) { PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]", (on ? "enable" : "disable"), q_idx); return I40E_ERR_TIMEOUT; } return I40E_SUCCESS; } /* Switch on or off the rx queues */ static int i40e_dev_switch_rx_queues(struct i40e_pf *pf, bool on) { struct rte_eth_dev_data *dev_data = pf->dev_data; struct i40e_rx_queue *rxq; struct rte_eth_dev *dev = pf->adapter->eth_dev; uint16_t i; int ret; for (i = 0; i < dev_data->nb_rx_queues; i++) { rxq = dev_data->rx_queues[i]; /* Don't operate the queue if not configured or * if starting only per queue */ if (!rxq || !rxq->q_set || (on && rxq->rx_deferred_start)) continue; if (on) ret = i40e_dev_rx_queue_start(dev, i); else ret = i40e_dev_rx_queue_stop(dev, i); if (ret != I40E_SUCCESS) return ret; } return I40E_SUCCESS; } /* Switch on or off all the rx/tx queues */ int i40e_dev_switch_queues(struct i40e_pf *pf, bool on) { int ret; if (on) { /* enable rx queues before enabling tx queues */ ret = i40e_dev_switch_rx_queues(pf, on); if (ret) { PMD_DRV_LOG(ERR, "Failed to switch rx queues"); return ret; } ret = i40e_dev_switch_tx_queues(pf, on); } else { /* Stop tx queues before stopping rx queues */ ret = i40e_dev_switch_tx_queues(pf, on); if (ret) { PMD_DRV_LOG(ERR, "Failed to switch tx queues"); return ret; } ret = i40e_dev_switch_rx_queues(pf, on); } return ret; } /* Initialize VSI for TX */ static int i40e_dev_tx_init(struct i40e_pf *pf) { struct rte_eth_dev_data *data = pf->dev_data; uint16_t i; uint32_t ret = I40E_SUCCESS; struct i40e_tx_queue *txq; for (i = 0; i < data->nb_tx_queues; i++) { txq = data->tx_queues[i]; if (!txq || !txq->q_set) continue; ret = i40e_tx_queue_init(txq); if (ret != I40E_SUCCESS) break; } if (ret == I40E_SUCCESS) i40e_set_tx_function(container_of(pf, struct i40e_adapter, pf) ->eth_dev); return ret; } /* Initialize VSI for RX */ static int i40e_dev_rx_init(struct i40e_pf *pf) { struct rte_eth_dev_data *data = pf->dev_data; int ret = I40E_SUCCESS; uint16_t i; struct i40e_rx_queue *rxq; i40e_pf_config_mq_rx(pf); for (i = 0; i < data->nb_rx_queues; i++) { rxq = data->rx_queues[i]; if (!rxq || !rxq->q_set) continue; ret = i40e_rx_queue_init(rxq); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to do RX queue initialization"); break; } } if (ret == I40E_SUCCESS) i40e_set_rx_function(container_of(pf, struct i40e_adapter, pf) ->eth_dev); return ret; } static int i40e_dev_rxtx_init(struct i40e_pf *pf) { int err; err = i40e_dev_tx_init(pf); if (err) { PMD_DRV_LOG(ERR, "Failed to do TX initialization"); return err; } err = i40e_dev_rx_init(pf); if (err) { PMD_DRV_LOG(ERR, "Failed to do RX initialization"); return err; } return err; } static int i40e_vmdq_setup(struct rte_eth_dev *dev) { struct rte_eth_conf *conf = &dev->data->dev_conf; struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); int i, err, conf_vsis, j, loop; struct i40e_vsi *vsi; struct i40e_vmdq_info *vmdq_info; struct rte_eth_vmdq_rx_conf *vmdq_conf; struct i40e_hw *hw = I40E_PF_TO_HW(pf); /* * Disable interrupt to avoid message from VF. Furthermore, it will * avoid race condition in VSI creation/destroy. */ i40e_pf_disable_irq0(hw); if ((pf->flags & I40E_FLAG_VMDQ) == 0) { PMD_INIT_LOG(ERR, "FW doesn't support VMDQ"); return -ENOTSUP; } conf_vsis = conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools; if (conf_vsis > pf->max_nb_vmdq_vsi) { PMD_INIT_LOG(ERR, "VMDQ config: %u, max support:%u", conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools, pf->max_nb_vmdq_vsi); return -ENOTSUP; } if (pf->vmdq != NULL) { PMD_INIT_LOG(INFO, "VMDQ already configured"); return 0; } pf->vmdq = rte_zmalloc("vmdq_info_struct", sizeof(*vmdq_info) * conf_vsis, 0); if (pf->vmdq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory"); return -ENOMEM; } vmdq_conf = &conf->rx_adv_conf.vmdq_rx_conf; /* Create VMDQ VSI */ for (i = 0; i < conf_vsis; i++) { vsi = i40e_vsi_setup(pf, I40E_VSI_VMDQ2, pf->main_vsi, vmdq_conf->enable_loop_back); if (vsi == NULL) { PMD_INIT_LOG(ERR, "Failed to create VMDQ VSI"); err = -1; goto err_vsi_setup; } vmdq_info = &pf->vmdq[i]; vmdq_info->pf = pf; vmdq_info->vsi = vsi; } pf->nb_cfg_vmdq_vsi = conf_vsis; /* Configure Vlan */ loop = sizeof(vmdq_conf->pool_map[0].pools) * CHAR_BIT; for (i = 0; i < vmdq_conf->nb_pool_maps; i++) { for (j = 0; j < loop && j < pf->nb_cfg_vmdq_vsi; j++) { if (vmdq_conf->pool_map[i].pools & (1UL << j)) { PMD_INIT_LOG(INFO, "Add vlan %u to vmdq pool %u", vmdq_conf->pool_map[i].vlan_id, j); err = i40e_vsi_add_vlan(pf->vmdq[j].vsi, vmdq_conf->pool_map[i].vlan_id); if (err) { PMD_INIT_LOG(ERR, "Failed to add vlan"); err = -1; goto err_vsi_setup; } } } } i40e_pf_enable_irq0(hw); return 0; err_vsi_setup: for (i = 0; i < conf_vsis; i++) if (pf->vmdq[i].vsi == NULL) break; else i40e_vsi_release(pf->vmdq[i].vsi); rte_free(pf->vmdq); pf->vmdq = NULL; i40e_pf_enable_irq0(hw); return err; } static void i40e_stat_update_32(struct i40e_hw *hw, uint32_t reg, bool offset_loaded, uint64_t *offset, uint64_t *stat) { uint64_t new_data; new_data = (uint64_t)I40E_READ_REG(hw, reg); if (!offset_loaded) *offset = new_data; if (new_data >= *offset) *stat = (uint64_t)(new_data - *offset); else *stat = (uint64_t)((new_data + ((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset); } static void i40e_stat_update_48(struct i40e_hw *hw, uint32_t hireg, uint32_t loreg, bool offset_loaded, uint64_t *offset, uint64_t *stat) { uint64_t new_data; new_data = (uint64_t)I40E_READ_REG(hw, loreg); new_data |= ((uint64_t)(I40E_READ_REG(hw, hireg) & I40E_16_BIT_MASK)) << I40E_32_BIT_WIDTH; if (!offset_loaded) *offset = new_data; if (new_data >= *offset) *stat = new_data - *offset; else *stat = (uint64_t)((new_data + ((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset); *stat &= I40E_48_BIT_MASK; } /* Disable IRQ0 */ void i40e_pf_disable_irq0(struct i40e_hw *hw) { /* Disable all interrupt types */ I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0); I40E_WRITE_FLUSH(hw); } /* Enable IRQ0 */ void i40e_pf_enable_irq0(struct i40e_hw *hw) { I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_INTENA_MASK | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK); I40E_WRITE_FLUSH(hw); } static void i40e_pf_config_irq0(struct i40e_hw *hw, bool no_queue) { /* read pending request and disable first */ i40e_pf_disable_irq0(hw); I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, I40E_PFINT_ICR0_ENA_MASK); I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0, I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_MASK); if (no_queue) /* Link no queues with irq0 */ I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, I40E_PFINT_LNKLST0_FIRSTQ_INDX_MASK); } static void i40e_dev_handle_vfr_event(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); int i; uint16_t abs_vf_id; uint32_t index, offset, val; if (!pf->vfs) return; /** * Try to find which VF trigger a reset, use absolute VF id to access * since the reg is global register. */ for (i = 0; i < pf->vf_num; i++) { abs_vf_id = hw->func_caps.vf_base_id + i; index = abs_vf_id / I40E_UINT32_BIT_SIZE; offset = abs_vf_id % I40E_UINT32_BIT_SIZE; val = I40E_READ_REG(hw, I40E_GLGEN_VFLRSTAT(index)); /* VFR event occured */ if (val & (0x1 << offset)) { int ret; /* Clear the event first */ I40E_WRITE_REG(hw, I40E_GLGEN_VFLRSTAT(index), (0x1 << offset)); PMD_DRV_LOG(INFO, "VF %u reset occured", abs_vf_id); /** * Only notify a VF reset event occured, * don't trigger another SW reset */ ret = i40e_pf_host_vf_reset(&pf->vfs[i], 0); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to do VF reset"); } } } static void i40e_notify_all_vfs_link_status(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); int i; for (i = 0; i < pf->vf_num; i++) i40e_notify_vf_link_status(dev, &pf->vfs[i]); } static void i40e_dev_handle_aq_msg(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_arq_event_info info; uint16_t pending, opcode; int ret; info.buf_len = I40E_AQ_BUF_SZ; info.msg_buf = rte_zmalloc("msg_buffer", info.buf_len, 0); if (!info.msg_buf) { PMD_DRV_LOG(ERR, "Failed to allocate mem"); return; } pending = 1; while (pending) { ret = i40e_clean_arq_element(hw, &info, &pending); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ, aq_err: %u", hw->aq.asq_last_status); break; } opcode = rte_le_to_cpu_16(info.desc.opcode); switch (opcode) { case i40e_aqc_opc_send_msg_to_pf: /* Refer to i40e_aq_send_msg_to_pf() for argument layout*/ i40e_pf_host_handle_vf_msg(dev, rte_le_to_cpu_16(info.desc.retval), rte_le_to_cpu_32(info.desc.cookie_high), rte_le_to_cpu_32(info.desc.cookie_low), info.msg_buf, info.msg_len); break; case i40e_aqc_opc_get_link_status: ret = i40e_dev_link_update(dev, 0); if (!ret) _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); break; default: PMD_DRV_LOG(DEBUG, "Request %u is not supported yet", opcode); break; } } rte_free(info.msg_buf); } /** * Interrupt handler triggered by NIC for handling * specific interrupt. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void i40e_dev_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t icr0; /* Disable interrupt */ i40e_pf_disable_irq0(hw); /* read out interrupt causes */ icr0 = I40E_READ_REG(hw, I40E_PFINT_ICR0); /* No interrupt event indicated */ if (!(icr0 & I40E_PFINT_ICR0_INTEVENT_MASK)) { PMD_DRV_LOG(INFO, "No interrupt event"); goto done; } if (icr0 & I40E_PFINT_ICR0_ECC_ERR_MASK) PMD_DRV_LOG(ERR, "ICR0: unrecoverable ECC error"); if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) PMD_DRV_LOG(ERR, "ICR0: malicious programming detected"); if (icr0 & I40E_PFINT_ICR0_GRST_MASK) PMD_DRV_LOG(INFO, "ICR0: global reset requested"); if (icr0 & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) PMD_DRV_LOG(INFO, "ICR0: PCI exception activated"); if (icr0 & I40E_PFINT_ICR0_STORM_DETECT_MASK) PMD_DRV_LOG(INFO, "ICR0: a change in the storm control state"); if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) PMD_DRV_LOG(ERR, "ICR0: HMC error"); if (icr0 & I40E_PFINT_ICR0_PE_CRITERR_MASK) PMD_DRV_LOG(ERR, "ICR0: protocol engine critical error"); if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { PMD_DRV_LOG(INFO, "ICR0: VF reset detected"); i40e_dev_handle_vfr_event(dev); } if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { PMD_DRV_LOG(INFO, "ICR0: adminq event"); i40e_dev_handle_aq_msg(dev); } done: /* Enable interrupt */ i40e_pf_enable_irq0(hw); rte_intr_enable(dev->intr_handle); } int i40e_add_macvlan_filters(struct i40e_vsi *vsi, struct i40e_macvlan_filter *filter, int total) { int ele_num, ele_buff_size; int num, actual_num, i; uint16_t flags; int ret = I40E_SUCCESS; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); struct i40e_aqc_add_macvlan_element_data *req_list; if (filter == NULL || total == 0) return I40E_ERR_PARAM; ele_num = hw->aq.asq_buf_size / sizeof(*req_list); ele_buff_size = hw->aq.asq_buf_size; req_list = rte_zmalloc("macvlan_add", ele_buff_size, 0); if (req_list == NULL) { PMD_DRV_LOG(ERR, "Fail to allocate memory"); return I40E_ERR_NO_MEMORY; } num = 0; do { actual_num = (num + ele_num > total) ? (total - num) : ele_num; memset(req_list, 0, ele_buff_size); for (i = 0; i < actual_num; i++) { (void)rte_memcpy(req_list[i].mac_addr, &filter[num + i].macaddr, ETH_ADDR_LEN); req_list[i].vlan_tag = rte_cpu_to_le_16(filter[num + i].vlan_id); switch (filter[num + i].filter_type) { case RTE_MAC_PERFECT_MATCH: flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH | I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; break; case RTE_MACVLAN_PERFECT_MATCH: flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; break; case RTE_MAC_HASH_MATCH: flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH | I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; break; case RTE_MACVLAN_HASH_MATCH: flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH; break; default: PMD_DRV_LOG(ERR, "Invalid MAC match type"); ret = I40E_ERR_PARAM; goto DONE; } req_list[i].queue_number = 0; req_list[i].flags = rte_cpu_to_le_16(flags); } ret = i40e_aq_add_macvlan(hw, vsi->seid, req_list, actual_num, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add macvlan filter"); goto DONE; } num += actual_num; } while (num < total); DONE: rte_free(req_list); return ret; } int i40e_remove_macvlan_filters(struct i40e_vsi *vsi, struct i40e_macvlan_filter *filter, int total) { int ele_num, ele_buff_size; int num, actual_num, i; uint16_t flags; int ret = I40E_SUCCESS; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); struct i40e_aqc_remove_macvlan_element_data *req_list; if (filter == NULL || total == 0) return I40E_ERR_PARAM; ele_num = hw->aq.asq_buf_size / sizeof(*req_list); ele_buff_size = hw->aq.asq_buf_size; req_list = rte_zmalloc("macvlan_remove", ele_buff_size, 0); if (req_list == NULL) { PMD_DRV_LOG(ERR, "Fail to allocate memory"); return I40E_ERR_NO_MEMORY; } num = 0; do { actual_num = (num + ele_num > total) ? (total - num) : ele_num; memset(req_list, 0, ele_buff_size); for (i = 0; i < actual_num; i++) { (void)rte_memcpy(req_list[i].mac_addr, &filter[num + i].macaddr, ETH_ADDR_LEN); req_list[i].vlan_tag = rte_cpu_to_le_16(filter[num + i].vlan_id); switch (filter[num + i].filter_type) { case RTE_MAC_PERFECT_MATCH: flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; break; case RTE_MACVLAN_PERFECT_MATCH: flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; break; case RTE_MAC_HASH_MATCH: flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH | I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; break; case RTE_MACVLAN_HASH_MATCH: flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH; break; default: PMD_DRV_LOG(ERR, "Invalid MAC filter type"); ret = I40E_ERR_PARAM; goto DONE; } req_list[i].flags = rte_cpu_to_le_16(flags); } ret = i40e_aq_remove_macvlan(hw, vsi->seid, req_list, actual_num, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to remove macvlan filter"); goto DONE; } num += actual_num; } while (num < total); DONE: rte_free(req_list); return ret; } /* Find out specific MAC filter */ static struct i40e_mac_filter * i40e_find_mac_filter(struct i40e_vsi *vsi, struct ether_addr *macaddr) { struct i40e_mac_filter *f; TAILQ_FOREACH(f, &vsi->mac_list, next) { if (is_same_ether_addr(macaddr, &f->mac_info.mac_addr)) return f; } return NULL; } static bool i40e_find_vlan_filter(struct i40e_vsi *vsi, uint16_t vlan_id) { uint32_t vid_idx, vid_bit; if (vlan_id > ETH_VLAN_ID_MAX) return 0; vid_idx = I40E_VFTA_IDX(vlan_id); vid_bit = I40E_VFTA_BIT(vlan_id); if (vsi->vfta[vid_idx] & vid_bit) return 1; else return 0; } static void i40e_store_vlan_filter(struct i40e_vsi *vsi, uint16_t vlan_id, bool on) { uint32_t vid_idx, vid_bit; vid_idx = I40E_VFTA_IDX(vlan_id); vid_bit = I40E_VFTA_BIT(vlan_id); if (on) vsi->vfta[vid_idx] |= vid_bit; else vsi->vfta[vid_idx] &= ~vid_bit; } void i40e_set_vlan_filter(struct i40e_vsi *vsi, uint16_t vlan_id, bool on) { struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); struct i40e_aqc_add_remove_vlan_element_data vlan_data = {0}; int ret; if (vlan_id > ETH_VLAN_ID_MAX) return; i40e_store_vlan_filter(vsi, vlan_id, on); if ((!vsi->vlan_anti_spoof_on && !vsi->vlan_filter_on) || !vlan_id) return; vlan_data.vlan_tag = rte_cpu_to_le_16(vlan_id); if (on) { ret = i40e_aq_add_vlan(hw, vsi->seid, &vlan_data, 1, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to add vlan filter"); } else { ret = i40e_aq_remove_vlan(hw, vsi->seid, &vlan_data, 1, NULL); if (ret != I40E_SUCCESS) PMD_DRV_LOG(ERR, "Failed to remove vlan filter"); } } /** * Find all vlan options for specific mac addr, * return with actual vlan found. */ int i40e_find_all_vlan_for_mac(struct i40e_vsi *vsi, struct i40e_macvlan_filter *mv_f, int num, struct ether_addr *addr) { int i; uint32_t j, k; /** * Not to use i40e_find_vlan_filter to decrease the loop time, * although the code looks complex. */ if (num < vsi->vlan_num) return I40E_ERR_PARAM; i = 0; for (j = 0; j < I40E_VFTA_SIZE; j++) { if (vsi->vfta[j]) { for (k = 0; k < I40E_UINT32_BIT_SIZE; k++) { if (vsi->vfta[j] & (1 << k)) { if (i > num - 1) { PMD_DRV_LOG(ERR, "vlan number doesn't match"); return I40E_ERR_PARAM; } (void)rte_memcpy(&mv_f[i].macaddr, addr, ETH_ADDR_LEN); mv_f[i].vlan_id = j * I40E_UINT32_BIT_SIZE + k; i++; } } } } return I40E_SUCCESS; } static inline int i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi, struct i40e_macvlan_filter *mv_f, int num, uint16_t vlan) { int i = 0; struct i40e_mac_filter *f; if (num < vsi->mac_num) return I40E_ERR_PARAM; TAILQ_FOREACH(f, &vsi->mac_list, next) { if (i > num - 1) { PMD_DRV_LOG(ERR, "buffer number not match"); return I40E_ERR_PARAM; } (void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr, ETH_ADDR_LEN); mv_f[i].vlan_id = vlan; mv_f[i].filter_type = f->mac_info.filter_type; i++; } return I40E_SUCCESS; } static int i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi) { int i, j, num; struct i40e_mac_filter *f; struct i40e_macvlan_filter *mv_f; int ret = I40E_SUCCESS; if (vsi == NULL || vsi->mac_num == 0) return I40E_ERR_PARAM; /* Case that no vlan is set */ if (vsi->vlan_num == 0) num = vsi->mac_num; else num = vsi->mac_num * vsi->vlan_num; mv_f = rte_zmalloc("macvlan_data", num * sizeof(*mv_f), 0); if (mv_f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } i = 0; if (vsi->vlan_num == 0) { TAILQ_FOREACH(f, &vsi->mac_list, next) { (void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr, ETH_ADDR_LEN); mv_f[i].filter_type = f->mac_info.filter_type; mv_f[i].vlan_id = 0; i++; } } else { TAILQ_FOREACH(f, &vsi->mac_list, next) { ret = i40e_find_all_vlan_for_mac(vsi,&mv_f[i], vsi->vlan_num, &f->mac_info.mac_addr); if (ret != I40E_SUCCESS) goto DONE; for (j = i; j < i + vsi->vlan_num; j++) mv_f[j].filter_type = f->mac_info.filter_type; i += vsi->vlan_num; } } ret = i40e_remove_macvlan_filters(vsi, mv_f, num); DONE: rte_free(mv_f); return ret; } int i40e_vsi_add_vlan(struct i40e_vsi *vsi, uint16_t vlan) { struct i40e_macvlan_filter *mv_f; int mac_num; int ret = I40E_SUCCESS; if (!vsi || vlan > ETHER_MAX_VLAN_ID) return I40E_ERR_PARAM; /* If it's already set, just return */ if (i40e_find_vlan_filter(vsi,vlan)) return I40E_SUCCESS; mac_num = vsi->mac_num; if (mac_num == 0) { PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr"); return I40E_ERR_PARAM; } mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0); if (mv_f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan); if (ret != I40E_SUCCESS) goto DONE; ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num); if (ret != I40E_SUCCESS) goto DONE; i40e_set_vlan_filter(vsi, vlan, 1); vsi->vlan_num++; ret = I40E_SUCCESS; DONE: rte_free(mv_f); return ret; } int i40e_vsi_delete_vlan(struct i40e_vsi *vsi, uint16_t vlan) { struct i40e_macvlan_filter *mv_f; int mac_num; int ret = I40E_SUCCESS; /** * Vlan 0 is the generic filter for untagged packets * and can't be removed. */ if (!vsi || vlan == 0 || vlan > ETHER_MAX_VLAN_ID) return I40E_ERR_PARAM; /* If can't find it, just return */ if (!i40e_find_vlan_filter(vsi, vlan)) return I40E_ERR_PARAM; mac_num = vsi->mac_num; if (mac_num == 0) { PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr"); return I40E_ERR_PARAM; } mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0); if (mv_f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan); if (ret != I40E_SUCCESS) goto DONE; ret = i40e_remove_macvlan_filters(vsi, mv_f, mac_num); if (ret != I40E_SUCCESS) goto DONE; /* This is last vlan to remove, replace all mac filter with vlan 0 */ if (vsi->vlan_num == 1) { ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, 0); if (ret != I40E_SUCCESS) goto DONE; ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num); if (ret != I40E_SUCCESS) goto DONE; } i40e_set_vlan_filter(vsi, vlan, 0); vsi->vlan_num--; ret = I40E_SUCCESS; DONE: rte_free(mv_f); return ret; } int i40e_vsi_add_mac(struct i40e_vsi *vsi, struct i40e_mac_filter_info *mac_filter) { struct i40e_mac_filter *f; struct i40e_macvlan_filter *mv_f; int i, vlan_num = 0; int ret = I40E_SUCCESS; /* If it's add and we've config it, return */ f = i40e_find_mac_filter(vsi, &mac_filter->mac_addr); if (f != NULL) return I40E_SUCCESS; if ((mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH) || (mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH)) { /** * If vlan_num is 0, that's the first time to add mac, * set mask for vlan_id 0. */ if (vsi->vlan_num == 0) { i40e_set_vlan_filter(vsi, 0, 1); vsi->vlan_num = 1; } vlan_num = vsi->vlan_num; } else if ((mac_filter->filter_type == RTE_MAC_PERFECT_MATCH) || (mac_filter->filter_type == RTE_MAC_HASH_MATCH)) vlan_num = 1; mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0); if (mv_f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } for (i = 0; i < vlan_num; i++) { mv_f[i].filter_type = mac_filter->filter_type; (void)rte_memcpy(&mv_f[i].macaddr, &mac_filter->mac_addr, ETH_ADDR_LEN); } if (mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH || mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH) { ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num, &mac_filter->mac_addr); if (ret != I40E_SUCCESS) goto DONE; } ret = i40e_add_macvlan_filters(vsi, mv_f, vlan_num); if (ret != I40E_SUCCESS) goto DONE; /* Add the mac addr into mac list */ f = rte_zmalloc("macv_filter", sizeof(*f), 0); if (f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); ret = I40E_ERR_NO_MEMORY; goto DONE; } (void)rte_memcpy(&f->mac_info.mac_addr, &mac_filter->mac_addr, ETH_ADDR_LEN); f->mac_info.filter_type = mac_filter->filter_type; TAILQ_INSERT_TAIL(&vsi->mac_list, f, next); vsi->mac_num++; ret = I40E_SUCCESS; DONE: rte_free(mv_f); return ret; } int i40e_vsi_delete_mac(struct i40e_vsi *vsi, struct ether_addr *addr) { struct i40e_mac_filter *f; struct i40e_macvlan_filter *mv_f; int i, vlan_num; enum rte_mac_filter_type filter_type; int ret = I40E_SUCCESS; /* Can't find it, return an error */ f = i40e_find_mac_filter(vsi, addr); if (f == NULL) return I40E_ERR_PARAM; vlan_num = vsi->vlan_num; filter_type = f->mac_info.filter_type; if (filter_type == RTE_MACVLAN_PERFECT_MATCH || filter_type == RTE_MACVLAN_HASH_MATCH) { if (vlan_num == 0) { PMD_DRV_LOG(ERR, "VLAN number shouldn't be 0"); return I40E_ERR_PARAM; } } else if (filter_type == RTE_MAC_PERFECT_MATCH || filter_type == RTE_MAC_HASH_MATCH) vlan_num = 1; mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0); if (mv_f == NULL) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } for (i = 0; i < vlan_num; i++) { mv_f[i].filter_type = filter_type; (void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr, ETH_ADDR_LEN); } if (filter_type == RTE_MACVLAN_PERFECT_MATCH || filter_type == RTE_MACVLAN_HASH_MATCH) { ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num, addr); if (ret != I40E_SUCCESS) goto DONE; } ret = i40e_remove_macvlan_filters(vsi, mv_f, vlan_num); if (ret != I40E_SUCCESS) goto DONE; /* Remove the mac addr into mac list */ TAILQ_REMOVE(&vsi->mac_list, f, next); rte_free(f); vsi->mac_num--; ret = I40E_SUCCESS; DONE: rte_free(mv_f); return ret; } /* Configure hash enable flags for RSS */ uint64_t i40e_config_hena(uint64_t flags, enum i40e_mac_type type) { uint64_t hena = 0; if (!flags) return hena; if (flags & ETH_RSS_FRAG_IPV4) hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4; if (flags & ETH_RSS_NONFRAG_IPV4_TCP) { if (type == I40E_MAC_X722) { hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK); } else hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP; } if (flags & ETH_RSS_NONFRAG_IPV4_UDP) { if (type == I40E_MAC_X722) { hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP); } else hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP; } if (flags & ETH_RSS_NONFRAG_IPV4_SCTP) hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; if (flags & ETH_RSS_NONFRAG_IPV4_OTHER) hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; if (flags & ETH_RSS_FRAG_IPV6) hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6; if (flags & ETH_RSS_NONFRAG_IPV6_TCP) { if (type == I40E_MAC_X722) { hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK); } else hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP; } if (flags & ETH_RSS_NONFRAG_IPV6_UDP) { if (type == I40E_MAC_X722) { hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP); } else hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP; } if (flags & ETH_RSS_NONFRAG_IPV6_SCTP) hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP; if (flags & ETH_RSS_NONFRAG_IPV6_OTHER) hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; if (flags & ETH_RSS_L2_PAYLOAD) hena |= 1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD; return hena; } /* Parse the hash enable flags */ uint64_t i40e_parse_hena(uint64_t flags) { uint64_t rss_hf = 0; if (!flags) return rss_hf; if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4)) rss_hf |= ETH_RSS_FRAG_IPV4; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP)) rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK)) rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP)) rss_hf |= ETH_RSS_NONFRAG_IPV4_SCTP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER)) rss_hf |= ETH_RSS_NONFRAG_IPV4_OTHER; if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6)) rss_hf |= ETH_RSS_FRAG_IPV6; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP)) rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK)) rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP)) rss_hf |= ETH_RSS_NONFRAG_IPV6_SCTP; if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER)) rss_hf |= ETH_RSS_NONFRAG_IPV6_OTHER; if (flags & (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD)) rss_hf |= ETH_RSS_L2_PAYLOAD; return rss_hf; } /* Disable RSS */ static void i40e_pf_disable_rss(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); uint64_t hena; hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32; if (hw->mac.type == I40E_MAC_X722) hena &= ~I40E_RSS_HENA_ALL_X722; else hena &= ~I40E_RSS_HENA_ALL; i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena); i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32)); I40E_WRITE_FLUSH(hw); } static int i40e_set_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t key_len) { struct i40e_pf *pf = I40E_VSI_TO_PF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret = 0; if (!key || key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); return 0; } else if (key_len != (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) { PMD_DRV_LOG(ERR, "Invalid key length %u", key_len); return -EINVAL; } if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { struct i40e_aqc_get_set_rss_key_data *key_dw = (struct i40e_aqc_get_set_rss_key_data *)key; ret = i40e_aq_set_rss_key(hw, vsi->vsi_id, key_dw); if (ret) PMD_INIT_LOG(ERR, "Failed to configure RSS key via AQ"); } else { uint32_t *hash_key = (uint32_t *)key; uint16_t i; for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), hash_key[i]); I40E_WRITE_FLUSH(hw); } return ret; } static int i40e_get_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t *key_len) { struct i40e_pf *pf = I40E_VSI_TO_PF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret; if (!key || !key_len) return -EINVAL; if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_get_rss_key(hw, vsi->vsi_id, (struct i40e_aqc_get_set_rss_key_data *)key); if (ret) { PMD_INIT_LOG(ERR, "Failed to get RSS key via AQ"); return ret; } } else { uint32_t *key_dw = (uint32_t *)key; uint16_t i; for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) key_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); } *key_len = (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); return 0; } static int i40e_hw_rss_hash_set(struct i40e_pf *pf, struct rte_eth_rss_conf *rss_conf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); uint64_t rss_hf; uint64_t hena; int ret; ret = i40e_set_rss_key(pf->main_vsi, rss_conf->rss_key, rss_conf->rss_key_len); if (ret) return ret; rss_hf = rss_conf->rss_hf; hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32; if (hw->mac.type == I40E_MAC_X722) hena &= ~I40E_RSS_HENA_ALL_X722; else hena &= ~I40E_RSS_HENA_ALL; hena |= i40e_config_hena(rss_hf, hw->mac.type); i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena); i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32)); I40E_WRITE_FLUSH(hw); return 0; } static int i40e_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t rss_hf = rss_conf->rss_hf & I40E_RSS_OFFLOAD_ALL; uint64_t hena; hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32; if (!(hena & ((hw->mac.type == I40E_MAC_X722) ? I40E_RSS_HENA_ALL_X722 : I40E_RSS_HENA_ALL))) { /* RSS disabled */ if (rss_hf != 0) /* Enable RSS */ return -EINVAL; return 0; /* Nothing to do */ } /* RSS enabled */ if (rss_hf == 0) /* Disable RSS */ return -EINVAL; return i40e_hw_rss_hash_set(pf, rss_conf); } static int i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t hena; i40e_get_rss_key(pf->main_vsi, rss_conf->rss_key, &rss_conf->rss_key_len); hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32; rss_conf->rss_hf = i40e_parse_hena(hena); return 0; } static int i40e_dev_get_filter_type(uint16_t filter_type, uint16_t *flag) { switch (filter_type) { case RTE_TUNNEL_FILTER_IMAC_IVLAN: *flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN; break; case RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID: *flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID; break; case RTE_TUNNEL_FILTER_IMAC_TENID: *flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID; break; case RTE_TUNNEL_FILTER_OMAC_TENID_IMAC: *flag = I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC; break; case ETH_TUNNEL_FILTER_IMAC: *flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC; break; case ETH_TUNNEL_FILTER_OIP: *flag = I40E_AQC_ADD_CLOUD_FILTER_OIP; break; case ETH_TUNNEL_FILTER_IIP: *flag = I40E_AQC_ADD_CLOUD_FILTER_IIP; break; default: PMD_DRV_LOG(ERR, "invalid tunnel filter type"); return -EINVAL; } return 0; } /* Convert tunnel filter structure */ static int i40e_tunnel_filter_convert( struct i40e_aqc_add_rm_cloud_filt_elem_ext *cld_filter, struct i40e_tunnel_filter *tunnel_filter) { ether_addr_copy((struct ether_addr *)&cld_filter->element.outer_mac, (struct ether_addr *)&tunnel_filter->input.outer_mac); ether_addr_copy((struct ether_addr *)&cld_filter->element.inner_mac, (struct ether_addr *)&tunnel_filter->input.inner_mac); tunnel_filter->input.inner_vlan = cld_filter->element.inner_vlan; if ((rte_le_to_cpu_16(cld_filter->element.flags) & I40E_AQC_ADD_CLOUD_FLAGS_IPV6) == I40E_AQC_ADD_CLOUD_FLAGS_IPV6) tunnel_filter->input.ip_type = I40E_TUNNEL_IPTYPE_IPV6; else tunnel_filter->input.ip_type = I40E_TUNNEL_IPTYPE_IPV4; tunnel_filter->input.flags = cld_filter->element.flags; tunnel_filter->input.tenant_id = cld_filter->element.tenant_id; tunnel_filter->queue = cld_filter->element.queue_number; rte_memcpy(tunnel_filter->input.general_fields, cld_filter->general_fields, sizeof(cld_filter->general_fields)); return 0; } /* Check if there exists the tunnel filter */ struct i40e_tunnel_filter * i40e_sw_tunnel_filter_lookup(struct i40e_tunnel_rule *tunnel_rule, const struct i40e_tunnel_filter_input *input) { int ret; ret = rte_hash_lookup(tunnel_rule->hash_table, (const void *)input); if (ret < 0) return NULL; return tunnel_rule->hash_map[ret]; } /* Add a tunnel filter into the SW list */ static int i40e_sw_tunnel_filter_insert(struct i40e_pf *pf, struct i40e_tunnel_filter *tunnel_filter) { struct i40e_tunnel_rule *rule = &pf->tunnel; int ret; ret = rte_hash_add_key(rule->hash_table, &tunnel_filter->input); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to insert tunnel filter to hash table %d!", ret); return ret; } rule->hash_map[ret] = tunnel_filter; TAILQ_INSERT_TAIL(&rule->tunnel_list, tunnel_filter, rules); return 0; } /* Delete a tunnel filter from the SW list */ int i40e_sw_tunnel_filter_del(struct i40e_pf *pf, struct i40e_tunnel_filter_input *input) { struct i40e_tunnel_rule *rule = &pf->tunnel; struct i40e_tunnel_filter *tunnel_filter; int ret; ret = rte_hash_del_key(rule->hash_table, input); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to delete tunnel filter to hash table %d!", ret); return ret; } tunnel_filter = rule->hash_map[ret]; rule->hash_map[ret] = NULL; TAILQ_REMOVE(&rule->tunnel_list, tunnel_filter, rules); rte_free(tunnel_filter); return 0; } int i40e_dev_tunnel_filter_set(struct i40e_pf *pf, struct rte_eth_tunnel_filter_conf *tunnel_filter, uint8_t add) { uint16_t ip_type; uint32_t ipv4_addr; uint8_t i, tun_type = 0; /* internal varialbe to convert ipv6 byte order */ uint32_t convert_ipv6[4]; int val, ret = 0; struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_vsi *vsi = pf->main_vsi; struct i40e_aqc_add_rm_cloud_filt_elem_ext *cld_filter; struct i40e_aqc_add_rm_cloud_filt_elem_ext *pfilter; struct i40e_tunnel_rule *tunnel_rule = &pf->tunnel; struct i40e_tunnel_filter *tunnel, *node; struct i40e_tunnel_filter check_filter; /* Check if filter exists */ cld_filter = rte_zmalloc("tunnel_filter", sizeof(struct i40e_aqc_add_rm_cloud_filt_elem_ext), 0); if (NULL == cld_filter) { PMD_DRV_LOG(ERR, "Failed to alloc memory."); return -ENOMEM; } pfilter = cld_filter; ether_addr_copy(&tunnel_filter->outer_mac, (struct ether_addr *)&pfilter->element.outer_mac); ether_addr_copy(&tunnel_filter->inner_mac, (struct ether_addr *)&pfilter->element.inner_mac); pfilter->element.inner_vlan = rte_cpu_to_le_16(tunnel_filter->inner_vlan); if (tunnel_filter->ip_type == RTE_TUNNEL_IPTYPE_IPV4) { ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV4; ipv4_addr = rte_be_to_cpu_32(tunnel_filter->ip_addr.ipv4_addr); rte_memcpy(&pfilter->element.ipaddr.v4.data, &rte_cpu_to_le_32(ipv4_addr), sizeof(pfilter->element.ipaddr.v4.data)); } else { ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV6; for (i = 0; i < 4; i++) { convert_ipv6[i] = rte_cpu_to_le_32(rte_be_to_cpu_32(tunnel_filter->ip_addr.ipv6_addr[i])); } rte_memcpy(&pfilter->element.ipaddr.v6.data, &convert_ipv6, sizeof(pfilter->element.ipaddr.v6.data)); } /* check tunneled type */ switch (tunnel_filter->tunnel_type) { case RTE_TUNNEL_TYPE_VXLAN: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_VXLAN; break; case RTE_TUNNEL_TYPE_NVGRE: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_NVGRE_OMAC; break; case RTE_TUNNEL_TYPE_IP_IN_GRE: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_IP; break; default: /* Other tunnel types is not supported. */ PMD_DRV_LOG(ERR, "tunnel type is not supported."); rte_free(cld_filter); return -EINVAL; } val = i40e_dev_get_filter_type(tunnel_filter->filter_type, &pfilter->element.flags); if (val < 0) { rte_free(cld_filter); return -EINVAL; } pfilter->element.flags |= rte_cpu_to_le_16( I40E_AQC_ADD_CLOUD_FLAGS_TO_QUEUE | ip_type | (tun_type << I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT)); pfilter->element.tenant_id = rte_cpu_to_le_32(tunnel_filter->tenant_id); pfilter->element.queue_number = rte_cpu_to_le_16(tunnel_filter->queue_id); /* Check if there is the filter in SW list */ memset(&check_filter, 0, sizeof(check_filter)); i40e_tunnel_filter_convert(cld_filter, &check_filter); node = i40e_sw_tunnel_filter_lookup(tunnel_rule, &check_filter.input); if (add && node) { PMD_DRV_LOG(ERR, "Conflict with existing tunnel rules!"); return -EINVAL; } if (!add && !node) { PMD_DRV_LOG(ERR, "There's no corresponding tunnel filter!"); return -EINVAL; } if (add) { ret = i40e_aq_add_cloud_filters(hw, vsi->seid, &cld_filter->element, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to add a tunnel filter."); return -ENOTSUP; } tunnel = rte_zmalloc("tunnel_filter", sizeof(*tunnel), 0); rte_memcpy(tunnel, &check_filter, sizeof(check_filter)); ret = i40e_sw_tunnel_filter_insert(pf, tunnel); } else { ret = i40e_aq_remove_cloud_filters(hw, vsi->seid, &cld_filter->element, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to delete a tunnel filter."); return -ENOTSUP; } ret = i40e_sw_tunnel_filter_del(pf, &node->input); } rte_free(cld_filter); return ret; } #define I40E_AQC_REPLACE_CLOUD_CMD_INPUT_TR_WORD0 0x48 #define I40E_TR_VXLAN_GRE_KEY_MASK 0x4 #define I40E_TR_GENEVE_KEY_MASK 0x8 #define I40E_TR_GENERIC_UDP_TUNNEL_MASK 0x40 #define I40E_TR_GRE_KEY_MASK 0x400 #define I40E_TR_GRE_KEY_WITH_XSUM_MASK 0x800 #define I40E_TR_GRE_NO_KEY_MASK 0x8000 static enum i40e_status_code i40e_replace_mpls_l1_filter(struct i40e_pf *pf) { struct i40e_aqc_replace_cloud_filters_cmd filter_replace; struct i40e_aqc_replace_cloud_filters_cmd_buf filter_replace_buf; struct i40e_hw *hw = I40E_PF_TO_HW(pf); enum i40e_status_code status = I40E_SUCCESS; memset(&filter_replace, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd)); memset(&filter_replace_buf, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd_buf)); /* create L1 filter */ filter_replace.old_filter_type = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_IMAC; filter_replace.new_filter_type = I40E_AQC_ADD_L1_FILTER_TEID_MPLS; filter_replace.tr_bit = 0; /* Prepare the buffer, 3 entries */ filter_replace_buf.data[0] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_TEID_WORD0; filter_replace_buf.data[0] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[2] = 0xFF; filter_replace_buf.data[3] = 0xFF; filter_replace_buf.data[4] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_TEID_WORD1; filter_replace_buf.data[4] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[7] = 0xF0; filter_replace_buf.data[8] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_TR_WORD0; filter_replace_buf.data[8] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[10] = I40E_TR_VXLAN_GRE_KEY_MASK | I40E_TR_GENEVE_KEY_MASK | I40E_TR_GENERIC_UDP_TUNNEL_MASK; filter_replace_buf.data[11] = (I40E_TR_GRE_KEY_MASK | I40E_TR_GRE_KEY_WITH_XSUM_MASK | I40E_TR_GRE_NO_KEY_MASK) >> 8; status = i40e_aq_replace_cloud_filters(hw, &filter_replace, &filter_replace_buf); return status; } static enum i40e_status_code i40e_replace_mpls_cloud_filter(struct i40e_pf *pf) { struct i40e_aqc_replace_cloud_filters_cmd filter_replace; struct i40e_aqc_replace_cloud_filters_cmd_buf filter_replace_buf; struct i40e_hw *hw = I40E_PF_TO_HW(pf); enum i40e_status_code status = I40E_SUCCESS; /* For MPLSoUDP */ memset(&filter_replace, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd)); memset(&filter_replace_buf, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd_buf)); filter_replace.valid_flags = I40E_AQC_REPLACE_CLOUD_FILTER | I40E_AQC_MIRROR_CLOUD_FILTER; filter_replace.old_filter_type = I40E_AQC_ADD_CLOUD_FILTER_IIP; filter_replace.new_filter_type = I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoUDP; /* Prepare the buffer, 2 entries */ filter_replace_buf.data[0] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_STAG; filter_replace_buf.data[0] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[4] = I40E_AQC_ADD_L1_FILTER_TEID_MPLS; filter_replace_buf.data[4] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; status = i40e_aq_replace_cloud_filters(hw, &filter_replace, &filter_replace_buf); if (status < 0) return status; /* For MPLSoGRE */ memset(&filter_replace, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd)); memset(&filter_replace_buf, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd_buf)); filter_replace.valid_flags = I40E_AQC_REPLACE_CLOUD_FILTER | I40E_AQC_MIRROR_CLOUD_FILTER; filter_replace.old_filter_type = I40E_AQC_ADD_CLOUD_FILTER_IMAC; filter_replace.new_filter_type = I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoGRE; /* Prepare the buffer, 2 entries */ filter_replace_buf.data[0] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_STAG; filter_replace_buf.data[0] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[4] = I40E_AQC_ADD_L1_FILTER_TEID_MPLS; filter_replace_buf.data[4] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; status = i40e_aq_replace_cloud_filters(hw, &filter_replace, &filter_replace_buf); return status; } int i40e_dev_consistent_tunnel_filter_set(struct i40e_pf *pf, struct i40e_tunnel_filter_conf *tunnel_filter, uint8_t add) { uint16_t ip_type; uint32_t ipv4_addr; uint8_t i, tun_type = 0; /* internal variable to convert ipv6 byte order */ uint32_t convert_ipv6[4]; int val, ret = 0; struct i40e_pf_vf *vf = NULL; struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_vsi *vsi; struct i40e_aqc_add_rm_cloud_filt_elem_ext *cld_filter; struct i40e_aqc_add_rm_cloud_filt_elem_ext *pfilter; struct i40e_tunnel_rule *tunnel_rule = &pf->tunnel; struct i40e_tunnel_filter *tunnel, *node; struct i40e_tunnel_filter check_filter; /* Check if filter exists */ uint32_t teid_le; bool big_buffer = 0; cld_filter = rte_zmalloc("tunnel_filter", sizeof(struct i40e_aqc_add_rm_cloud_filt_elem_ext), 0); if (cld_filter == NULL) { PMD_DRV_LOG(ERR, "Failed to alloc memory."); return -ENOMEM; } pfilter = cld_filter; ether_addr_copy(&tunnel_filter->outer_mac, (struct ether_addr *)&pfilter->element.outer_mac); ether_addr_copy(&tunnel_filter->inner_mac, (struct ether_addr *)&pfilter->element.inner_mac); pfilter->element.inner_vlan = rte_cpu_to_le_16(tunnel_filter->inner_vlan); if (tunnel_filter->ip_type == I40E_TUNNEL_IPTYPE_IPV4) { ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV4; ipv4_addr = rte_be_to_cpu_32(tunnel_filter->ip_addr.ipv4_addr); rte_memcpy(&pfilter->element.ipaddr.v4.data, &rte_cpu_to_le_32(ipv4_addr), sizeof(pfilter->element.ipaddr.v4.data)); } else { ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV6; for (i = 0; i < 4; i++) { convert_ipv6[i] = rte_cpu_to_le_32(rte_be_to_cpu_32( tunnel_filter->ip_addr.ipv6_addr[i])); } rte_memcpy(&pfilter->element.ipaddr.v6.data, &convert_ipv6, sizeof(pfilter->element.ipaddr.v6.data)); } /* check tunneled type */ switch (tunnel_filter->tunnel_type) { case I40E_TUNNEL_TYPE_VXLAN: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_VXLAN; break; case I40E_TUNNEL_TYPE_NVGRE: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_NVGRE_OMAC; break; case I40E_TUNNEL_TYPE_IP_IN_GRE: tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_IP; break; case I40E_TUNNEL_TYPE_MPLSoUDP: if (!pf->mpls_replace_flag) { i40e_replace_mpls_l1_filter(pf); i40e_replace_mpls_cloud_filter(pf); pf->mpls_replace_flag = 1; } teid_le = rte_cpu_to_le_32(tunnel_filter->tenant_id); pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD0] = teid_le >> 4; pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD1] = (teid_le & 0xF) << 12; pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD2] = 0x40; big_buffer = 1; tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_MPLSoUDP; break; case I40E_TUNNEL_TYPE_MPLSoGRE: if (!pf->mpls_replace_flag) { i40e_replace_mpls_l1_filter(pf); i40e_replace_mpls_cloud_filter(pf); pf->mpls_replace_flag = 1; } teid_le = rte_cpu_to_le_32(tunnel_filter->tenant_id); pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD0] = teid_le >> 4; pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD1] = (teid_le & 0xF) << 12; pfilter->general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X11_WORD2] = 0x0; big_buffer = 1; tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_MPLSoGRE; break; case I40E_TUNNEL_TYPE_QINQ: if (!pf->qinq_replace_flag) { ret = i40e_cloud_filter_qinq_create(pf); if (ret < 0) PMD_DRV_LOG(DEBUG, "QinQ tunnel filter already created."); pf->qinq_replace_flag = 1; } /* Add in the General fields the values of * the Outer and Inner VLAN * Big Buffer should be set, see changes in * i40e_aq_add_cloud_filters */ pfilter->general_fields[0] = tunnel_filter->inner_vlan; pfilter->general_fields[1] = tunnel_filter->outer_vlan; big_buffer = 1; break; default: /* Other tunnel types is not supported. */ PMD_DRV_LOG(ERR, "tunnel type is not supported."); rte_free(cld_filter); return -EINVAL; } if (tunnel_filter->tunnel_type == I40E_TUNNEL_TYPE_MPLSoUDP) pfilter->element.flags = I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoUDP; else if (tunnel_filter->tunnel_type == I40E_TUNNEL_TYPE_MPLSoGRE) pfilter->element.flags = I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoGRE; else if (tunnel_filter->tunnel_type == I40E_TUNNEL_TYPE_QINQ) pfilter->element.flags |= I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ; else { val = i40e_dev_get_filter_type(tunnel_filter->filter_type, &pfilter->element.flags); if (val < 0) { rte_free(cld_filter); return -EINVAL; } } pfilter->element.flags |= rte_cpu_to_le_16( I40E_AQC_ADD_CLOUD_FLAGS_TO_QUEUE | ip_type | (tun_type << I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT)); pfilter->element.tenant_id = rte_cpu_to_le_32(tunnel_filter->tenant_id); pfilter->element.queue_number = rte_cpu_to_le_16(tunnel_filter->queue_id); if (!tunnel_filter->is_to_vf) vsi = pf->main_vsi; else { if (tunnel_filter->vf_id >= pf->vf_num) { PMD_DRV_LOG(ERR, "Invalid argument."); return -EINVAL; } vf = &pf->vfs[tunnel_filter->vf_id]; vsi = vf->vsi; } /* Check if there is the filter in SW list */ memset(&check_filter, 0, sizeof(check_filter)); i40e_tunnel_filter_convert(cld_filter, &check_filter); check_filter.is_to_vf = tunnel_filter->is_to_vf; check_filter.vf_id = tunnel_filter->vf_id; node = i40e_sw_tunnel_filter_lookup(tunnel_rule, &check_filter.input); if (add && node) { PMD_DRV_LOG(ERR, "Conflict with existing tunnel rules!"); return -EINVAL; } if (!add && !node) { PMD_DRV_LOG(ERR, "There's no corresponding tunnel filter!"); return -EINVAL; } if (add) { if (big_buffer) ret = i40e_aq_add_cloud_filters_big_buffer(hw, vsi->seid, cld_filter, 1); else ret = i40e_aq_add_cloud_filters(hw, vsi->seid, &cld_filter->element, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to add a tunnel filter."); return -ENOTSUP; } tunnel = rte_zmalloc("tunnel_filter", sizeof(*tunnel), 0); rte_memcpy(tunnel, &check_filter, sizeof(check_filter)); ret = i40e_sw_tunnel_filter_insert(pf, tunnel); } else { if (big_buffer) ret = i40e_aq_remove_cloud_filters_big_buffer( hw, vsi->seid, cld_filter, 1); else ret = i40e_aq_remove_cloud_filters(hw, vsi->seid, &cld_filter->element, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to delete a tunnel filter."); return -ENOTSUP; } ret = i40e_sw_tunnel_filter_del(pf, &node->input); } rte_free(cld_filter); return ret; } static int i40e_get_vxlan_port_idx(struct i40e_pf *pf, uint16_t port) { uint8_t i; for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { if (pf->vxlan_ports[i] == port) return i; } return -1; } static int i40e_add_vxlan_port(struct i40e_pf *pf, uint16_t port) { int idx, ret; uint8_t filter_idx; struct i40e_hw *hw = I40E_PF_TO_HW(pf); idx = i40e_get_vxlan_port_idx(pf, port); /* Check if port already exists */ if (idx >= 0) { PMD_DRV_LOG(ERR, "Port %d already offloaded", port); return -EINVAL; } /* Now check if there is space to add the new port */ idx = i40e_get_vxlan_port_idx(pf, 0); if (idx < 0) { PMD_DRV_LOG(ERR, "Maximum number of UDP ports reached, not adding port %d", port); return -ENOSPC; } ret = i40e_aq_add_udp_tunnel(hw, port, I40E_AQC_TUNNEL_TYPE_VXLAN, &filter_idx, NULL); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to add VXLAN UDP port %d", port); return -1; } PMD_DRV_LOG(INFO, "Added port %d with AQ command with index %d", port, filter_idx); /* New port: add it and mark its index in the bitmap */ pf->vxlan_ports[idx] = port; pf->vxlan_bitmap |= (1 << idx); if (!(pf->flags & I40E_FLAG_VXLAN)) pf->flags |= I40E_FLAG_VXLAN; return 0; } static int i40e_del_vxlan_port(struct i40e_pf *pf, uint16_t port) { int idx; struct i40e_hw *hw = I40E_PF_TO_HW(pf); if (!(pf->flags & I40E_FLAG_VXLAN)) { PMD_DRV_LOG(ERR, "VXLAN UDP port was not configured."); return -EINVAL; } idx = i40e_get_vxlan_port_idx(pf, port); if (idx < 0) { PMD_DRV_LOG(ERR, "Port %d doesn't exist", port); return -EINVAL; } if (i40e_aq_del_udp_tunnel(hw, idx, NULL) < 0) { PMD_DRV_LOG(ERR, "Failed to delete VXLAN UDP port %d", port); return -1; } PMD_DRV_LOG(INFO, "Deleted port %d with AQ command with index %d", port, idx); pf->vxlan_ports[idx] = 0; pf->vxlan_bitmap &= ~(1 << idx); if (!pf->vxlan_bitmap) pf->flags &= ~I40E_FLAG_VXLAN; return 0; } /* Add UDP tunneling port */ static int i40e_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel) { int ret = 0; struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); if (udp_tunnel == NULL) return -EINVAL; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: ret = i40e_add_vxlan_port(pf, udp_tunnel->udp_port); break; case RTE_TUNNEL_TYPE_GENEVE: case RTE_TUNNEL_TYPE_TEREDO: PMD_DRV_LOG(ERR, "Tunnel type is not supported now."); ret = -1; break; default: PMD_DRV_LOG(ERR, "Invalid tunnel type"); ret = -1; break; } return ret; } /* Remove UDP tunneling port */ static int i40e_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel) { int ret = 0; struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); if (udp_tunnel == NULL) return -EINVAL; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: ret = i40e_del_vxlan_port(pf, udp_tunnel->udp_port); break; case RTE_TUNNEL_TYPE_GENEVE: case RTE_TUNNEL_TYPE_TEREDO: PMD_DRV_LOG(ERR, "Tunnel type is not supported now."); ret = -1; break; default: PMD_DRV_LOG(ERR, "Invalid tunnel type"); ret = -1; break; } return ret; } /* Calculate the maximum number of contiguous PF queues that are configured */ static int i40e_pf_calc_configured_queues_num(struct i40e_pf *pf) { struct rte_eth_dev_data *data = pf->dev_data; int i, num; struct i40e_rx_queue *rxq; num = 0; for (i = 0; i < pf->lan_nb_qps; i++) { rxq = data->rx_queues[i]; if (rxq && rxq->q_set) num++; else break; } return num; } /* Configure RSS */ static int i40e_pf_config_rss(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct rte_eth_rss_conf rss_conf; uint32_t i, lut = 0; uint16_t j, num; /* * If both VMDQ and RSS enabled, not all of PF queues are configured. * It's necessary to calulate the actual PF queues that are configured. */ if (pf->dev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG) num = i40e_pf_calc_configured_queues_num(pf); else num = pf->dev_data->nb_rx_queues; num = RTE_MIN(num, I40E_MAX_Q_PER_TC); PMD_INIT_LOG(INFO, "Max of contiguous %u PF queues are configured", num); if (num == 0) { PMD_INIT_LOG(ERR, "No PF queues are configured to enable RSS"); return -ENOTSUP; } for (i = 0, j = 0; i < hw->func_caps.rss_table_size; i++, j++) { if (j == num) j = 0; lut = (lut << 8) | (j & ((0x1 << hw->func_caps.rss_table_entry_width) - 1)); if ((i & 3) == 3) I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i >> 2), lut); } rss_conf = pf->dev_data->dev_conf.rx_adv_conf.rss_conf; if ((rss_conf.rss_hf & I40E_RSS_OFFLOAD_ALL) == 0) { i40e_pf_disable_rss(pf); return 0; } if (rss_conf.rss_key == NULL || rss_conf.rss_key_len < (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) { /* Random default keys */ static uint32_t rss_key_default[] = {0x6b793944, 0x23504cb5, 0x5bea75b6, 0x309f4f12, 0x3dc0a2b8, 0x024ddcdf, 0x339b8ca0, 0x4c4af64a, 0x34fac605, 0x55d85839, 0x3a58997d, 0x2ec938e1, 0x66031581}; rss_conf.rss_key = (uint8_t *)rss_key_default; rss_conf.rss_key_len = (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); } return i40e_hw_rss_hash_set(pf, &rss_conf); } static int i40e_tunnel_filter_param_check(struct i40e_pf *pf, struct rte_eth_tunnel_filter_conf *filter) { if (pf == NULL || filter == NULL) { PMD_DRV_LOG(ERR, "Invalid parameter"); return -EINVAL; } if (filter->queue_id >= pf->dev_data->nb_rx_queues) { PMD_DRV_LOG(ERR, "Invalid queue ID"); return -EINVAL; } if (filter->inner_vlan > ETHER_MAX_VLAN_ID) { PMD_DRV_LOG(ERR, "Invalid inner VLAN ID"); return -EINVAL; } if ((filter->filter_type & ETH_TUNNEL_FILTER_OMAC) && (is_zero_ether_addr(&filter->outer_mac))) { PMD_DRV_LOG(ERR, "Cannot add NULL outer MAC address"); return -EINVAL; } if ((filter->filter_type & ETH_TUNNEL_FILTER_IMAC) && (is_zero_ether_addr(&filter->inner_mac))) { PMD_DRV_LOG(ERR, "Cannot add NULL inner MAC address"); return -EINVAL; } return 0; } #define I40E_GL_PRS_FVBM_MSK_ENA 0x80000000 #define I40E_GL_PRS_FVBM(_i) (0x00269760 + ((_i) * 4)) static int i40e_dev_set_gre_key_len(struct i40e_hw *hw, uint8_t len) { uint32_t val, reg; int ret = -EINVAL; val = I40E_READ_REG(hw, I40E_GL_PRS_FVBM(2)); PMD_DRV_LOG(DEBUG, "Read original GL_PRS_FVBM with 0x%08x", val); if (len == 3) { reg = val | I40E_GL_PRS_FVBM_MSK_ENA; } else if (len == 4) { reg = val & ~I40E_GL_PRS_FVBM_MSK_ENA; } else { PMD_DRV_LOG(ERR, "Unsupported GRE key length of %u", len); return ret; } if (reg != val) { ret = i40e_aq_debug_write_register(hw, I40E_GL_PRS_FVBM(2), reg, NULL); if (ret != 0) return ret; } else { ret = 0; } PMD_DRV_LOG(DEBUG, "Read modified GL_PRS_FVBM with 0x%08x", I40E_READ_REG(hw, I40E_GL_PRS_FVBM(2))); return ret; } static int i40e_dev_global_config_set(struct i40e_hw *hw, struct rte_eth_global_cfg *cfg) { int ret = -EINVAL; if (!hw || !cfg) return -EINVAL; switch (cfg->cfg_type) { case RTE_ETH_GLOBAL_CFG_TYPE_GRE_KEY_LEN: ret = i40e_dev_set_gre_key_len(hw, cfg->cfg.gre_key_len); break; default: PMD_DRV_LOG(ERR, "Unknown config type %u", cfg->cfg_type); break; } return ret; } static int i40e_filter_ctrl_global_config(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret = I40E_ERR_PARAM; switch (filter_op) { case RTE_ETH_FILTER_SET: ret = i40e_dev_global_config_set(hw, (struct rte_eth_global_cfg *)arg); break; default: PMD_DRV_LOG(ERR, "unknown operation %u", filter_op); break; } return ret; } static int i40e_tunnel_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct rte_eth_tunnel_filter_conf *filter; struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); int ret = I40E_SUCCESS; filter = (struct rte_eth_tunnel_filter_conf *)(arg); if (i40e_tunnel_filter_param_check(pf, filter) < 0) return I40E_ERR_PARAM; switch (filter_op) { case RTE_ETH_FILTER_NOP: if (!(pf->flags & I40E_FLAG_VXLAN)) ret = I40E_NOT_SUPPORTED; break; case RTE_ETH_FILTER_ADD: ret = i40e_dev_tunnel_filter_set(pf, filter, 1); break; case RTE_ETH_FILTER_DELETE: ret = i40e_dev_tunnel_filter_set(pf, filter, 0); break; default: PMD_DRV_LOG(ERR, "unknown operation %u", filter_op); ret = I40E_ERR_PARAM; break; } return ret; } static int i40e_pf_config_mq_rx(struct i40e_pf *pf) { int ret = 0; enum rte_eth_rx_mq_mode mq_mode = pf->dev_data->dev_conf.rxmode.mq_mode; /* RSS setup */ if (mq_mode & ETH_MQ_RX_RSS_FLAG) ret = i40e_pf_config_rss(pf); else i40e_pf_disable_rss(pf); return ret; } /* Get the symmetric hash enable configurations per port */ static void i40e_get_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t *enable) { uint32_t reg = i40e_read_rx_ctl(hw, I40E_PRTQF_CTL_0); *enable = reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK ? 1 : 0; } /* Set the symmetric hash enable configurations per port */ static void i40e_set_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t enable) { uint32_t reg = i40e_read_rx_ctl(hw, I40E_PRTQF_CTL_0); if (enable > 0) { if (reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK) { PMD_DRV_LOG(INFO, "Symmetric hash has already been enabled"); return; } reg |= I40E_PRTQF_CTL_0_HSYM_ENA_MASK; } else { if (!(reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK)) { PMD_DRV_LOG(INFO, "Symmetric hash has already been disabled"); return; } reg &= ~I40E_PRTQF_CTL_0_HSYM_ENA_MASK; } i40e_write_rx_ctl(hw, I40E_PRTQF_CTL_0, reg); I40E_WRITE_FLUSH(hw); } /* * Get global configurations of hash function type and symmetric hash enable * per flow type (pctype). Note that global configuration means it affects all * the ports on the same NIC. */ static int i40e_get_hash_filter_global_config(struct i40e_hw *hw, struct rte_eth_hash_global_conf *g_cfg) { uint32_t reg, mask = I40E_FLOW_TYPES; uint16_t i; enum i40e_filter_pctype pctype; memset(g_cfg, 0, sizeof(*g_cfg)); reg = i40e_read_rx_ctl(hw, I40E_GLQF_CTL); if (reg & I40E_GLQF_CTL_HTOEP_MASK) g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_TOEPLITZ; else g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR; PMD_DRV_LOG(DEBUG, "Hash function is %s", (reg & I40E_GLQF_CTL_HTOEP_MASK) ? "Toeplitz" : "Simple XOR"); for (i = 0; mask && i < RTE_ETH_FLOW_MAX; i++) { if (!(mask & (1UL << i))) continue; mask &= ~(1UL << i); /* Bit set indicats the coresponding flow type is supported */ g_cfg->valid_bit_mask[0] |= (1UL << i); /* if flowtype is invalid, continue */ if (!I40E_VALID_FLOW(i)) continue; pctype = i40e_flowtype_to_pctype(i); reg = i40e_read_rx_ctl(hw, I40E_GLQF_HSYM(pctype)); if (reg & I40E_GLQF_HSYM_SYMH_ENA_MASK) g_cfg->sym_hash_enable_mask[0] |= (1UL << i); } return 0; } static int i40e_hash_global_config_check(struct rte_eth_hash_global_conf *g_cfg) { uint32_t i; uint32_t mask0, i40e_mask = I40E_FLOW_TYPES; if (g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_TOEPLITZ && g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_SIMPLE_XOR && g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_DEFAULT) { PMD_DRV_LOG(ERR, "Unsupported hash function type %d", g_cfg->hash_func); return -EINVAL; } /* * As i40e supports less than 32 flow types, only first 32 bits need to * be checked. */ mask0 = g_cfg->valid_bit_mask[0]; for (i = 0; i < RTE_SYM_HASH_MASK_ARRAY_SIZE; i++) { if (i == 0) { /* Check if any unsupported flow type configured */ if ((mask0 | i40e_mask) ^ i40e_mask) goto mask_err; } else { if (g_cfg->valid_bit_mask[i]) goto mask_err; } } return 0; mask_err: PMD_DRV_LOG(ERR, "i40e unsupported flow type bit(s) configured"); return -EINVAL; } /* * Set global configurations of hash function type and symmetric hash enable * per flow type (pctype). Note any modifying global configuration will affect * all the ports on the same NIC. */ static int i40e_set_hash_filter_global_config(struct i40e_hw *hw, struct rte_eth_hash_global_conf *g_cfg) { int ret; uint16_t i; uint32_t reg; uint32_t mask0 = g_cfg->valid_bit_mask[0]; enum i40e_filter_pctype pctype; /* Check the input parameters */ ret = i40e_hash_global_config_check(g_cfg); if (ret < 0) return ret; for (i = 0; mask0 && i < UINT32_BIT; i++) { if (!(mask0 & (1UL << i))) continue; mask0 &= ~(1UL << i); /* if flowtype is invalid, continue */ if (!I40E_VALID_FLOW(i)) continue; pctype = i40e_flowtype_to_pctype(i); reg = (g_cfg->sym_hash_enable_mask[0] & (1UL << i)) ? I40E_GLQF_HSYM_SYMH_ENA_MASK : 0; if (hw->mac.type == I40E_MAC_X722) { if (pctype == I40E_FILTER_PCTYPE_NONF_IPV4_UDP) { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV4_UDP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP), reg); } else if (pctype == I40E_FILTER_PCTYPE_NONF_IPV4_TCP) { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV4_TCP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK), reg); } else if (pctype == I40E_FILTER_PCTYPE_NONF_IPV6_UDP) { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV6_UDP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP), reg); } else if (pctype == I40E_FILTER_PCTYPE_NONF_IPV6_TCP) { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV6_TCP), reg); i40e_write_rx_ctl(hw, I40E_GLQF_HSYM( I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK), reg); } else { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM(pctype), reg); } } else { i40e_write_rx_ctl(hw, I40E_GLQF_HSYM(pctype), reg); } } reg = i40e_read_rx_ctl(hw, I40E_GLQF_CTL); if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_TOEPLITZ) { /* Toeplitz */ if (reg & I40E_GLQF_CTL_HTOEP_MASK) { PMD_DRV_LOG(DEBUG, "Hash function already set to Toeplitz"); goto out; } reg |= I40E_GLQF_CTL_HTOEP_MASK; } else if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_SIMPLE_XOR) { /* Simple XOR */ if (!(reg & I40E_GLQF_CTL_HTOEP_MASK)) { PMD_DRV_LOG(DEBUG, "Hash function already set to Simple XOR"); goto out; } reg &= ~I40E_GLQF_CTL_HTOEP_MASK; } else /* Use the default, and keep it as it is */ goto out; i40e_write_rx_ctl(hw, I40E_GLQF_CTL, reg); out: I40E_WRITE_FLUSH(hw); return 0; } /** * Valid input sets for hash and flow director filters per PCTYPE */ static uint64_t i40e_get_valid_input_set(enum i40e_filter_pctype pctype, enum rte_filter_type filter) { uint64_t valid; static const uint64_t valid_hash_inset_table[] = { [I40E_FILTER_PCTYPE_FRAG_IPV4] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV4_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_FRAG_IPV6] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV6_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_TUNNEL_ID | I40E_INSET_FLEX_PAYLOAD, [I40E_FILTER_PCTYPE_L2_PAYLOAD] = I40E_INSET_DMAC | I40E_INSET_SMAC | I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_VLAN_TUNNEL | I40E_INSET_LAST_ETHER_TYPE | I40E_INSET_FLEX_PAYLOAD, }; /** * Flow director supports only fields defined in * union rte_eth_fdir_flow. */ static const uint64_t valid_fdir_inset_table[] = { [I40E_FILTER_PCTYPE_FRAG_IPV4] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL, [I40E_FILTER_PCTYPE_NONF_IPV4_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT, [I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL, [I40E_FILTER_PCTYPE_FRAG_IPV6] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT, [I40E_FILTER_PCTYPE_NONF_IPV6_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT, [I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_IPV6_TC | I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT, [I40E_FILTER_PCTYPE_L2_PAYLOAD] = I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER | I40E_INSET_LAST_ETHER_TYPE, }; if (pctype > I40E_FILTER_PCTYPE_L2_PAYLOAD) return 0; if (filter == RTE_ETH_FILTER_HASH) valid = valid_hash_inset_table[pctype]; else valid = valid_fdir_inset_table[pctype]; return valid; } /** * Validate if the input set is allowed for a specific PCTYPE */ static int i40e_validate_input_set(enum i40e_filter_pctype pctype, enum rte_filter_type filter, uint64_t inset) { uint64_t valid; valid = i40e_get_valid_input_set(pctype, filter); if (inset & (~valid)) return -EINVAL; return 0; } /* default input set fields combination per pctype */ uint64_t i40e_get_default_input_set(uint16_t pctype) { static const uint64_t default_inset_table[] = { [I40E_FILTER_PCTYPE_FRAG_IPV4] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST, [I40E_FILTER_PCTYPE_NONF_IPV4_UDP] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT, [I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] = I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST, [I40E_FILTER_PCTYPE_FRAG_IPV6] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST, [I40E_FILTER_PCTYPE_NONF_IPV6_UDP] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT, [I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT, [I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] = I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST, [I40E_FILTER_PCTYPE_L2_PAYLOAD] = I40E_INSET_LAST_ETHER_TYPE, }; if (pctype > I40E_FILTER_PCTYPE_L2_PAYLOAD) return 0; return default_inset_table[pctype]; } /** * Parse the input set from index to logical bit masks */ static int i40e_parse_input_set(uint64_t *inset, enum i40e_filter_pctype pctype, enum rte_eth_input_set_field *field, uint16_t size) { uint16_t i, j; int ret = -EINVAL; static const struct { enum rte_eth_input_set_field field; uint64_t inset; } inset_convert_table[] = { {RTE_ETH_INPUT_SET_NONE, I40E_INSET_NONE}, {RTE_ETH_INPUT_SET_L2_SRC_MAC, I40E_INSET_SMAC}, {RTE_ETH_INPUT_SET_L2_DST_MAC, I40E_INSET_DMAC}, {RTE_ETH_INPUT_SET_L2_OUTER_VLAN, I40E_INSET_VLAN_OUTER}, {RTE_ETH_INPUT_SET_L2_INNER_VLAN, I40E_INSET_VLAN_INNER}, {RTE_ETH_INPUT_SET_L2_ETHERTYPE, I40E_INSET_LAST_ETHER_TYPE}, {RTE_ETH_INPUT_SET_L3_SRC_IP4, I40E_INSET_IPV4_SRC}, {RTE_ETH_INPUT_SET_L3_DST_IP4, I40E_INSET_IPV4_DST}, {RTE_ETH_INPUT_SET_L3_IP4_TOS, I40E_INSET_IPV4_TOS}, {RTE_ETH_INPUT_SET_L3_IP4_PROTO, I40E_INSET_IPV4_PROTO}, {RTE_ETH_INPUT_SET_L3_IP4_TTL, I40E_INSET_IPV4_TTL}, {RTE_ETH_INPUT_SET_L3_SRC_IP6, I40E_INSET_IPV6_SRC}, {RTE_ETH_INPUT_SET_L3_DST_IP6, I40E_INSET_IPV6_DST}, {RTE_ETH_INPUT_SET_L3_IP6_TC, I40E_INSET_IPV6_TC}, {RTE_ETH_INPUT_SET_L3_IP6_NEXT_HEADER, I40E_INSET_IPV6_NEXT_HDR}, {RTE_ETH_INPUT_SET_L3_IP6_HOP_LIMITS, I40E_INSET_IPV6_HOP_LIMIT}, {RTE_ETH_INPUT_SET_L4_UDP_SRC_PORT, I40E_INSET_SRC_PORT}, {RTE_ETH_INPUT_SET_L4_TCP_SRC_PORT, I40E_INSET_SRC_PORT}, {RTE_ETH_INPUT_SET_L4_SCTP_SRC_PORT, I40E_INSET_SRC_PORT}, {RTE_ETH_INPUT_SET_L4_UDP_DST_PORT, I40E_INSET_DST_PORT}, {RTE_ETH_INPUT_SET_L4_TCP_DST_PORT, I40E_INSET_DST_PORT}, {RTE_ETH_INPUT_SET_L4_SCTP_DST_PORT, I40E_INSET_DST_PORT}, {RTE_ETH_INPUT_SET_L4_SCTP_VERIFICATION_TAG, I40E_INSET_SCTP_VT}, {RTE_ETH_INPUT_SET_TUNNEL_L2_INNER_DST_MAC, I40E_INSET_TUNNEL_DMAC}, {RTE_ETH_INPUT_SET_TUNNEL_L2_INNER_VLAN, I40E_INSET_VLAN_TUNNEL}, {RTE_ETH_INPUT_SET_TUNNEL_L4_UDP_KEY, I40E_INSET_TUNNEL_ID}, {RTE_ETH_INPUT_SET_TUNNEL_GRE_KEY, I40E_INSET_TUNNEL_ID}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_1ST_WORD, I40E_INSET_FLEX_PAYLOAD_W1}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_2ND_WORD, I40E_INSET_FLEX_PAYLOAD_W2}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_3RD_WORD, I40E_INSET_FLEX_PAYLOAD_W3}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_4TH_WORD, I40E_INSET_FLEX_PAYLOAD_W4}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_5TH_WORD, I40E_INSET_FLEX_PAYLOAD_W5}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_6TH_WORD, I40E_INSET_FLEX_PAYLOAD_W6}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_7TH_WORD, I40E_INSET_FLEX_PAYLOAD_W7}, {RTE_ETH_INPUT_SET_FLEX_PAYLOAD_8TH_WORD, I40E_INSET_FLEX_PAYLOAD_W8}, }; if (!inset || !field || size > RTE_ETH_INSET_SIZE_MAX) return ret; /* Only one item allowed for default or all */ if (size == 1) { if (field[0] == RTE_ETH_INPUT_SET_DEFAULT) { *inset = i40e_get_default_input_set(pctype); return 0; } else if (field[0] == RTE_ETH_INPUT_SET_NONE) { *inset = I40E_INSET_NONE; return 0; } } for (i = 0, *inset = 0; i < size; i++) { for (j = 0; j < RTE_DIM(inset_convert_table); j++) { if (field[i] == inset_convert_table[j].field) { *inset |= inset_convert_table[j].inset; break; } } /* It contains unsupported input set, return immediately */ if (j == RTE_DIM(inset_convert_table)) return ret; } return 0; } /** * Translate the input set from bit masks to register aware bit masks * and vice versa */ static uint64_t i40e_translate_input_set_reg(enum i40e_mac_type type, uint64_t input) { uint64_t val = 0; uint16_t i; struct inset_map { uint64_t inset; uint64_t inset_reg; }; static const struct inset_map inset_map_common[] = { {I40E_INSET_DMAC, I40E_REG_INSET_L2_DMAC}, {I40E_INSET_SMAC, I40E_REG_INSET_L2_SMAC}, {I40E_INSET_VLAN_OUTER, I40E_REG_INSET_L2_OUTER_VLAN}, {I40E_INSET_VLAN_INNER, I40E_REG_INSET_L2_INNER_VLAN}, {I40E_INSET_LAST_ETHER_TYPE, I40E_REG_INSET_LAST_ETHER_TYPE}, {I40E_INSET_IPV4_TOS, I40E_REG_INSET_L3_IP4_TOS}, {I40E_INSET_IPV6_SRC, I40E_REG_INSET_L3_SRC_IP6}, {I40E_INSET_IPV6_DST, I40E_REG_INSET_L3_DST_IP6}, {I40E_INSET_IPV6_TC, I40E_REG_INSET_L3_IP6_TC}, {I40E_INSET_IPV6_NEXT_HDR, I40E_REG_INSET_L3_IP6_NEXT_HDR}, {I40E_INSET_IPV6_HOP_LIMIT, I40E_REG_INSET_L3_IP6_HOP_LIMIT}, {I40E_INSET_SRC_PORT, I40E_REG_INSET_L4_SRC_PORT}, {I40E_INSET_DST_PORT, I40E_REG_INSET_L4_DST_PORT}, {I40E_INSET_SCTP_VT, I40E_REG_INSET_L4_SCTP_VERIFICATION_TAG}, {I40E_INSET_TUNNEL_ID, I40E_REG_INSET_TUNNEL_ID}, {I40E_INSET_TUNNEL_DMAC, I40E_REG_INSET_TUNNEL_L2_INNER_DST_MAC}, {I40E_INSET_TUNNEL_IPV4_DST, I40E_REG_INSET_TUNNEL_L3_DST_IP4}, {I40E_INSET_TUNNEL_IPV6_DST, I40E_REG_INSET_TUNNEL_L3_DST_IP6}, {I40E_INSET_TUNNEL_SRC_PORT, I40E_REG_INSET_TUNNEL_L4_UDP_SRC_PORT}, {I40E_INSET_TUNNEL_DST_PORT, I40E_REG_INSET_TUNNEL_L4_UDP_DST_PORT}, {I40E_INSET_VLAN_TUNNEL, I40E_REG_INSET_TUNNEL_VLAN}, {I40E_INSET_FLEX_PAYLOAD_W1, I40E_REG_INSET_FLEX_PAYLOAD_WORD1}, {I40E_INSET_FLEX_PAYLOAD_W2, I40E_REG_INSET_FLEX_PAYLOAD_WORD2}, {I40E_INSET_FLEX_PAYLOAD_W3, I40E_REG_INSET_FLEX_PAYLOAD_WORD3}, {I40E_INSET_FLEX_PAYLOAD_W4, I40E_REG_INSET_FLEX_PAYLOAD_WORD4}, {I40E_INSET_FLEX_PAYLOAD_W5, I40E_REG_INSET_FLEX_PAYLOAD_WORD5}, {I40E_INSET_FLEX_PAYLOAD_W6, I40E_REG_INSET_FLEX_PAYLOAD_WORD6}, {I40E_INSET_FLEX_PAYLOAD_W7, I40E_REG_INSET_FLEX_PAYLOAD_WORD7}, {I40E_INSET_FLEX_PAYLOAD_W8, I40E_REG_INSET_FLEX_PAYLOAD_WORD8}, }; /* some different registers map in x722*/ static const struct inset_map inset_map_diff_x722[] = { {I40E_INSET_IPV4_SRC, I40E_X722_REG_INSET_L3_SRC_IP4}, {I40E_INSET_IPV4_DST, I40E_X722_REG_INSET_L3_DST_IP4}, {I40E_INSET_IPV4_PROTO, I40E_X722_REG_INSET_L3_IP4_PROTO}, {I40E_INSET_IPV4_TTL, I40E_X722_REG_INSET_L3_IP4_TTL}, }; static const struct inset_map inset_map_diff_not_x722[] = { {I40E_INSET_IPV4_SRC, I40E_REG_INSET_L3_SRC_IP4}, {I40E_INSET_IPV4_DST, I40E_REG_INSET_L3_DST_IP4}, {I40E_INSET_IPV4_PROTO, I40E_REG_INSET_L3_IP4_PROTO}, {I40E_INSET_IPV4_TTL, I40E_REG_INSET_L3_IP4_TTL}, }; if (input == 0) return val; /* Translate input set to register aware inset */ if (type == I40E_MAC_X722) { for (i = 0; i < RTE_DIM(inset_map_diff_x722); i++) { if (input & inset_map_diff_x722[i].inset) val |= inset_map_diff_x722[i].inset_reg; } } else { for (i = 0; i < RTE_DIM(inset_map_diff_not_x722); i++) { if (input & inset_map_diff_not_x722[i].inset) val |= inset_map_diff_not_x722[i].inset_reg; } } for (i = 0; i < RTE_DIM(inset_map_common); i++) { if (input & inset_map_common[i].inset) val |= inset_map_common[i].inset_reg; } return val; } static int i40e_generate_inset_mask_reg(uint64_t inset, uint32_t *mask, uint8_t nb_elem) { uint8_t i, idx = 0; uint64_t inset_need_mask = inset; static const struct { uint64_t inset; uint32_t mask; } inset_mask_map[] = { {I40E_INSET_IPV4_TOS, I40E_INSET_IPV4_TOS_MASK}, {I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL, 0}, {I40E_INSET_IPV4_PROTO, I40E_INSET_IPV4_PROTO_MASK}, {I40E_INSET_IPV4_TTL, I40E_INSET_IPv4_TTL_MASK}, {I40E_INSET_IPV6_TC, I40E_INSET_IPV6_TC_MASK}, {I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT, 0}, {I40E_INSET_IPV6_NEXT_HDR, I40E_INSET_IPV6_NEXT_HDR_MASK}, {I40E_INSET_IPV6_HOP_LIMIT, I40E_INSET_IPV6_HOP_LIMIT_MASK}, }; if (!inset || !mask || !nb_elem) return 0; for (i = 0, idx = 0; i < RTE_DIM(inset_mask_map); i++) { /* Clear the inset bit, if no MASK is required, * for example proto + ttl */ if ((inset & inset_mask_map[i].inset) == inset_mask_map[i].inset && inset_mask_map[i].mask == 0) inset_need_mask &= ~inset_mask_map[i].inset; if (!inset_need_mask) return 0; } for (i = 0, idx = 0; i < RTE_DIM(inset_mask_map); i++) { if ((inset_need_mask & inset_mask_map[i].inset) == inset_mask_map[i].inset) { if (idx >= nb_elem) { PMD_DRV_LOG(ERR, "exceed maximal number of bitmasks"); return -EINVAL; } mask[idx] = inset_mask_map[i].mask; idx++; } } return idx; } static void i40e_check_write_reg(struct i40e_hw *hw, uint32_t addr, uint32_t val) { uint32_t reg = i40e_read_rx_ctl(hw, addr); PMD_DRV_LOG(DEBUG, "[0x%08x] original: 0x%08x", addr, reg); if (reg != val) i40e_write_rx_ctl(hw, addr, val); PMD_DRV_LOG(DEBUG, "[0x%08x] after: 0x%08x", addr, (uint32_t)i40e_read_rx_ctl(hw, addr)); } static void i40e_filter_input_set_init(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); enum i40e_filter_pctype pctype; uint64_t input_set, inset_reg; uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0}; int num, i; for (pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; pctype <= I40E_FILTER_PCTYPE_L2_PAYLOAD; pctype++) { if (hw->mac.type == I40E_MAC_X722) { if (!I40E_VALID_PCTYPE_X722(pctype)) continue; } else { if (!I40E_VALID_PCTYPE(pctype)) continue; } input_set = i40e_get_default_input_set(pctype); num = i40e_generate_inset_mask_reg(input_set, mask_reg, I40E_INSET_MASK_NUM_REG); if (num < 0) return; inset_reg = i40e_translate_input_set_reg(hw->mac.type, input_set); i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 0), (uint32_t)(inset_reg & UINT32_MAX)); i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 1), (uint32_t)((inset_reg >> I40E_32_BIT_WIDTH) & UINT32_MAX)); i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(0, pctype), (uint32_t)(inset_reg & UINT32_MAX)); i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(1, pctype), (uint32_t)((inset_reg >> I40E_32_BIT_WIDTH) & UINT32_MAX)); for (i = 0; i < num; i++) { i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype), mask_reg[i]); i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype), mask_reg[i]); } /*clear unused mask registers of the pctype */ for (i = num; i < I40E_INSET_MASK_NUM_REG; i++) { i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype), 0); i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype), 0); } I40E_WRITE_FLUSH(hw); /* store the default input set */ pf->hash_input_set[pctype] = input_set; pf->fdir.input_set[pctype] = input_set; } } int i40e_hash_filter_inset_select(struct i40e_hw *hw, struct rte_eth_input_set_conf *conf) { struct i40e_pf *pf = &((struct i40e_adapter *)hw->back)->pf; enum i40e_filter_pctype pctype; uint64_t input_set, inset_reg = 0; uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0}; int ret, i, num; if (!conf) { PMD_DRV_LOG(ERR, "Invalid pointer"); return -EFAULT; } if (conf->op != RTE_ETH_INPUT_SET_SELECT && conf->op != RTE_ETH_INPUT_SET_ADD) { PMD_DRV_LOG(ERR, "Unsupported input set operation"); return -EINVAL; } if (!I40E_VALID_FLOW(conf->flow_type)) { PMD_DRV_LOG(ERR, "invalid flow_type input."); return -EINVAL; } if (hw->mac.type == I40E_MAC_X722) { /* get translated pctype value in fd pctype register */ pctype = (enum i40e_filter_pctype)i40e_read_rx_ctl(hw, I40E_GLQF_FD_PCTYPES((int)i40e_flowtype_to_pctype( conf->flow_type))); } else pctype = i40e_flowtype_to_pctype(conf->flow_type); ret = i40e_parse_input_set(&input_set, pctype, conf->field, conf->inset_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to parse input set"); return -EINVAL; } if (i40e_validate_input_set(pctype, RTE_ETH_FILTER_HASH, input_set) != 0) { PMD_DRV_LOG(ERR, "Invalid input set"); return -EINVAL; } if (conf->op == RTE_ETH_INPUT_SET_ADD) { /* get inset value in register */ inset_reg = i40e_read_rx_ctl(hw, I40E_GLQF_HASH_INSET(1, pctype)); inset_reg <<= I40E_32_BIT_WIDTH; inset_reg |= i40e_read_rx_ctl(hw, I40E_GLQF_HASH_INSET(0, pctype)); input_set |= pf->hash_input_set[pctype]; } num = i40e_generate_inset_mask_reg(input_set, mask_reg, I40E_INSET_MASK_NUM_REG); if (num < 0) return -EINVAL; inset_reg |= i40e_translate_input_set_reg(hw->mac.type, input_set); i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(0, pctype), (uint32_t)(inset_reg & UINT32_MAX)); i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(1, pctype), (uint32_t)((inset_reg >> I40E_32_BIT_WIDTH) & UINT32_MAX)); for (i = 0; i < num; i++) i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype), mask_reg[i]); /*clear unused mask registers of the pctype */ for (i = num; i < I40E_INSET_MASK_NUM_REG; i++) i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype), 0); I40E_WRITE_FLUSH(hw); pf->hash_input_set[pctype] = input_set; return 0; } int i40e_fdir_filter_inset_select(struct i40e_pf *pf, struct rte_eth_input_set_conf *conf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); enum i40e_filter_pctype pctype; uint64_t input_set, inset_reg = 0; uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0}; int ret, i, num; if (!hw || !conf) { PMD_DRV_LOG(ERR, "Invalid pointer"); return -EFAULT; } if (conf->op != RTE_ETH_INPUT_SET_SELECT && conf->op != RTE_ETH_INPUT_SET_ADD) { PMD_DRV_LOG(ERR, "Unsupported input set operation"); return -EINVAL; } if (!I40E_VALID_FLOW(conf->flow_type)) { PMD_DRV_LOG(ERR, "invalid flow_type input."); return -EINVAL; } pctype = i40e_flowtype_to_pctype(conf->flow_type); ret = i40e_parse_input_set(&input_set, pctype, conf->field, conf->inset_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to parse input set"); return -EINVAL; } if (i40e_validate_input_set(pctype, RTE_ETH_FILTER_FDIR, input_set) != 0) { PMD_DRV_LOG(ERR, "Invalid input set"); return -EINVAL; } /* get inset value in register */ inset_reg = i40e_read_rx_ctl(hw, I40E_PRTQF_FD_INSET(pctype, 1)); inset_reg <<= I40E_32_BIT_WIDTH; inset_reg |= i40e_read_rx_ctl(hw, I40E_PRTQF_FD_INSET(pctype, 0)); /* Can not change the inset reg for flex payload for fdir, * it is done by writing I40E_PRTQF_FD_FLXINSET * in i40e_set_flex_mask_on_pctype. */ if (conf->op == RTE_ETH_INPUT_SET_SELECT) inset_reg &= I40E_REG_INSET_FLEX_PAYLOAD_WORDS; else input_set |= pf->fdir.input_set[pctype]; num = i40e_generate_inset_mask_reg(input_set, mask_reg, I40E_INSET_MASK_NUM_REG); if (num < 0) return -EINVAL; inset_reg |= i40e_translate_input_set_reg(hw->mac.type, input_set); i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 0), (uint32_t)(inset_reg & UINT32_MAX)); i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 1), (uint32_t)((inset_reg >> I40E_32_BIT_WIDTH) & UINT32_MAX)); for (i = 0; i < num; i++) i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype), mask_reg[i]); /*clear unused mask registers of the pctype */ for (i = num; i < I40E_INSET_MASK_NUM_REG; i++) i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype), 0); I40E_WRITE_FLUSH(hw); pf->fdir.input_set[pctype] = input_set; return 0; } static int i40e_hash_filter_get(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info) { int ret = 0; if (!hw || !info) { PMD_DRV_LOG(ERR, "Invalid pointer"); return -EFAULT; } switch (info->info_type) { case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT: i40e_get_symmetric_hash_enable_per_port(hw, &(info->info.enable)); break; case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG: ret = i40e_get_hash_filter_global_config(hw, &(info->info.global_conf)); break; default: PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported", info->info_type); ret = -EINVAL; break; } return ret; } static int i40e_hash_filter_set(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info) { int ret = 0; if (!hw || !info) { PMD_DRV_LOG(ERR, "Invalid pointer"); return -EFAULT; } switch (info->info_type) { case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT: i40e_set_symmetric_hash_enable_per_port(hw, info->info.enable); break; case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG: ret = i40e_set_hash_filter_global_config(hw, &(info->info.global_conf)); break; case RTE_ETH_HASH_FILTER_INPUT_SET_SELECT: ret = i40e_hash_filter_inset_select(hw, &(info->info.input_set_conf)); break; default: PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported", info->info_type); ret = -EINVAL; break; } return ret; } /* Operations for hash function */ static int i40e_hash_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret = 0; switch (filter_op) { case RTE_ETH_FILTER_NOP: break; case RTE_ETH_FILTER_GET: ret = i40e_hash_filter_get(hw, (struct rte_eth_hash_filter_info *)arg); break; case RTE_ETH_FILTER_SET: ret = i40e_hash_filter_set(hw, (struct rte_eth_hash_filter_info *)arg); break; default: PMD_DRV_LOG(WARNING, "Filter operation (%d) not supported", filter_op); ret = -ENOTSUP; break; } return ret; } /* Convert ethertype filter structure */ static int i40e_ethertype_filter_convert(const struct rte_eth_ethertype_filter *input, struct i40e_ethertype_filter *filter) { rte_memcpy(&filter->input.mac_addr, &input->mac_addr, ETHER_ADDR_LEN); filter->input.ether_type = input->ether_type; filter->flags = input->flags; filter->queue = input->queue; return 0; } /* Check if there exists the ehtertype filter */ struct i40e_ethertype_filter * i40e_sw_ethertype_filter_lookup(struct i40e_ethertype_rule *ethertype_rule, const struct i40e_ethertype_filter_input *input) { int ret; ret = rte_hash_lookup(ethertype_rule->hash_table, (const void *)input); if (ret < 0) return NULL; return ethertype_rule->hash_map[ret]; } /* Add ethertype filter in SW list */ static int i40e_sw_ethertype_filter_insert(struct i40e_pf *pf, struct i40e_ethertype_filter *filter) { struct i40e_ethertype_rule *rule = &pf->ethertype; int ret; ret = rte_hash_add_key(rule->hash_table, &filter->input); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to insert ethertype filter" " to hash table %d!", ret); return ret; } rule->hash_map[ret] = filter; TAILQ_INSERT_TAIL(&rule->ethertype_list, filter, rules); return 0; } /* Delete ethertype filter in SW list */ int i40e_sw_ethertype_filter_del(struct i40e_pf *pf, struct i40e_ethertype_filter_input *input) { struct i40e_ethertype_rule *rule = &pf->ethertype; struct i40e_ethertype_filter *filter; int ret; ret = rte_hash_del_key(rule->hash_table, input); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to delete ethertype filter" " to hash table %d!", ret); return ret; } filter = rule->hash_map[ret]; rule->hash_map[ret] = NULL; TAILQ_REMOVE(&rule->ethertype_list, filter, rules); rte_free(filter); return 0; } /* * Configure ethertype filter, which can director packet by filtering * with mac address and ether_type or only ether_type */ int i40e_ethertype_filter_set(struct i40e_pf *pf, struct rte_eth_ethertype_filter *filter, bool add) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_ethertype_rule *ethertype_rule = &pf->ethertype; struct i40e_ethertype_filter *ethertype_filter, *node; struct i40e_ethertype_filter check_filter; struct i40e_control_filter_stats stats; uint16_t flags = 0; int ret; if (filter->queue >= pf->dev_data->nb_rx_queues) { PMD_DRV_LOG(ERR, "Invalid queue ID"); return -EINVAL; } if (filter->ether_type == ETHER_TYPE_IPv4 || filter->ether_type == ETHER_TYPE_IPv6) { PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in control packet filter.", filter->ether_type); return -EINVAL; } if (filter->ether_type == ETHER_TYPE_VLAN) PMD_DRV_LOG(WARNING, "filter vlan ether_type in first tag is not supported."); /* Check if there is the filter in SW list */ memset(&check_filter, 0, sizeof(check_filter)); i40e_ethertype_filter_convert(filter, &check_filter); node = i40e_sw_ethertype_filter_lookup(ethertype_rule, &check_filter.input); if (add && node) { PMD_DRV_LOG(ERR, "Conflict with existing ethertype rules!"); return -EINVAL; } if (!add && !node) { PMD_DRV_LOG(ERR, "There's no corresponding ethertype filter!"); return -EINVAL; } if (!(filter->flags & RTE_ETHTYPE_FLAGS_MAC)) flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC; if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP; flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TO_QUEUE; memset(&stats, 0, sizeof(stats)); ret = i40e_aq_add_rem_control_packet_filter(hw, filter->mac_addr.addr_bytes, filter->ether_type, flags, pf->main_vsi->seid, filter->queue, add, &stats, NULL); PMD_DRV_LOG(INFO, "add/rem control packet filter, return %d, mac_etype_used = %u, etype_used = %u, mac_etype_free = %u, etype_free = %u", ret, stats.mac_etype_used, stats.etype_used, stats.mac_etype_free, stats.etype_free); if (ret < 0) return -ENOSYS; /* Add or delete a filter in SW list */ if (add) { ethertype_filter = rte_zmalloc("ethertype_filter", sizeof(*ethertype_filter), 0); rte_memcpy(ethertype_filter, &check_filter, sizeof(check_filter)); ret = i40e_sw_ethertype_filter_insert(pf, ethertype_filter); } else { ret = i40e_sw_ethertype_filter_del(pf, &node->input); } return ret; } /* * Handle operations for ethertype filter. */ static int i40e_ethertype_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); int ret = 0; if (filter_op == RTE_ETH_FILTER_NOP) return ret; if (arg == NULL) { PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u", filter_op); return -EINVAL; } switch (filter_op) { case RTE_ETH_FILTER_ADD: ret = i40e_ethertype_filter_set(pf, (struct rte_eth_ethertype_filter *)arg, TRUE); break; case RTE_ETH_FILTER_DELETE: ret = i40e_ethertype_filter_set(pf, (struct rte_eth_ethertype_filter *)arg, FALSE); break; default: PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op); ret = -ENOSYS; break; } return ret; } static int i40e_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; if (dev == NULL) return -EINVAL; switch (filter_type) { case RTE_ETH_FILTER_NONE: /* For global configuration */ ret = i40e_filter_ctrl_global_config(dev, filter_op, arg); break; case RTE_ETH_FILTER_HASH: ret = i40e_hash_filter_ctrl(dev, filter_op, arg); break; case RTE_ETH_FILTER_MACVLAN: ret = i40e_mac_filter_handle(dev, filter_op, arg); break; case RTE_ETH_FILTER_ETHERTYPE: ret = i40e_ethertype_filter_handle(dev, filter_op, arg); break; case RTE_ETH_FILTER_TUNNEL: ret = i40e_tunnel_filter_handle(dev, filter_op, arg); break; case RTE_ETH_FILTER_FDIR: ret = i40e_fdir_ctrl_func(dev, filter_op, arg); break; case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &i40e_flow_ops; break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } /* * Check and enable Extended Tag. * Enabling Extended Tag is important for 40G performance. */ static void i40e_enable_extended_tag(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); uint32_t buf = 0; int ret; ret = rte_pci_read_config(pci_dev, &buf, sizeof(buf), PCI_DEV_CAP_REG); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_DEV_CAP_REG); return; } if (!(buf & PCI_DEV_CAP_EXT_TAG_MASK)) { PMD_DRV_LOG(ERR, "Does not support Extended Tag"); return; } buf = 0; ret = rte_pci_read_config(pci_dev, &buf, sizeof(buf), PCI_DEV_CTRL_REG); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_DEV_CTRL_REG); return; } if (buf & PCI_DEV_CTRL_EXT_TAG_MASK) { PMD_DRV_LOG(DEBUG, "Extended Tag has already been enabled"); return; } buf |= PCI_DEV_CTRL_EXT_TAG_MASK; ret = rte_pci_write_config(pci_dev, &buf, sizeof(buf), PCI_DEV_CTRL_REG); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to write PCI offset 0x%x", PCI_DEV_CTRL_REG); return; } } /* * As some registers wouldn't be reset unless a global hardware reset, * hardware initialization is needed to put those registers into an * expected initial state. */ static void i40e_hw_init(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); i40e_enable_extended_tag(dev); /* clear the PF Queue Filter control register */ i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, 0); /* Disable symmetric hash per port */ i40e_set_symmetric_hash_enable_per_port(hw, 0); } enum i40e_filter_pctype i40e_flowtype_to_pctype(uint16_t flow_type) { static const enum i40e_filter_pctype pctype_table[] = { [RTE_ETH_FLOW_FRAG_IPV4] = I40E_FILTER_PCTYPE_FRAG_IPV4, [RTE_ETH_FLOW_NONFRAG_IPV4_UDP] = I40E_FILTER_PCTYPE_NONF_IPV4_UDP, [RTE_ETH_FLOW_NONFRAG_IPV4_TCP] = I40E_FILTER_PCTYPE_NONF_IPV4_TCP, [RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, [RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, [RTE_ETH_FLOW_FRAG_IPV6] = I40E_FILTER_PCTYPE_FRAG_IPV6, [RTE_ETH_FLOW_NONFRAG_IPV6_UDP] = I40E_FILTER_PCTYPE_NONF_IPV6_UDP, [RTE_ETH_FLOW_NONFRAG_IPV6_TCP] = I40E_FILTER_PCTYPE_NONF_IPV6_TCP, [RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] = I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, [RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, [RTE_ETH_FLOW_L2_PAYLOAD] = I40E_FILTER_PCTYPE_L2_PAYLOAD, }; return pctype_table[flow_type]; } uint16_t i40e_pctype_to_flowtype(enum i40e_filter_pctype pctype) { static const uint16_t flowtype_table[] = { [I40E_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_FLOW_FRAG_IPV4, [I40E_FILTER_PCTYPE_NONF_IPV4_UDP] = RTE_ETH_FLOW_NONFRAG_IPV4_UDP, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] = RTE_ETH_FLOW_NONFRAG_IPV4_UDP, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] = RTE_ETH_FLOW_NONFRAG_IPV4_UDP, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP] = RTE_ETH_FLOW_NONFRAG_IPV4_TCP, [I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] = RTE_ETH_FLOW_NONFRAG_IPV4_TCP, [I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] = RTE_ETH_FLOW_NONFRAG_IPV4_SCTP, [I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] = RTE_ETH_FLOW_NONFRAG_IPV4_OTHER, [I40E_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_FLOW_FRAG_IPV6, [I40E_FILTER_PCTYPE_NONF_IPV6_UDP] = RTE_ETH_FLOW_NONFRAG_IPV6_UDP, [I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] = RTE_ETH_FLOW_NONFRAG_IPV6_UDP, [I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] = RTE_ETH_FLOW_NONFRAG_IPV6_UDP, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP] = RTE_ETH_FLOW_NONFRAG_IPV6_TCP, [I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] = RTE_ETH_FLOW_NONFRAG_IPV6_TCP, [I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] = RTE_ETH_FLOW_NONFRAG_IPV6_SCTP, [I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] = RTE_ETH_FLOW_NONFRAG_IPV6_OTHER, [I40E_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_FLOW_L2_PAYLOAD, }; return flowtype_table[pctype]; } /* * On X710, performance number is far from the expectation on recent firmware * versions; on XL710, performance number is also far from the expectation on * recent firmware versions, if promiscuous mode is disabled, or promiscuous * mode is enabled and port MAC address is equal to the packet destination MAC * address. The fix for this issue may not be integrated in the following * firmware version. So the workaround in software driver is needed. It needs * to modify the initial values of 3 internal only registers for both X710 and * XL710. Note that the values for X710 or XL710 could be different, and the * workaround can be removed when it is fixed in firmware in the future. */ /* For both X710 and XL710 */ #define I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE 0x10000200 #define I40E_GL_SWR_PRI_JOIN_MAP_0 0x26CE00 #define I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE 0x011f0200 #define I40E_GL_SWR_PRI_JOIN_MAP_2 0x26CE08 /* For X722 */ #define I40E_X722_GL_SWR_PRI_JOIN_MAP_0_VALUE 0x20000200 #define I40E_X722_GL_SWR_PRI_JOIN_MAP_2_VALUE 0x013F0200 /* For X710 */ #define I40E_GL_SWR_PM_UP_THR_EF_VALUE 0x03030303 /* For XL710 */ #define I40E_GL_SWR_PM_UP_THR_SF_VALUE 0x06060606 #define I40E_GL_SWR_PM_UP_THR 0x269FBC static int i40e_dev_sync_phy_type(struct i40e_hw *hw) { enum i40e_status_code status; struct i40e_aq_get_phy_abilities_resp phy_ab; int ret = -ENOTSUP; status = i40e_aq_get_phy_capabilities(hw, false, true, &phy_ab, NULL); if (status) return ret; return 0; } static void i40e_configure_registers(struct i40e_hw *hw) { static struct { uint32_t addr; uint64_t val; } reg_table[] = { {I40E_GL_SWR_PRI_JOIN_MAP_0, 0}, {I40E_GL_SWR_PRI_JOIN_MAP_2, 0}, {I40E_GL_SWR_PM_UP_THR, 0}, /* Compute value dynamically */ }; uint64_t reg; uint32_t i; int ret; for (i = 0; i < RTE_DIM(reg_table); i++) { if (reg_table[i].addr == I40E_GL_SWR_PRI_JOIN_MAP_0) { if (hw->mac.type == I40E_MAC_X722) /* For X722 */ reg_table[i].val = I40E_X722_GL_SWR_PRI_JOIN_MAP_0_VALUE; else /* For X710/XL710/XXV710 */ reg_table[i].val = I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE; } if (reg_table[i].addr == I40E_GL_SWR_PRI_JOIN_MAP_2) { if (hw->mac.type == I40E_MAC_X722) /* For X722 */ reg_table[i].val = I40E_X722_GL_SWR_PRI_JOIN_MAP_2_VALUE; else /* For X710/XL710/XXV710 */ reg_table[i].val = I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE; } if (reg_table[i].addr == I40E_GL_SWR_PM_UP_THR) { if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types) || /* For XL710 */ I40E_PHY_TYPE_SUPPORT_25G(hw->phy.phy_types)) /* For XXV710 */ reg_table[i].val = I40E_GL_SWR_PM_UP_THR_SF_VALUE; else /* For X710 */ reg_table[i].val = I40E_GL_SWR_PM_UP_THR_EF_VALUE; } ret = i40e_aq_debug_read_register(hw, reg_table[i].addr, ®, NULL); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to read from 0x%"PRIx32, reg_table[i].addr); break; } PMD_DRV_LOG(DEBUG, "Read from 0x%"PRIx32": 0x%"PRIx64, reg_table[i].addr, reg); if (reg == reg_table[i].val) continue; ret = i40e_aq_debug_write_register(hw, reg_table[i].addr, reg_table[i].val, NULL); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to write 0x%"PRIx64" to the address of 0x%"PRIx32, reg_table[i].val, reg_table[i].addr); break; } PMD_DRV_LOG(DEBUG, "Write 0x%"PRIx64" to the address of " "0x%"PRIx32, reg_table[i].val, reg_table[i].addr); } } #define I40E_VSI_TSR(_i) (0x00050800 + ((_i) * 4)) #define I40E_VSI_TSR_QINQ_CONFIG 0xc030 #define I40E_VSI_L2TAGSTXVALID(_i) (0x00042800 + ((_i) * 4)) #define I40E_VSI_L2TAGSTXVALID_QINQ 0xab static int i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi) { uint32_t reg; int ret; if (vsi->vsi_id >= I40E_MAX_NUM_VSIS) { PMD_DRV_LOG(ERR, "VSI ID exceeds the maximum"); return -EINVAL; } /* Configure for double VLAN RX stripping */ reg = I40E_READ_REG(hw, I40E_VSI_TSR(vsi->vsi_id)); if ((reg & I40E_VSI_TSR_QINQ_CONFIG) != I40E_VSI_TSR_QINQ_CONFIG) { reg |= I40E_VSI_TSR_QINQ_CONFIG; ret = i40e_aq_debug_write_register(hw, I40E_VSI_TSR(vsi->vsi_id), reg, NULL); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to update VSI_TSR[%d]", vsi->vsi_id); return I40E_ERR_CONFIG; } } /* Configure for double VLAN TX insertion */ reg = I40E_READ_REG(hw, I40E_VSI_L2TAGSTXVALID(vsi->vsi_id)); if ((reg & 0xff) != I40E_VSI_L2TAGSTXVALID_QINQ) { reg = I40E_VSI_L2TAGSTXVALID_QINQ; ret = i40e_aq_debug_write_register(hw, I40E_VSI_L2TAGSTXVALID( vsi->vsi_id), reg, NULL); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to update VSI_L2TAGSTXVALID[%d]", vsi->vsi_id); return I40E_ERR_CONFIG; } } return 0; } /** * i40e_aq_add_mirror_rule * @hw: pointer to the hardware structure * @seid: VEB seid to add mirror rule to * @dst_id: destination vsi seid * @entries: Buffer which contains the entities to be mirrored * @count: number of entities contained in the buffer * @rule_id:the rule_id of the rule to be added * * Add a mirror rule for a given veb. * **/ static enum i40e_status_code i40e_aq_add_mirror_rule(struct i40e_hw *hw, uint16_t seid, uint16_t dst_id, uint16_t rule_type, uint16_t *entries, uint16_t count, uint16_t *rule_id) { struct i40e_aq_desc desc; struct i40e_aqc_add_delete_mirror_rule cmd; struct i40e_aqc_add_delete_mirror_rule_completion *resp = (struct i40e_aqc_add_delete_mirror_rule_completion *) &desc.params.raw; uint16_t buff_len; enum i40e_status_code status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_mirror_rule); memset(&cmd, 0, sizeof(cmd)); buff_len = sizeof(uint16_t) * count; desc.datalen = rte_cpu_to_le_16(buff_len); if (buff_len > 0) desc.flags |= rte_cpu_to_le_16( (uint16_t)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd.rule_type = rte_cpu_to_le_16(rule_type << I40E_AQC_MIRROR_RULE_TYPE_SHIFT); cmd.num_entries = rte_cpu_to_le_16(count); cmd.seid = rte_cpu_to_le_16(seid); cmd.destination = rte_cpu_to_le_16(dst_id); rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd)); status = i40e_asq_send_command(hw, &desc, entries, buff_len, NULL); PMD_DRV_LOG(INFO, "i40e_aq_add_mirror_rule, aq_status %d, rule_id = %u mirror_rules_used = %u, mirror_rules_free = %u,", hw->aq.asq_last_status, resp->rule_id, resp->mirror_rules_used, resp->mirror_rules_free); *rule_id = rte_le_to_cpu_16(resp->rule_id); return status; } /** * i40e_aq_del_mirror_rule * @hw: pointer to the hardware structure * @seid: VEB seid to add mirror rule to * @entries: Buffer which contains the entities to be mirrored * @count: number of entities contained in the buffer * @rule_id:the rule_id of the rule to be delete * * Delete a mirror rule for a given veb. * **/ static enum i40e_status_code i40e_aq_del_mirror_rule(struct i40e_hw *hw, uint16_t seid, uint16_t rule_type, uint16_t *entries, uint16_t count, uint16_t rule_id) { struct i40e_aq_desc desc; struct i40e_aqc_add_delete_mirror_rule cmd; uint16_t buff_len = 0; enum i40e_status_code status; void *buff = NULL; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_mirror_rule); memset(&cmd, 0, sizeof(cmd)); if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) { desc.flags |= rte_cpu_to_le_16((uint16_t)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd.num_entries = count; buff_len = sizeof(uint16_t) * count; desc.datalen = rte_cpu_to_le_16(buff_len); buff = (void *)entries; } else /* rule id is filled in destination field for deleting mirror rule */ cmd.destination = rte_cpu_to_le_16(rule_id); cmd.rule_type = rte_cpu_to_le_16(rule_type << I40E_AQC_MIRROR_RULE_TYPE_SHIFT); cmd.seid = rte_cpu_to_le_16(seid); rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd)); status = i40e_asq_send_command(hw, &desc, buff, buff_len, NULL); return status; } /** * i40e_mirror_rule_set * @dev: pointer to the hardware structure * @mirror_conf: mirror rule info * @sw_id: mirror rule's sw_id * @on: enable/disable * * set a mirror rule. * **/ static int i40e_mirror_rule_set(struct rte_eth_dev *dev, struct rte_eth_mirror_conf *mirror_conf, uint8_t sw_id, uint8_t on) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_mirror_rule *it, *mirr_rule = NULL; struct i40e_mirror_rule *parent = NULL; uint16_t seid, dst_seid, rule_id; uint16_t i, j = 0; int ret; PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_set: sw_id = %d.", sw_id); if (pf->main_vsi->veb == NULL || pf->vfs == NULL) { PMD_DRV_LOG(ERR, "mirror rule can not be configured without veb or vfs."); return -ENOSYS; } if (pf->nb_mirror_rule > I40E_MAX_MIRROR_RULES) { PMD_DRV_LOG(ERR, "mirror table is full."); return -ENOSPC; } if (mirror_conf->dst_pool > pf->vf_num) { PMD_DRV_LOG(ERR, "invalid destination pool %u.", mirror_conf->dst_pool); return -EINVAL; } seid = pf->main_vsi->veb->seid; TAILQ_FOREACH(it, &pf->mirror_list, rules) { if (sw_id <= it->index) { mirr_rule = it; break; } parent = it; } if (mirr_rule && sw_id == mirr_rule->index) { if (on) { PMD_DRV_LOG(ERR, "mirror rule exists."); return -EEXIST; } else { ret = i40e_aq_del_mirror_rule(hw, seid, mirr_rule->rule_type, mirr_rule->entries, mirr_rule->num_entries, mirr_rule->id); if (ret < 0) { PMD_DRV_LOG(ERR, "failed to remove mirror rule: ret = %d, aq_err = %d.", ret, hw->aq.asq_last_status); return -ENOSYS; } TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules); rte_free(mirr_rule); pf->nb_mirror_rule--; return 0; } } else if (!on) { PMD_DRV_LOG(ERR, "mirror rule doesn't exist."); return -ENOENT; } mirr_rule = rte_zmalloc("i40e_mirror_rule", sizeof(struct i40e_mirror_rule) , 0); if (!mirr_rule) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return I40E_ERR_NO_MEMORY; } switch (mirror_conf->rule_type) { case ETH_MIRROR_VLAN: for (i = 0, j = 0; i < ETH_MIRROR_MAX_VLANS; i++) { if (mirror_conf->vlan.vlan_mask & (1ULL << i)) { mirr_rule->entries[j] = mirror_conf->vlan.vlan_id[i]; j++; } } if (j == 0) { PMD_DRV_LOG(ERR, "vlan is not specified."); rte_free(mirr_rule); return -EINVAL; } mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_VLAN; break; case ETH_MIRROR_VIRTUAL_POOL_UP: case ETH_MIRROR_VIRTUAL_POOL_DOWN: /* check if the specified pool bit is out of range */ if (mirror_conf->pool_mask > (uint64_t)(1ULL << (pf->vf_num + 1))) { PMD_DRV_LOG(ERR, "pool mask is out of range."); rte_free(mirr_rule); return -EINVAL; } for (i = 0, j = 0; i < pf->vf_num; i++) { if (mirror_conf->pool_mask & (1ULL << i)) { mirr_rule->entries[j] = pf->vfs[i].vsi->seid; j++; } } if (mirror_conf->pool_mask & (1ULL << pf->vf_num)) { /* add pf vsi to entries */ mirr_rule->entries[j] = pf->main_vsi_seid; j++; } if (j == 0) { PMD_DRV_LOG(ERR, "pool is not specified."); rte_free(mirr_rule); return -EINVAL; } /* egress and ingress in aq commands means from switch but not port */ mirr_rule->rule_type = (mirror_conf->rule_type == ETH_MIRROR_VIRTUAL_POOL_UP) ? I40E_AQC_MIRROR_RULE_TYPE_VPORT_EGRESS : I40E_AQC_MIRROR_RULE_TYPE_VPORT_INGRESS; break; case ETH_MIRROR_UPLINK_PORT: /* egress and ingress in aq commands means from switch but not port*/ mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS; break; case ETH_MIRROR_DOWNLINK_PORT: mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS; break; default: PMD_DRV_LOG(ERR, "unsupported mirror type %d.", mirror_conf->rule_type); rte_free(mirr_rule); return -EINVAL; } /* If the dst_pool is equal to vf_num, consider it as PF */ if (mirror_conf->dst_pool == pf->vf_num) dst_seid = pf->main_vsi_seid; else dst_seid = pf->vfs[mirror_conf->dst_pool].vsi->seid; ret = i40e_aq_add_mirror_rule(hw, seid, dst_seid, mirr_rule->rule_type, mirr_rule->entries, j, &rule_id); if (ret < 0) { PMD_DRV_LOG(ERR, "failed to add mirror rule: ret = %d, aq_err = %d.", ret, hw->aq.asq_last_status); rte_free(mirr_rule); return -ENOSYS; } mirr_rule->index = sw_id; mirr_rule->num_entries = j; mirr_rule->id = rule_id; mirr_rule->dst_vsi_seid = dst_seid; if (parent) TAILQ_INSERT_AFTER(&pf->mirror_list, parent, mirr_rule, rules); else TAILQ_INSERT_HEAD(&pf->mirror_list, mirr_rule, rules); pf->nb_mirror_rule++; return 0; } /** * i40e_mirror_rule_reset * @dev: pointer to the device * @sw_id: mirror rule's sw_id * * reset a mirror rule. * **/ static int i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_mirror_rule *it, *mirr_rule = NULL; uint16_t seid; int ret; PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_reset: sw_id = %d.", sw_id); seid = pf->main_vsi->veb->seid; TAILQ_FOREACH(it, &pf->mirror_list, rules) { if (sw_id == it->index) { mirr_rule = it; break; } } if (mirr_rule) { ret = i40e_aq_del_mirror_rule(hw, seid, mirr_rule->rule_type, mirr_rule->entries, mirr_rule->num_entries, mirr_rule->id); if (ret < 0) { PMD_DRV_LOG(ERR, "failed to remove mirror rule: status = %d, aq_err = %d.", ret, hw->aq.asq_last_status); return -ENOSYS; } TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules); rte_free(mirr_rule); pf->nb_mirror_rule--; } else { PMD_DRV_LOG(ERR, "mirror rule doesn't exist."); return -ENOENT; } return 0; } static uint64_t i40e_read_systime_cyclecounter(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t systim_cycles; systim_cycles = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TIME_L); systim_cycles |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TIME_H) << 32; return systim_cycles; } static uint64_t i40e_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev, uint8_t index) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t rx_tstamp; rx_tstamp = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(index)); rx_tstamp |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(index)) << 32; return rx_tstamp; } static uint64_t i40e_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t tx_tstamp; tx_tstamp = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_L); tx_tstamp |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H) << 32; return tx_tstamp; } static void i40e_start_timecounters(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; struct rte_eth_link link; uint32_t tsync_inc_l; uint32_t tsync_inc_h; /* Get current link speed. */ memset(&link, 0, sizeof(link)); i40e_dev_link_update(dev, 1); rte_i40e_dev_atomic_read_link_status(dev, &link); switch (link.link_speed) { case ETH_SPEED_NUM_40G: tsync_inc_l = I40E_PTP_40GB_INCVAL & 0xFFFFFFFF; tsync_inc_h = I40E_PTP_40GB_INCVAL >> 32; break; case ETH_SPEED_NUM_10G: tsync_inc_l = I40E_PTP_10GB_INCVAL & 0xFFFFFFFF; tsync_inc_h = I40E_PTP_10GB_INCVAL >> 32; break; case ETH_SPEED_NUM_1G: tsync_inc_l = I40E_PTP_1GB_INCVAL & 0xFFFFFFFF; tsync_inc_h = I40E_PTP_1GB_INCVAL >> 32; break; default: tsync_inc_l = 0x0; tsync_inc_h = 0x0; } /* Set the timesync increment value. */ I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, tsync_inc_l); I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, tsync_inc_h); memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter)); memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); adapter->systime_tc.cc_mask = I40E_CYCLECOUNTER_MASK; adapter->systime_tc.cc_shift = 0; adapter->systime_tc.nsec_mask = 0; adapter->rx_tstamp_tc.cc_mask = I40E_CYCLECOUNTER_MASK; adapter->rx_tstamp_tc.cc_shift = 0; adapter->rx_tstamp_tc.nsec_mask = 0; adapter->tx_tstamp_tc.cc_mask = I40E_CYCLECOUNTER_MASK; adapter->tx_tstamp_tc.cc_shift = 0; adapter->tx_tstamp_tc.nsec_mask = 0; } static int i40e_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) { struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; adapter->systime_tc.nsec += delta; adapter->rx_tstamp_tc.nsec += delta; adapter->tx_tstamp_tc.nsec += delta; return 0; } static int i40e_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) { uint64_t ns; struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; ns = rte_timespec_to_ns(ts); /* Set the timecounters to a new value. */ adapter->systime_tc.nsec = ns; adapter->rx_tstamp_tc.nsec = ns; adapter->tx_tstamp_tc.nsec = ns; return 0; } static int i40e_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) { uint64_t ns, systime_cycles; struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; systime_cycles = i40e_read_systime_cyclecounter(dev); ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles); *ts = rte_ns_to_timespec(ns); return 0; } static int i40e_timesync_enable(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t tsync_ctl_l; uint32_t tsync_ctl_h; /* Stop the timesync system time. */ I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, 0x0); I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, 0x0); /* Reset the timesync system time value. */ I40E_WRITE_REG(hw, I40E_PRTTSYN_TIME_L, 0x0); I40E_WRITE_REG(hw, I40E_PRTTSYN_TIME_H, 0x0); i40e_start_timecounters(dev); /* Clear timesync registers. */ I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0); I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H); I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(0)); I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(1)); I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(2)); I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(3)); /* Enable timestamping of PTP packets. */ tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0); tsync_ctl_l |= I40E_PRTTSYN_TSYNENA; tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1); tsync_ctl_h |= I40E_PRTTSYN_TSYNENA; tsync_ctl_h |= I40E_PRTTSYN_TSYNTYPE; I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l); I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h); return 0; } static int i40e_timesync_disable(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t tsync_ctl_l; uint32_t tsync_ctl_h; /* Disable timestamping of transmitted PTP packets. */ tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0); tsync_ctl_l &= ~I40E_PRTTSYN_TSYNENA; tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1); tsync_ctl_h &= ~I40E_PRTTSYN_TSYNENA; I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l); I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h); /* Reset the timesync increment value. */ I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, 0x0); I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, 0x0); return 0; } static int i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; uint32_t sync_status; uint32_t index = flags & 0x03; uint64_t rx_tstamp_cycles; uint64_t ns; sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_1); if ((sync_status & (1 << index)) == 0) return -EINVAL; rx_tstamp_cycles = i40e_read_rx_tstamp_cyclecounter(dev, index); ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_adapter *adapter = (struct i40e_adapter *)dev->data->dev_private; uint32_t sync_status; uint64_t tx_tstamp_cycles; uint64_t ns; sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0); if ((sync_status & I40E_PRTTSYN_STAT_0_TXTIME_MASK) == 0) return -EINVAL; tx_tstamp_cycles = i40e_read_tx_tstamp_cyclecounter(dev); ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } /* * i40e_parse_dcb_configure - parse dcb configure from user * @dev: the device being configured * @dcb_cfg: pointer of the result of parse * @*tc_map: bit map of enabled traffic classes * * Returns 0 on success, negative value on failure */ static int i40e_parse_dcb_configure(struct rte_eth_dev *dev, struct i40e_dcbx_config *dcb_cfg, uint8_t *tc_map) { struct rte_eth_dcb_rx_conf *dcb_rx_conf; uint8_t i, tc_bw, bw_lf; memset(dcb_cfg, 0, sizeof(struct i40e_dcbx_config)); dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf; if (dcb_rx_conf->nb_tcs > I40E_MAX_TRAFFIC_CLASS) { PMD_INIT_LOG(ERR, "number of tc exceeds max."); return -EINVAL; } /* assume each tc has the same bw */ tc_bw = I40E_MAX_PERCENT / dcb_rx_conf->nb_tcs; for (i = 0; i < dcb_rx_conf->nb_tcs; i++) dcb_cfg->etscfg.tcbwtable[i] = tc_bw; /* to ensure the sum of tcbw is equal to 100 */ bw_lf = I40E_MAX_PERCENT % dcb_rx_conf->nb_tcs; for (i = 0; i < bw_lf; i++) dcb_cfg->etscfg.tcbwtable[i]++; /* assume each tc has the same Transmission Selection Algorithm */ for (i = 0; i < dcb_rx_conf->nb_tcs; i++) dcb_cfg->etscfg.tsatable[i] = I40E_IEEE_TSA_ETS; for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) dcb_cfg->etscfg.prioritytable[i] = dcb_rx_conf->dcb_tc[i]; /* FW needs one App to configure HW */ dcb_cfg->numapps = I40E_DEFAULT_DCB_APP_NUM; dcb_cfg->app[0].selector = I40E_APP_SEL_ETHTYPE; dcb_cfg->app[0].priority = I40E_DEFAULT_DCB_APP_PRIO; dcb_cfg->app[0].protocolid = I40E_APP_PROTOID_FCOE; if (dcb_rx_conf->nb_tcs == 0) *tc_map = 1; /* tc0 only */ else *tc_map = RTE_LEN2MASK(dcb_rx_conf->nb_tcs, uint8_t); if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) { dcb_cfg->pfc.willing = 0; dcb_cfg->pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; dcb_cfg->pfc.pfcenable = *tc_map; } return 0; } static enum i40e_status_code i40e_vsi_update_queue_mapping(struct i40e_vsi *vsi, struct i40e_aqc_vsi_properties_data *info, uint8_t enabled_tcmap) { enum i40e_status_code ret; int i, total_tc = 0; uint16_t qpnum_per_tc, bsf, qp_idx; struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(vsi); struct i40e_pf *pf = I40E_VSI_TO_PF(vsi); uint16_t used_queues; ret = validate_tcmap_parameter(vsi, enabled_tcmap); if (ret != I40E_SUCCESS) return ret; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tcmap & (1 << i)) total_tc++; } if (total_tc == 0) total_tc = 1; vsi->enabled_tc = enabled_tcmap; /* different VSI has different queues assigned */ if (vsi->type == I40E_VSI_MAIN) used_queues = dev_data->nb_rx_queues - pf->nb_cfg_vmdq_vsi * RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM; else if (vsi->type == I40E_VSI_VMDQ2) used_queues = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM; else { PMD_INIT_LOG(ERR, "unsupported VSI type."); return I40E_ERR_NO_AVAILABLE_VSI; } qpnum_per_tc = used_queues / total_tc; /* Number of queues per enabled TC */ if (qpnum_per_tc == 0) { PMD_INIT_LOG(ERR, " number of queues is less that tcs."); return I40E_ERR_INVALID_QP_ID; } qpnum_per_tc = RTE_MIN(i40e_align_floor(qpnum_per_tc), I40E_MAX_Q_PER_TC); bsf = rte_bsf32(qpnum_per_tc); /** * Configure TC and queue mapping parameters, for enabled TC, * allocate qpnum_per_tc queues to this traffic. For disabled TC, * default queue will serve it. */ qp_idx = 0; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (vsi->enabled_tc & (1 << i)) { info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | (bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT)); qp_idx += qpnum_per_tc; } else info->tc_mapping[i] = 0; } /* Associate queue number with VSI, Keep vsi->nb_qps unchanged */ if (vsi->type == I40E_VSI_SRIOV) { info->mapping_flags |= rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); for (i = 0; i < vsi->nb_qps; i++) info->queue_mapping[i] = rte_cpu_to_le_16(vsi->base_queue + i); } else { info->mapping_flags |= rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG); info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue); } info->valid_sections |= rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID); return I40E_SUCCESS; } /* * i40e_config_switch_comp_tc - Configure VEB tc setting for given TC map * @veb: VEB to be configured * @tc_map: enabled TC bitmap * * Returns 0 on success, negative value on failure */ static enum i40e_status_code i40e_config_switch_comp_tc(struct i40e_veb *veb, uint8_t tc_map) { struct i40e_aqc_configure_switching_comp_bw_config_data veb_bw; struct i40e_aqc_query_switching_comp_bw_config_resp bw_query; struct i40e_aqc_query_switching_comp_ets_config_resp ets_query; struct i40e_hw *hw = I40E_VSI_TO_HW(veb->associate_vsi); enum i40e_status_code ret = I40E_SUCCESS; int i; uint32_t bw_max; /* Check if enabled_tc is same as existing or new TCs */ if (veb->enabled_tc == tc_map) return ret; /* configure tc bandwidth */ memset(&veb_bw, 0, sizeof(veb_bw)); veb_bw.tc_valid_bits = tc_map; /* Enable ETS TCs with equal BW Share for now across all VSIs */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (tc_map & BIT_ULL(i)) veb_bw.tc_bw_share_credits[i] = 1; } ret = i40e_aq_config_switch_comp_bw_config(hw, veb->seid, &veb_bw, NULL); if (ret) { PMD_INIT_LOG(ERR, "AQ command Config switch_comp BW allocation per TC failed = %d", hw->aq.asq_last_status); return ret; } memset(&ets_query, 0, sizeof(ets_query)); ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, &ets_query, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get switch_comp ETS configuration %u", hw->aq.asq_last_status); return ret; } memset(&bw_query, 0, sizeof(bw_query)); ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, &bw_query, NULL); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get switch_comp bandwidth configuration %u", hw->aq.asq_last_status); return ret; } /* store and print out BW info */ veb->bw_info.bw_limit = rte_le_to_cpu_16(ets_query.port_bw_limit); veb->bw_info.bw_max = ets_query.tc_bw_max; PMD_DRV_LOG(DEBUG, "switch_comp bw limit:%u", veb->bw_info.bw_limit); PMD_DRV_LOG(DEBUG, "switch_comp max_bw:%u", veb->bw_info.bw_max); bw_max = rte_le_to_cpu_16(bw_query.tc_bw_max[0]) | (rte_le_to_cpu_16(bw_query.tc_bw_max[1]) << I40E_16_BIT_WIDTH); for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { veb->bw_info.bw_ets_share_credits[i] = bw_query.tc_bw_share_credits[i]; veb->bw_info.bw_ets_credits[i] = rte_le_to_cpu_16(bw_query.tc_bw_limits[i]); /* 4 bits per TC, 4th bit is reserved */ veb->bw_info.bw_ets_max[i] = (uint8_t)((bw_max >> (i * I40E_4_BIT_WIDTH)) & RTE_LEN2MASK(3, uint8_t)); PMD_DRV_LOG(DEBUG, "\tVEB TC%u:share credits %u", i, veb->bw_info.bw_ets_share_credits[i]); PMD_DRV_LOG(DEBUG, "\tVEB TC%u:credits %u", i, veb->bw_info.bw_ets_credits[i]); PMD_DRV_LOG(DEBUG, "\tVEB TC%u: max credits: %u", i, veb->bw_info.bw_ets_max[i]); } veb->enabled_tc = tc_map; return ret; } /* * i40e_vsi_config_tc - Configure VSI tc setting for given TC map * @vsi: VSI to be configured * @tc_map: enabled TC bitmap * * Returns 0 on success, negative value on failure */ static enum i40e_status_code i40e_vsi_config_tc(struct i40e_vsi *vsi, uint8_t tc_map) { struct i40e_aqc_configure_vsi_tc_bw_data bw_data; struct i40e_vsi_context ctxt; struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); enum i40e_status_code ret = I40E_SUCCESS; int i; /* Check if enabled_tc is same as existing or new TCs */ if (vsi->enabled_tc == tc_map) return ret; /* configure tc bandwidth */ memset(&bw_data, 0, sizeof(bw_data)); bw_data.tc_valid_bits = tc_map; /* Enable ETS TCs with equal BW Share for now across all VSIs */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (tc_map & BIT_ULL(i)) bw_data.tc_bw_credits[i] = 1; } ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &bw_data, NULL); if (ret) { PMD_INIT_LOG(ERR, "AQ command Config VSI BW allocation per TC failed = %d", hw->aq.asq_last_status); goto out; } for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) vsi->info.qs_handle[i] = bw_data.qs_handles[i]; /* Update Queue Pairs Mapping for currently enabled UPs */ ctxt.seid = vsi->seid; ctxt.pf_num = hw->pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; ctxt.info = vsi->info; i40e_get_cap(hw); ret = i40e_vsi_update_queue_mapping(vsi, &ctxt.info, tc_map); if (ret) goto out; /* Update the VSI after updating the VSI queue-mapping information */ ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure TC queue mapping = %d", hw->aq.asq_last_status); goto out; } /* update the local VSI info with updated queue map */ (void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping, sizeof(vsi->info.tc_mapping)); (void)rte_memcpy(&vsi->info.queue_mapping, &ctxt.info.queue_mapping, sizeof(vsi->info.queue_mapping)); vsi->info.mapping_flags = ctxt.info.mapping_flags; vsi->info.valid_sections = 0; /* query and update current VSI BW information */ ret = i40e_vsi_get_bw_config(vsi); if (ret) { PMD_INIT_LOG(ERR, "Failed updating vsi bw info, err %s aq_err %s", i40e_stat_str(hw, ret), i40e_aq_str(hw, hw->aq.asq_last_status)); goto out; } vsi->enabled_tc = tc_map; out: return ret; } /* * i40e_dcb_hw_configure - program the dcb setting to hw * @pf: pf the configuration is taken on * @new_cfg: new configuration * @tc_map: enabled TC bitmap * * Returns 0 on success, negative value on failure */ static enum i40e_status_code i40e_dcb_hw_configure(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg, uint8_t tc_map) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_dcbx_config *old_cfg = &hw->local_dcbx_config; struct i40e_vsi *main_vsi = pf->main_vsi; struct i40e_vsi_list *vsi_list; enum i40e_status_code ret; int i; uint32_t val; /* Use the FW API if FW > v4.4*/ if (!(((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver >= 4)) || (hw->aq.fw_maj_ver >= 5))) { PMD_INIT_LOG(ERR, "FW < v4.4, can not use FW LLDP API to configure DCB"); return I40E_ERR_FIRMWARE_API_VERSION; } /* Check if need reconfiguration */ if (!memcmp(new_cfg, old_cfg, sizeof(struct i40e_dcbx_config))) { PMD_INIT_LOG(ERR, "No Change in DCB Config required."); return I40E_SUCCESS; } /* Copy the new config to the current config */ *old_cfg = *new_cfg; old_cfg->etsrec = old_cfg->etscfg; ret = i40e_set_dcb_config(hw); if (ret) { PMD_INIT_LOG(ERR, "Set DCB Config failed, err %s aq_err %s", i40e_stat_str(hw, ret), i40e_aq_str(hw, hw->aq.asq_last_status)); return ret; } /* set receive Arbiter to RR mode and ETS scheme by default */ for (i = 0; i <= I40E_PRTDCB_RETSTCC_MAX_INDEX; i++) { val = I40E_READ_REG(hw, I40E_PRTDCB_RETSTCC(i)); val &= ~(I40E_PRTDCB_RETSTCC_BWSHARE_MASK | I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK | I40E_PRTDCB_RETSTCC_ETSTC_SHIFT); val |= ((uint32_t)old_cfg->etscfg.tcbwtable[i] << I40E_PRTDCB_RETSTCC_BWSHARE_SHIFT) & I40E_PRTDCB_RETSTCC_BWSHARE_MASK; val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_UPINTC_MODE_SHIFT) & I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK; val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_ETSTC_SHIFT) & I40E_PRTDCB_RETSTCC_ETSTC_MASK; I40E_WRITE_REG(hw, I40E_PRTDCB_RETSTCC(i), val); } /* get local mib to check whether it is configured correctly */ /* IEEE mode */ hw->local_dcbx_config.dcbx_mode = I40E_DCBX_MODE_IEEE; /* Get Local DCB Config */ i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_LOCAL, 0, &hw->local_dcbx_config); /* if Veb is created, need to update TC of it at first */ if (main_vsi->veb) { ret = i40e_config_switch_comp_tc(main_vsi->veb, tc_map); if (ret) PMD_INIT_LOG(WARNING, "Failed configuring TC for VEB seid=%d", main_vsi->veb->seid); } /* Update each VSI */ i40e_vsi_config_tc(main_vsi, tc_map); if (main_vsi->veb) { TAILQ_FOREACH(vsi_list, &main_vsi->veb->head, list) { /* Beside main VSI and VMDQ VSIs, only enable default * TC for other VSIs */ if (vsi_list->vsi->type == I40E_VSI_VMDQ2) ret = i40e_vsi_config_tc(vsi_list->vsi, tc_map); else ret = i40e_vsi_config_tc(vsi_list->vsi, I40E_DEFAULT_TCMAP); if (ret) PMD_INIT_LOG(WARNING, "Failed configuring TC for VSI seid=%d", vsi_list->vsi->seid); /* continue */ } } return I40E_SUCCESS; } /* * i40e_dcb_init_configure - initial dcb config * @dev: device being configured * @sw_dcb: indicate whether dcb is sw configured or hw offload * * Returns 0 on success, negative value on failure */ static int i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); int i, ret = 0; if ((pf->flags & I40E_FLAG_DCB) == 0) { PMD_INIT_LOG(ERR, "HW doesn't support DCB"); return -ENOTSUP; } /* DCB initialization: * Update DCB configuration from the Firmware and configure * LLDP MIB change event. */ if (sw_dcb == TRUE) { ret = i40e_init_dcb(hw); /* If lldp agent is stopped, the return value from * i40e_init_dcb we expect is failure with I40E_AQ_RC_EPERM * adminq status. Otherwise, it should return success. */ if ((ret == I40E_SUCCESS) || (ret != I40E_SUCCESS && hw->aq.asq_last_status == I40E_AQ_RC_EPERM)) { memset(&hw->local_dcbx_config, 0, sizeof(struct i40e_dcbx_config)); /* set dcb default configuration */ hw->local_dcbx_config.etscfg.willing = 0; hw->local_dcbx_config.etscfg.maxtcs = 0; hw->local_dcbx_config.etscfg.tcbwtable[0] = 100; hw->local_dcbx_config.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; /* all UPs mapping to TC0 */ for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) hw->local_dcbx_config.etscfg.prioritytable[i] = 0; hw->local_dcbx_config.etsrec = hw->local_dcbx_config.etscfg; hw->local_dcbx_config.pfc.willing = 0; hw->local_dcbx_config.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; /* FW needs one App to configure HW */ hw->local_dcbx_config.numapps = 1; hw->local_dcbx_config.app[0].selector = I40E_APP_SEL_ETHTYPE; hw->local_dcbx_config.app[0].priority = 3; hw->local_dcbx_config.app[0].protocolid = I40E_APP_PROTOID_FCOE; ret = i40e_set_dcb_config(hw); if (ret) { PMD_INIT_LOG(ERR, "default dcb config fails. err = %d, aq_err = %d.", ret, hw->aq.asq_last_status); return -ENOSYS; } } else { PMD_INIT_LOG(ERR, "DCB initialization in FW fails, err = %d, aq_err = %d.", ret, hw->aq.asq_last_status); return -ENOTSUP; } } else { ret = i40e_aq_start_lldp(hw, NULL); if (ret != I40E_SUCCESS) PMD_INIT_LOG(DEBUG, "Failed to start lldp"); ret = i40e_init_dcb(hw); if (!ret) { if (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED) { PMD_INIT_LOG(ERR, "HW doesn't support DCBX offload."); return -ENOTSUP; } } else { PMD_INIT_LOG(ERR, "DCBX configuration failed, err = %d, aq_err = %d.", ret, hw->aq.asq_last_status); return -ENOTSUP; } } return 0; } /* * i40e_dcb_setup - setup dcb related config * @dev: device being configured * * Returns 0 on success, negative value on failure */ static int i40e_dcb_setup(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_dcbx_config dcb_cfg; uint8_t tc_map = 0; int ret = 0; if ((pf->flags & I40E_FLAG_DCB) == 0) { PMD_INIT_LOG(ERR, "HW doesn't support DCB"); return -ENOTSUP; } if (pf->vf_num != 0) PMD_INIT_LOG(DEBUG, " DCB only works on pf and vmdq vsis."); ret = i40e_parse_dcb_configure(dev, &dcb_cfg, &tc_map); if (ret) { PMD_INIT_LOG(ERR, "invalid dcb config"); return -EINVAL; } ret = i40e_dcb_hw_configure(pf, &dcb_cfg, tc_map); if (ret) { PMD_INIT_LOG(ERR, "dcb sw configure fails"); return -ENOSYS; } return 0; } static int i40e_dev_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vsi *vsi = pf->main_vsi; struct i40e_dcbx_config *dcb_cfg = &hw->local_dcbx_config; uint16_t bsf, tc_mapping; int i, j = 0; if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_DCB_FLAG) dcb_info->nb_tcs = rte_bsf32(vsi->enabled_tc + 1); else dcb_info->nb_tcs = 1; for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) dcb_info->prio_tc[i] = dcb_cfg->etscfg.prioritytable[i]; for (i = 0; i < dcb_info->nb_tcs; i++) dcb_info->tc_bws[i] = dcb_cfg->etscfg.tcbwtable[i]; /* get queue mapping if vmdq is disabled */ if (!pf->nb_cfg_vmdq_vsi) { for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (!(vsi->enabled_tc & (1 << i))) continue; tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]); dcb_info->tc_queue.tc_rxq[j][i].base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >> I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT; dcb_info->tc_queue.tc_txq[j][i].base = dcb_info->tc_queue.tc_rxq[j][i].base; bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >> I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT; dcb_info->tc_queue.tc_rxq[j][i].nb_queue = 1 << bsf; dcb_info->tc_queue.tc_txq[j][i].nb_queue = dcb_info->tc_queue.tc_rxq[j][i].nb_queue; } return 0; } /* get queue mapping if vmdq is enabled */ do { vsi = pf->vmdq[j].vsi; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (!(vsi->enabled_tc & (1 << i))) continue; tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]); dcb_info->tc_queue.tc_rxq[j][i].base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >> I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT; dcb_info->tc_queue.tc_txq[j][i].base = dcb_info->tc_queue.tc_rxq[j][i].base; bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >> I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT; dcb_info->tc_queue.tc_rxq[j][i].nb_queue = 1 << bsf; dcb_info->tc_queue.tc_txq[j][i].nb_queue = dcb_info->tc_queue.tc_rxq[j][i].nb_queue; } j++; } while (j < RTE_MIN(pf->nb_cfg_vmdq_vsi, ETH_MAX_VMDQ_POOL)); return 0; } static int i40e_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t interval = i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL); uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; if (msix_intr == I40E_MISC_VEC_ID) I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | (0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | (interval << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT)); else I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - I40E_RX_VEC_START), I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | (0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | (interval << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT)); I40E_WRITE_FLUSH(hw); rte_intr_enable(&pci_dev->intr_handle); return 0; } static int i40e_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; if (msix_intr == I40E_MISC_VEC_ID) I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0); else I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - I40E_RX_VEC_START), 0); I40E_WRITE_FLUSH(hw); return 0; } static int i40e_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t *ptr_data = regs->data; uint32_t reg_idx, arr_idx, arr_idx2, reg_offset; const struct i40e_reg_info *reg_info; if (ptr_data == NULL) { regs->length = I40E_GLGEN_STAT_CLEAR + 4; regs->width = sizeof(uint32_t); return 0; } /* The first few registers have to be read using AQ operations */ reg_idx = 0; while (i40e_regs_adminq[reg_idx].name) { reg_info = &i40e_regs_adminq[reg_idx++]; for (arr_idx = 0; arr_idx <= reg_info->count1; arr_idx++) for (arr_idx2 = 0; arr_idx2 <= reg_info->count2; arr_idx2++) { reg_offset = arr_idx * reg_info->stride1 + arr_idx2 * reg_info->stride2; reg_offset += reg_info->base_addr; ptr_data[reg_offset >> 2] = i40e_read_rx_ctl(hw, reg_offset); } } /* The remaining registers can be read using primitives */ reg_idx = 0; while (i40e_regs_others[reg_idx].name) { reg_info = &i40e_regs_others[reg_idx++]; for (arr_idx = 0; arr_idx <= reg_info->count1; arr_idx++) for (arr_idx2 = 0; arr_idx2 <= reg_info->count2; arr_idx2++) { reg_offset = arr_idx * reg_info->stride1 + arr_idx2 * reg_info->stride2; reg_offset += reg_info->base_addr; ptr_data[reg_offset >> 2] = I40E_READ_REG(hw, reg_offset); } } return 0; } static int i40e_get_eeprom_length(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Convert word count to byte count */ return hw->nvm.sr_size << 1; } static int i40e_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t *data = eeprom->data; uint16_t offset, length, cnt_words; int ret_code; offset = eeprom->offset >> 1; length = eeprom->length >> 1; cnt_words = length; if (offset > hw->nvm.sr_size || offset + length > hw->nvm.sr_size) { PMD_DRV_LOG(ERR, "Requested EEPROM bytes out of range."); return -EINVAL; } eeprom->magic = hw->vendor_id | (hw->device_id << 16); ret_code = i40e_read_nvm_buffer(hw, offset, &cnt_words, data); if (ret_code != I40E_SUCCESS || cnt_words != length) { PMD_DRV_LOG(ERR, "EEPROM read failed."); return -EIO; } return 0; } static void i40e_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (!is_valid_assigned_ether_addr(mac_addr)) { PMD_DRV_LOG(ERR, "Tried to set invalid MAC address."); return; } /* Flags: 0x3 updates port address */ i40e_aq_mac_address_write(hw, 0x3, mac_addr->addr_bytes, NULL); } static int i40e_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct rte_eth_dev_data *dev_data = pf->dev_data; uint32_t frame_size = mtu + I40E_ETH_OVERHEAD; int ret = 0; /* check if mtu is within the allowed range */ if ((mtu < ETHER_MIN_MTU) || (frame_size > I40E_FRAME_SIZE_MAX)) return -EINVAL; /* mtu setting is forbidden if port is start */ if (dev_data->dev_started) { PMD_DRV_LOG(ERR, "port %d must be stopped before configuration", dev_data->port_id); return -EBUSY; } if (frame_size > ETHER_MAX_LEN) dev_data->dev_conf.rxmode.jumbo_frame = 1; else dev_data->dev_conf.rxmode.jumbo_frame = 0; dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return ret; } /* Restore ethertype filter */ static void i40e_ethertype_filter_restore(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_ethertype_filter_list *ethertype_list = &pf->ethertype.ethertype_list; struct i40e_ethertype_filter *f; struct i40e_control_filter_stats stats; uint16_t flags; TAILQ_FOREACH(f, ethertype_list, rules) { flags = 0; if (!(f->flags & RTE_ETHTYPE_FLAGS_MAC)) flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC; if (f->flags & RTE_ETHTYPE_FLAGS_DROP) flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP; flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TO_QUEUE; memset(&stats, 0, sizeof(stats)); i40e_aq_add_rem_control_packet_filter(hw, f->input.mac_addr.addr_bytes, f->input.ether_type, flags, pf->main_vsi->seid, f->queue, 1, &stats, NULL); } PMD_DRV_LOG(INFO, "Ethertype filter:" " mac_etype_used = %u, etype_used = %u," " mac_etype_free = %u, etype_free = %u", stats.mac_etype_used, stats.etype_used, stats.mac_etype_free, stats.etype_free); } /* Restore tunnel filter */ static void i40e_tunnel_filter_restore(struct i40e_pf *pf) { struct i40e_hw *hw = I40E_PF_TO_HW(pf); struct i40e_vsi *vsi; struct i40e_pf_vf *vf; struct i40e_tunnel_filter_list *tunnel_list = &pf->tunnel.tunnel_list; struct i40e_tunnel_filter *f; struct i40e_aqc_add_rm_cloud_filt_elem_ext cld_filter; bool big_buffer = 0; TAILQ_FOREACH(f, tunnel_list, rules) { if (!f->is_to_vf) vsi = pf->main_vsi; else { vf = &pf->vfs[f->vf_id]; vsi = vf->vsi; } memset(&cld_filter, 0, sizeof(cld_filter)); ether_addr_copy((struct ether_addr *)&f->input.outer_mac, (struct ether_addr *)&cld_filter.element.outer_mac); ether_addr_copy((struct ether_addr *)&f->input.inner_mac, (struct ether_addr *)&cld_filter.element.inner_mac); cld_filter.element.inner_vlan = f->input.inner_vlan; cld_filter.element.flags = f->input.flags; cld_filter.element.tenant_id = f->input.tenant_id; cld_filter.element.queue_number = f->queue; rte_memcpy(cld_filter.general_fields, f->input.general_fields, sizeof(f->input.general_fields)); if (((f->input.flags & I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoUDP) == I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoUDP) || ((f->input.flags & I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoGRE) == I40E_AQC_ADD_CLOUD_FILTER_TEID_MPLSoGRE) || ((f->input.flags & I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ) == I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ)) big_buffer = 1; if (big_buffer) i40e_aq_add_cloud_filters_big_buffer(hw, vsi->seid, &cld_filter, 1); else i40e_aq_add_cloud_filters(hw, vsi->seid, &cld_filter.element, 1); } } static void i40e_filter_restore(struct i40e_pf *pf) { i40e_ethertype_filter_restore(pf); i40e_tunnel_filter_restore(pf); i40e_fdir_filter_restore(pf); } static bool is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv) { if (strcmp(dev->data->drv_name, drv->driver.name)) return false; return true; } bool is_i40e_supported(struct rte_eth_dev *dev) { return is_device_supported(dev, &rte_i40e_pmd); } /* Create a QinQ cloud filter * * The Fortville NIC has limited resources for tunnel filters, * so we can only reuse existing filters. * * In step 1 we define which Field Vector fields can be used for * filter types. * As we do not have the inner tag defined as a field, * we have to define it first, by reusing one of L1 entries. * * In step 2 we are replacing one of existing filter types with * a new one for QinQ. * As we reusing L1 and replacing L2, some of the default filter * types will disappear,which depends on L1 and L2 entries we reuse. * * Step 1: Create L1 filter of outer vlan (12b) + inner vlan (12b) * * 1. Create L1 filter of outer vlan (12b) which will be in use * later when we define the cloud filter. * a. Valid_flags.replace_cloud = 0 * b. Old_filter = 10 (Stag_Inner_Vlan) * c. New_filter = 0x10 * d. TR bit = 0xff (optional, not used here) * e. Buffer – 2 entries: * i. Byte 0 = 8 (outer vlan FV index). * Byte 1 = 0 (rsv) * Byte 2-3 = 0x0fff * ii. Byte 0 = 37 (inner vlan FV index). * Byte 1 =0 (rsv) * Byte 2-3 = 0x0fff * * Step 2: * 2. Create cloud filter using two L1 filters entries: stag and * new filter(outer vlan+ inner vlan) * a. Valid_flags.replace_cloud = 1 * b. Old_filter = 1 (instead of outer IP) * c. New_filter = 0x10 * d. Buffer – 2 entries: * i. Byte 0 = 0x80 | 7 (valid | Stag). * Byte 1-3 = 0 (rsv) * ii. Byte 8 = 0x80 | 0x10 (valid | new l1 filter step1) * Byte 9-11 = 0 (rsv) */ static int i40e_cloud_filter_qinq_create(struct i40e_pf *pf) { int ret = -ENOTSUP; struct i40e_aqc_replace_cloud_filters_cmd filter_replace; struct i40e_aqc_replace_cloud_filters_cmd_buf filter_replace_buf; struct i40e_hw *hw = I40E_PF_TO_HW(pf); /* Init */ memset(&filter_replace, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd)); memset(&filter_replace_buf, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd_buf)); /* create L1 filter */ filter_replace.old_filter_type = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_STAG_IVLAN; filter_replace.new_filter_type = I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ; filter_replace.tr_bit = 0; /* Prepare the buffer, 2 entries */ filter_replace_buf.data[0] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_VLAN; filter_replace_buf.data[0] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; /* Field Vector 12b mask */ filter_replace_buf.data[2] = 0xff; filter_replace_buf.data[3] = 0x0f; filter_replace_buf.data[4] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_INNER_VLAN; filter_replace_buf.data[4] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; /* Field Vector 12b mask */ filter_replace_buf.data[6] = 0xff; filter_replace_buf.data[7] = 0x0f; ret = i40e_aq_replace_cloud_filters(hw, &filter_replace, &filter_replace_buf); if (ret != I40E_SUCCESS) return ret; /* Apply the second L2 cloud filter */ memset(&filter_replace, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd)); memset(&filter_replace_buf, 0, sizeof(struct i40e_aqc_replace_cloud_filters_cmd_buf)); /* create L2 filter, input for L2 filter will be L1 filter */ filter_replace.valid_flags = I40E_AQC_REPLACE_CLOUD_FILTER; filter_replace.old_filter_type = I40E_AQC_ADD_CLOUD_FILTER_OIP; filter_replace.new_filter_type = I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ; /* Prepare the buffer, 2 entries */ filter_replace_buf.data[0] = I40E_AQC_REPLACE_CLOUD_CMD_INPUT_FV_STAG; filter_replace_buf.data[0] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; filter_replace_buf.data[4] = I40E_AQC_ADD_CLOUD_FILTER_CUSTOM_QINQ; filter_replace_buf.data[4] |= I40E_AQC_REPLACE_CLOUD_CMD_INPUT_VALIDATED; ret = i40e_aq_replace_cloud_filters(hw, &filter_replace, &filter_replace_buf); return ret; } RTE_INIT(i40e_init_log); static void i40e_init_log(void) { i40e_logtype_init = rte_log_register("pmd.i40e.init"); if (i40e_logtype_init >= 0) rte_log_set_level(i40e_logtype_init, RTE_LOG_NOTICE); i40e_logtype_driver = rte_log_register("pmd.i40e.driver"); if (i40e_logtype_driver >= 0) rte_log_set_level(i40e_logtype_driver, RTE_LOG_NOTICE); }