/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" #include "virtio-net.h" #include "vhost-net-cdev.h" #include "eventfd_link/eventfd_link.h" const char eventfd_cdev[] = "/dev/eventfd-link"; extern uint32_t num_devices; static uint32_t num_cur_devices = 0; /* device ops to add/remove device to data core. */ static struct virtio_net_device_ops const * notify_ops; /* Root address of the linked list in the configuration core. */ static struct virtio_net_config_ll *ll_root = NULL; /* Features supported by this application. RX merge buffers are disabled by default. */ uint64_t VHOST_FEATURES = (0ULL << VIRTIO_NET_F_MRG_RXBUF); /* Line size for reading maps file. */ const uint32_t BUFSIZE = PATH_MAX; /* Size of prot char array in procmap. */ #define PROT_SZ 5 /* Number of elements in procmap struct. */ #define PROCMAP_SZ 8 /* Structure containing information gathered from maps file. */ struct procmap { uint64_t va_start; /* Start virtual address in file. */ uint64_t len; /* Size of file. */ uint64_t pgoff; /* Not used. */ uint32_t maj; /* Not used. */ uint32_t min; /* Not used. */ uint32_t ino; /* Not used. */ char prot[PROT_SZ]; /* Not used. */ char fname[PATH_MAX]; /* File name. */ }; /* * Converts QEMU virtual address to Vhost virtual address. This function is used * to convert the ring addresses to our address space. */ static uint64_t qva_to_vva(struct virtio_net *dev, uint64_t qemu_va) { struct virtio_memory_regions *region; uint64_t vhost_va = 0; uint32_t regionidx = 0; /* Find the region where the address lives. */ for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) { region = &dev->mem->regions[regionidx]; if ((qemu_va >= region->userspace_address) && (qemu_va <= region->userspace_address + region->memory_size)) { vhost_va = dev->mem->mapped_address + qemu_va - dev->mem->base_address; break; } } return vhost_va; } /* * Locate the file containing QEMU's memory space and map it to our address space. */ static int host_memory_map (struct virtio_net *dev, struct virtio_memory *mem, pid_t pid, uint64_t addr) { struct dirent *dptr = NULL; struct procmap procmap; DIR *dp = NULL; int fd; int i; char memfile[PATH_MAX]; char mapfile[PATH_MAX]; char procdir[PATH_MAX]; char resolved_path[PATH_MAX]; FILE *fmap; void *map; uint8_t found = 0; char line[BUFSIZE]; char dlm[] = "- : "; char *str, *sp, *in[PROCMAP_SZ]; char *end = NULL; /* Path where mem files are located. */ snprintf (procdir, PATH_MAX, "/proc/%u/fd/", pid); /* Maps file used to locate mem file. */ snprintf (mapfile, PATH_MAX, "/proc/%u/maps", pid); fmap = fopen(mapfile, "r"); if (fmap == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to open maps file for pid %d\n", dev->device_fh, pid); return -1; } /* Read through maps file until we find out base_address. */ while (fgets(line, BUFSIZE, fmap) != 0) { str = line; errno = 0; /* Split line in to fields. */ for (i = 0; i < PROCMAP_SZ; i++) { if (((in[i] = strtok_r(str, &dlm[i], &sp)) == NULL) || (errno != 0)) { fclose(fmap); return -1; } str = NULL; } /* Convert/Copy each field as needed. */ procmap.va_start = strtoull(in[0], &end, 16); if ((in[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } procmap.len = strtoull(in[1], &end, 16); if ((in[1] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } procmap.pgoff = strtoull(in[3], &end, 16); if ((in[3] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } procmap.maj = strtoul(in[4], &end, 16); if ((in[4] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } procmap.min = strtoul(in[5], &end, 16); if ((in[5] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } procmap.ino = strtoul(in[6], &end, 16); if ((in[6] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) { fclose(fmap); return -1; } memcpy(&procmap.prot, in[2], PROT_SZ); memcpy(&procmap.fname, in[7], PATH_MAX); if (procmap.va_start == addr) { procmap.len = procmap.len - procmap.va_start; found = 1; break; } } fclose(fmap); if (!found) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find memory file in pid %d maps file\n", dev->device_fh, pid); return -1; } /* Find the guest memory file among the process fds. */ dp = opendir(procdir); if (dp == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Cannot open pid %d process directory \n", dev->device_fh, pid); return -1; } found = 0; /* Read the fd directory contents. */ while (NULL != (dptr = readdir(dp))) { snprintf (memfile, PATH_MAX, "/proc/%u/fd/%s", pid, dptr->d_name); realpath(memfile, resolved_path); if (resolved_path == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to resolve fd directory\n", dev->device_fh); closedir(dp); return -1; } if (strncmp(resolved_path, procmap.fname, strnlen(procmap.fname, PATH_MAX)) == 0) { found = 1; break; } } closedir(dp); if (found == 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find memory file for pid %d\n", dev->device_fh, pid); return -1; } /* Open the shared memory file and map the memory into this process. */ fd = open(memfile, O_RDWR); if (fd == -1) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to open %s for pid %d\n", dev->device_fh, memfile, pid); return -1; } map = mmap(0, (size_t)procmap.len, PROT_READ|PROT_WRITE , MAP_POPULATE|MAP_SHARED, fd, 0); close (fd); if (map == MAP_FAILED) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Error mapping the file %s for pid %d\n", dev->device_fh, memfile, pid); return -1; } /* Store the memory address and size in the device data structure */ mem->mapped_address = (uint64_t)(uintptr_t)map; mem->mapped_size = procmap.len; LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") Mem File: %s->%s - Size: %llu - VA: %p\n", dev->device_fh, memfile, resolved_path, (long long unsigned)mem->mapped_size, map); return 0; } /* * Retrieves an entry from the devices configuration linked list. */ static struct virtio_net_config_ll * get_config_ll_entry(struct vhost_device_ctx ctx) { struct virtio_net_config_ll *ll_dev = ll_root; /* Loop through linked list until the device_fh is found. */ while (ll_dev != NULL) { if (ll_dev->dev.device_fh == ctx.fh) return ll_dev; ll_dev = ll_dev->next; } return NULL; } /* * Searches the configuration core linked list and retrieves the device if it exists. */ static struct virtio_net * get_device(struct vhost_device_ctx ctx) { struct virtio_net_config_ll *ll_dev; ll_dev = get_config_ll_entry(ctx); /* If a matching entry is found in the linked list, return the device in that entry. */ if (ll_dev) { return &ll_dev->dev; } RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Device not found in linked list.\n", ctx.fh); return NULL; } /* * Add entry containing a device to the device configuration linked list. */ static void add_config_ll_entry(struct virtio_net_config_ll *new_ll_dev) { struct virtio_net_config_ll *ll_dev = ll_root; /* If ll_dev == NULL then this is the first device so go to else */ if (ll_dev) { /* If the 1st device_fh != 0 then we insert our device here. */ if (ll_dev->dev.device_fh != 0) { new_ll_dev->dev.device_fh = 0; new_ll_dev->next = ll_dev; ll_root = new_ll_dev; } else { /* Increment through the ll until we find un unused device_fh. Insert the device at that entry*/ while ((ll_dev->next != NULL) && (ll_dev->dev.device_fh == (ll_dev->next->dev.device_fh - 1))) ll_dev = ll_dev->next; new_ll_dev->dev.device_fh = ll_dev->dev.device_fh + 1; new_ll_dev->next = ll_dev->next; ll_dev->next = new_ll_dev; } } else { ll_root = new_ll_dev; ll_root->dev.device_fh = 0; } } /* * Unmap any memory, close any file descriptors and free any memory owned by a device. */ static void cleanup_device(struct virtio_net *dev) { /* Unmap QEMU memory file if mapped. */ if (dev->mem) { munmap((void*)(uintptr_t)dev->mem->mapped_address, (size_t)dev->mem->mapped_size); if (dev->mem->regions_hpa) free(dev->mem->regions_hpa); free(dev->mem); } /* Close any event notifiers opened by device. */ if (dev->virtqueue[VIRTIO_RXQ]->callfd) close((int)dev->virtqueue[VIRTIO_RXQ]->callfd); if (dev->virtqueue[VIRTIO_RXQ]->kickfd) close((int)dev->virtqueue[VIRTIO_RXQ]->kickfd); if (dev->virtqueue[VIRTIO_TXQ]->callfd) close((int)dev->virtqueue[VIRTIO_TXQ]->callfd); if (dev->virtqueue[VIRTIO_TXQ]->kickfd) close((int)dev->virtqueue[VIRTIO_TXQ]->kickfd); } /* * Release virtqueues and device memory. */ static void free_device(struct virtio_net_config_ll *ll_dev) { /* Free any malloc'd memory */ free(ll_dev->dev.virtqueue[VIRTIO_RXQ]); free(ll_dev->dev.virtqueue[VIRTIO_TXQ]); free(ll_dev); } /* * Remove an entry from the device configuration linked list. */ static struct virtio_net_config_ll * rm_config_ll_entry(struct virtio_net_config_ll *ll_dev, struct virtio_net_config_ll *ll_dev_last) { /* First remove the device and then clean it up. */ if (ll_dev == ll_root) { ll_root = ll_dev->next; cleanup_device(&ll_dev->dev); free_device(ll_dev); return ll_root; } else { if (likely(ll_dev_last != NULL)) { ll_dev_last->next = ll_dev->next; cleanup_device(&ll_dev->dev); free_device(ll_dev); return ll_dev_last->next; } else { cleanup_device(&ll_dev->dev); free_device(ll_dev); RTE_LOG(ERR, VHOST_CONFIG, "Remove entry from config_ll failed\n"); return NULL; } } } /* * Initialise all variables in device structure. */ static void init_device(struct virtio_net *dev) { uint64_t vq_offset; /* Virtqueues have already been malloced so we don't want to set them to NULL. */ vq_offset = offsetof(struct virtio_net, mem); /* Set everything to 0. */ memset((void*)(uintptr_t)((uint64_t)(uintptr_t)dev + vq_offset), 0, (sizeof(struct virtio_net) - (size_t)vq_offset)); memset(dev->virtqueue[VIRTIO_RXQ], 0, sizeof(struct vhost_virtqueue)); memset(dev->virtqueue[VIRTIO_TXQ], 0, sizeof(struct vhost_virtqueue)); /* Backends are set to -1 indicating an inactive device. */ dev->virtqueue[VIRTIO_RXQ]->backend = VIRTIO_DEV_STOPPED; dev->virtqueue[VIRTIO_TXQ]->backend = VIRTIO_DEV_STOPPED; } /* * Function is called from the CUSE open function. The device structure is * initialised and a new entry is added to the device configuration linked * list. */ static int new_device(struct vhost_device_ctx ctx) { struct virtio_net_config_ll *new_ll_dev; struct vhost_virtqueue *virtqueue_rx, *virtqueue_tx; /*check the number of devices in the system*/ if (num_cur_devices == num_devices) { RTE_LOG(ERR, VHOST_CONFIG, "() Max num devices (%u) exceeded\n", num_devices); return -1; } /* Setup device and virtqueues. */ new_ll_dev = malloc(sizeof(struct virtio_net_config_ll)); if (new_ll_dev == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to allocate memory for dev.\n", ctx.fh); return -1; } virtqueue_rx = malloc(sizeof(struct vhost_virtqueue)); if (virtqueue_rx == NULL) { free(new_ll_dev); RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to allocate memory for virtqueue_rx.\n", ctx.fh); return -1; } virtqueue_tx = malloc(sizeof(struct vhost_virtqueue)); if (virtqueue_tx == NULL) { free(virtqueue_rx); free(new_ll_dev); RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to allocate memory for virtqueue_tx.\n", ctx.fh); return -1; } new_ll_dev->dev.virtqueue[VIRTIO_RXQ] = virtqueue_rx; new_ll_dev->dev.virtqueue[VIRTIO_TXQ] = virtqueue_tx; /* Initialise device and virtqueues. */ init_device(&new_ll_dev->dev); new_ll_dev->next = NULL; /* Add entry to device configuration linked list. */ add_config_ll_entry(new_ll_dev); /*increment the number of devices in the system*/ num_cur_devices++; return new_ll_dev->dev.device_fh; } /* * Function is called from the CUSE release function. This function will cleanup * the device and remove it from device configuration linked list. */ static void destroy_device(struct vhost_device_ctx ctx) { struct virtio_net_config_ll *ll_dev_cur_ctx, *ll_dev_last = NULL; struct virtio_net_config_ll *ll_dev_cur = ll_root; /* Find the linked list entry for the device to be removed. */ ll_dev_cur_ctx = get_config_ll_entry(ctx); while (ll_dev_cur != NULL) { /* If the device is found or a device that doesn't exist is found then it is removed. */ if (ll_dev_cur == ll_dev_cur_ctx) { /* * If the device is running on a data core then call the function to remove it from * the data core. */ if ((ll_dev_cur->dev.flags & VIRTIO_DEV_RUNNING)) notify_ops->destroy_device(&(ll_dev_cur->dev)); ll_dev_cur = rm_config_ll_entry(ll_dev_cur, ll_dev_last); } else { ll_dev_last = ll_dev_cur; ll_dev_cur = ll_dev_cur->next; } } /*decrement the number of devices in the system*/ num_cur_devices--; } /* * Called from CUSE IOCTL: VHOST_SET_OWNER * This function just returns success at the moment unless the device hasn't been initialised. */ static int set_owner(struct vhost_device_ctx ctx) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; return 0; } /* * Called from CUSE IOCTL: VHOST_RESET_OWNER */ static int reset_owner(struct vhost_device_ctx ctx) { struct virtio_net_config_ll *ll_dev; ll_dev = get_config_ll_entry(ctx); cleanup_device(&ll_dev->dev); init_device(&ll_dev->dev); return 0; } /* * Called from CUSE IOCTL: VHOST_GET_FEATURES * The features that we support are requested. */ static int get_features(struct vhost_device_ctx ctx, uint64_t *pu) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; /* Send our supported features. */ *pu = VHOST_FEATURES; return 0; } /* * Called from CUSE IOCTL: VHOST_SET_FEATURES * We receive the negotiated set of features supported by us and the virtio device. */ static int set_features(struct vhost_device_ctx ctx, uint64_t *pu) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; if (*pu & ~VHOST_FEATURES) return -1; /* Store the negotiated feature list for the device. */ dev->features = *pu; /* Set the vhost_hlen depending on if VIRTIO_NET_F_MRG_RXBUF is set. */ if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF)) { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") Mergeable RX buffers enabled\n", dev->device_fh); dev->virtqueue[VIRTIO_RXQ]->vhost_hlen = sizeof(struct virtio_net_hdr_mrg_rxbuf); dev->virtqueue[VIRTIO_TXQ]->vhost_hlen = sizeof(struct virtio_net_hdr_mrg_rxbuf); } else { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") Mergeable RX buffers disabled\n", dev->device_fh); dev->virtqueue[VIRTIO_RXQ]->vhost_hlen = sizeof(struct virtio_net_hdr); dev->virtqueue[VIRTIO_TXQ]->vhost_hlen = sizeof(struct virtio_net_hdr); } return 0; } /* * Calculate the region count of physical continous regions for one particular * region of whose vhost virtual address is continous. The particular region * start from vva_start, with size of 'size' in argument. */ static uint32_t check_hpa_regions(uint64_t vva_start, uint64_t size) { uint32_t i, nregions = 0, page_size = PAGE_SIZE; uint64_t cur_phys_addr = 0, next_phys_addr = 0; if (vva_start % page_size) { LOG_DEBUG(VHOST_CONFIG, "in check_countinous: vva start(%p) mod page_size(%d) " "has remainder\n", (void *)(uintptr_t)vva_start, page_size); return 0; } if (size % page_size) { LOG_DEBUG(VHOST_CONFIG, "in check_countinous: " "size((%"PRIu64")) mod page_size(%d) has remainder\n", size, page_size); return 0; } for (i = 0; i < size - page_size; i = i + page_size) { cur_phys_addr = rte_mem_virt2phy((void *)(uintptr_t)(vva_start + i)); next_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i + page_size)); if ((cur_phys_addr + page_size) != next_phys_addr) { ++nregions; LOG_DEBUG(VHOST_CONFIG, "in check_continuous: hva addr:(%p) is not " "continuous with hva addr:(%p), diff:%d\n", (void *)(uintptr_t)(vva_start + (uint64_t)i), (void *)(uintptr_t)(vva_start + (uint64_t)i + page_size), page_size); LOG_DEBUG(VHOST_CONFIG, "in check_continuous: hpa addr:(%p) is not " "continuous with hpa addr:(%p), " "diff:(%"PRIu64")\n", (void *)(uintptr_t)cur_phys_addr, (void *)(uintptr_t)next_phys_addr, (next_phys_addr-cur_phys_addr)); } } return nregions; } /* * Divide each region whose vhost virtual address is continous into a few * sub-regions, make sure the physical address within each sub-region are * continous. And fill offset(to GPA) and size etc. information of each * sub-region into regions_hpa. */ static uint32_t fill_hpa_memory_regions(void *memory) { uint32_t regionidx, regionidx_hpa = 0, i, k, page_size = PAGE_SIZE; uint64_t cur_phys_addr = 0, next_phys_addr = 0, vva_start; struct virtio_memory *virtio_memory = (struct virtio_memory *)memory; struct virtio_memory_regions_hpa *mem_region_hpa = virtio_memory->regions_hpa; if (mem_region_hpa == NULL) return 0; for (regionidx = 0; regionidx < virtio_memory->nregions; regionidx++) { vva_start = virtio_memory->regions[regionidx].guest_phys_address + virtio_memory->regions[regionidx].address_offset; mem_region_hpa[regionidx_hpa].guest_phys_address = virtio_memory->regions[regionidx].guest_phys_address; mem_region_hpa[regionidx_hpa].host_phys_addr_offset = rte_mem_virt2phy((void *)(uintptr_t)(vva_start)) - mem_region_hpa[regionidx_hpa].guest_phys_address; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: host phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].host_phys_addr_offset)); for (i = 0, k = 0; i < virtio_memory->regions[regionidx].memory_size - page_size; i += page_size) { cur_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i)); next_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i + page_size)); if ((cur_phys_addr + page_size) != next_phys_addr) { mem_region_hpa[regionidx_hpa].guest_phys_address_end = mem_region_hpa[regionidx_hpa].guest_phys_address + k + page_size; mem_region_hpa[regionidx_hpa].memory_size = k + page_size; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest " "phys addr end [%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address_end)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr " "size [%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].memory_size)); mem_region_hpa[regionidx_hpa + 1].guest_phys_address = mem_region_hpa[regionidx_hpa].guest_phys_address_end; ++regionidx_hpa; mem_region_hpa[regionidx_hpa].host_phys_addr_offset = next_phys_addr - mem_region_hpa[regionidx_hpa].guest_phys_address; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest" " phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: host phys addr " "start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].host_phys_addr_offset)); k = 0; } else { k += page_size; } } mem_region_hpa[regionidx_hpa].guest_phys_address_end = mem_region_hpa[regionidx_hpa].guest_phys_address + k + page_size; mem_region_hpa[regionidx_hpa].memory_size = k + page_size; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr end " "[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address_end)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr size " "[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].memory_size)); ++regionidx_hpa; } return regionidx_hpa; } /* * Called from CUSE IOCTL: VHOST_SET_MEM_TABLE * This function creates and populates the memory structure for the device. This includes * storing offsets used to translate buffer addresses. */ static int set_mem_table(struct vhost_device_ctx ctx, const void *mem_regions_addr, uint32_t nregions) { struct virtio_net *dev; struct vhost_memory_region *mem_regions; struct virtio_memory *mem; uint64_t size = offsetof(struct vhost_memory, regions); uint32_t regionidx, valid_regions; dev = get_device(ctx); if (dev == NULL) return -1; if (dev->mem) { munmap((void*)(uintptr_t)dev->mem->mapped_address, (size_t)dev->mem->mapped_size); free(dev->mem); } /* Malloc the memory structure depending on the number of regions. */ mem = calloc(1, sizeof(struct virtio_memory) + (sizeof(struct virtio_memory_regions) * nregions)); if (mem == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to allocate memory for dev->mem.\n", dev->device_fh); return -1; } mem->nregions = nregions; mem_regions = (void*)(uintptr_t)((uint64_t)(uintptr_t)mem_regions_addr + size); for (regionidx = 0; regionidx < mem->nregions; regionidx++) { /* Populate the region structure for each region. */ mem->regions[regionidx].guest_phys_address = mem_regions[regionidx].guest_phys_addr; mem->regions[regionidx].guest_phys_address_end = mem->regions[regionidx].guest_phys_address + mem_regions[regionidx].memory_size; mem->regions[regionidx].memory_size = mem_regions[regionidx].memory_size; mem->regions[regionidx].userspace_address = mem_regions[regionidx].userspace_addr; LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") REGION: %u - GPA: %p - QEMU VA: %p - SIZE (%"PRIu64")\n", dev->device_fh, regionidx, (void*)(uintptr_t)mem->regions[regionidx].guest_phys_address, (void*)(uintptr_t)mem->regions[regionidx].userspace_address, mem->regions[regionidx].memory_size); /*set the base address mapping*/ if (mem->regions[regionidx].guest_phys_address == 0x0) { mem->base_address = mem->regions[regionidx].userspace_address; /* Map VM memory file */ if (host_memory_map(dev, mem, ctx.pid, mem->base_address) != 0) { free(mem); return -1; } } } /* Check that we have a valid base address. */ if (mem->base_address == 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find base address of qemu memory file.\n", dev->device_fh); free(mem); return -1; } /* Check if all of our regions have valid mappings. Usually one does not exist in the QEMU memory file. */ valid_regions = mem->nregions; for (regionidx = 0; regionidx < mem->nregions; regionidx++) { if ((mem->regions[regionidx].userspace_address < mem->base_address) || (mem->regions[regionidx].userspace_address > (mem->base_address + mem->mapped_size))) valid_regions--; } /* If a region does not have a valid mapping we rebuild our memory struct to contain only valid entries. */ if (valid_regions != mem->nregions) { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") Not all memory regions exist in the QEMU mem file. Re-populating mem structure\n", dev->device_fh); /* Re-populate the memory structure with only valid regions. Invalid regions are over-written with memmove. */ valid_regions = 0; for (regionidx = mem->nregions; 0 != regionidx--;) { if ((mem->regions[regionidx].userspace_address < mem->base_address) || (mem->regions[regionidx].userspace_address > (mem->base_address + mem->mapped_size))) { memmove(&mem->regions[regionidx], &mem->regions[regionidx + 1], sizeof(struct virtio_memory_regions) * valid_regions); } else { valid_regions++; } } } mem->nregions = valid_regions; mem->nregions_hpa = mem->nregions; dev->mem = mem; /* * Calculate the address offset for each region. This offset is used to identify the vhost virtual address * corresponding to a QEMU guest physical address. */ for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) { dev->mem->regions[regionidx].address_offset = dev->mem->regions[regionidx].userspace_address - dev->mem->base_address + dev->mem->mapped_address - dev->mem->regions[regionidx].guest_phys_address; dev->mem->nregions_hpa += check_hpa_regions( dev->mem->regions[regionidx].guest_phys_address + dev->mem->regions[regionidx].address_offset, dev->mem->regions[regionidx].memory_size); } if (dev->mem->regions_hpa != NULL) { free(dev->mem->regions_hpa); dev->mem->regions_hpa = NULL; } dev->mem->regions_hpa = (struct virtio_memory_regions_hpa *) calloc(1, (sizeof(struct virtio_memory_regions_hpa) * dev->mem->nregions_hpa)); if (dev->mem->regions_hpa == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to allocate memory for " "dev->mem->regions_hpa.\n", dev->device_fh); return -1; } if (fill_hpa_memory_regions( (void *)dev->mem) != dev->mem->nregions_hpa) { RTE_LOG(ERR, VHOST_CONFIG, "in set_mem_table: hpa memory regions number mismatch: " "[%d]\n", dev->mem->nregions_hpa); return -1; } return 0; } /* * Called from CUSE IOCTL: VHOST_SET_VRING_NUM * The virtio device sends us the size of the descriptor ring. */ static int set_vring_num(struct vhost_device_ctx ctx, struct vhost_vring_state *state) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; /* State->index refers to the queue index. The TX queue is 1, RX queue is 0. */ dev->virtqueue[state->index]->size = state->num; return 0; } /* * Called from CUSE IOCTL: VHOST_SET_VRING_ADDR * The virtio device sends us the desc, used and avail ring addresses. This function * then converts these to our address space. */ static int set_vring_addr(struct vhost_device_ctx ctx, struct vhost_vring_addr *addr) { struct virtio_net *dev; struct vhost_virtqueue *vq; dev = get_device(ctx); if (dev == NULL) return -1; /* addr->index refers to the queue index. The TX queue is 1, RX queue is 0. */ vq = dev->virtqueue[addr->index]; /* The addresses are converted from QEMU virtual to Vhost virtual. */ vq->desc = (struct vring_desc*)(uintptr_t)qva_to_vva(dev, addr->desc_user_addr); if (vq->desc == 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find descriptor ring address.\n", dev->device_fh); return -1; } vq->avail = (struct vring_avail*)(uintptr_t)qva_to_vva(dev, addr->avail_user_addr); if (vq->avail == 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find available ring address.\n", dev->device_fh); return -1; } vq->used = (struct vring_used*)(uintptr_t)qva_to_vva(dev, addr->used_user_addr); if (vq->used == 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find used ring address.\n", dev->device_fh); return -1; } LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") mapped address desc: %p\n", dev->device_fh, vq->desc); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") mapped address avail: %p\n", dev->device_fh, vq->avail); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") mapped address used: %p\n", dev->device_fh, vq->used); return 0; } /* * Called from CUSE IOCTL: VHOST_SET_VRING_BASE * The virtio device sends us the available ring last used index. */ static int set_vring_base(struct vhost_device_ctx ctx, struct vhost_vring_state *state) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; /* State->index refers to the queue index. The TX queue is 1, RX queue is 0. */ dev->virtqueue[state->index]->last_used_idx = state->num; dev->virtqueue[state->index]->last_used_idx_res = state->num; return 0; } /* * Called from CUSE IOCTL: VHOST_GET_VRING_BASE * We send the virtio device our available ring last used index. */ static int get_vring_base(struct vhost_device_ctx ctx, uint32_t index, struct vhost_vring_state *state) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) return -1; state->index = index; /* State->index refers to the queue index. The TX queue is 1, RX queue is 0. */ state->num = dev->virtqueue[state->index]->last_used_idx; return 0; } /* * This function uses the eventfd_link kernel module to copy an eventfd file descriptor * provided by QEMU in to our process space. */ static int eventfd_copy(struct virtio_net *dev, struct eventfd_copy *eventfd_copy) { int eventfd_link, ret; /* Open the character device to the kernel module. */ eventfd_link = open(eventfd_cdev, O_RDWR); if (eventfd_link < 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") eventfd_link module is not loaded\n", dev->device_fh); return -1; } /* Call the IOCTL to copy the eventfd. */ ret = ioctl(eventfd_link, EVENTFD_COPY, eventfd_copy); close(eventfd_link); if (ret < 0) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") EVENTFD_COPY ioctl failed\n", dev->device_fh); return -1; } return 0; } /* * Called from CUSE IOCTL: VHOST_SET_VRING_CALL * The virtio device sends an eventfd to interrupt the guest. This fd gets copied in * to our process space. */ static int set_vring_call(struct vhost_device_ctx ctx, struct vhost_vring_file *file) { struct virtio_net *dev; struct eventfd_copy eventfd_kick; struct vhost_virtqueue *vq; dev = get_device(ctx); if (dev == NULL) return -1; /* file->index refers to the queue index. The TX queue is 1, RX queue is 0. */ vq = dev->virtqueue[file->index]; if (vq->kickfd) close((int)vq->kickfd); /* Populate the eventfd_copy structure and call eventfd_copy. */ vq->kickfd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); eventfd_kick.source_fd = vq->kickfd; eventfd_kick.target_fd = file->fd; eventfd_kick.target_pid = ctx.pid; if (eventfd_copy(dev, &eventfd_kick)) return -1; return 0; } /* * Called from CUSE IOCTL: VHOST_SET_VRING_KICK * The virtio device sends an eventfd that it can use to notify us. This fd gets copied in * to our process space. */ static int set_vring_kick(struct vhost_device_ctx ctx, struct vhost_vring_file *file) { struct virtio_net *dev; struct eventfd_copy eventfd_call; struct vhost_virtqueue *vq; dev = get_device(ctx); if (dev == NULL) return -1; /* file->index refers to the queue index. The TX queue is 1, RX queue is 0. */ vq = dev->virtqueue[file->index]; if (vq->callfd) close((int)vq->callfd); /* Populate the eventfd_copy structure and call eventfd_copy. */ vq->callfd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); eventfd_call.source_fd = vq->callfd; eventfd_call.target_fd = file->fd; eventfd_call.target_pid = ctx.pid; if (eventfd_copy(dev, &eventfd_call)) return -1; return 0; } /* * Called from CUSE IOCTL: VHOST_NET_SET_BACKEND * To complete device initialisation when the virtio driver is loaded we are provided with a * valid fd for a tap device (not used by us). If this happens then we can add the device to a * data core. When the virtio driver is removed we get fd=-1. At that point we remove the device * from the data core. The device will still exist in the device configuration linked list. */ static int set_backend(struct vhost_device_ctx ctx, struct vhost_vring_file *file) { struct virtio_net *dev; dev = get_device(ctx); if (dev == NULL) { return -1; } /* file->index refers to the queue index. The TX queue is 1, RX queue is 0. */ dev->virtqueue[file->index]->backend = file->fd; /* If the device isn't already running and both backend fds are set we add the device. */ if (!(dev->flags & VIRTIO_DEV_RUNNING)) { if (((int)dev->virtqueue[VIRTIO_TXQ]->backend != VIRTIO_DEV_STOPPED) && ((int)dev->virtqueue[VIRTIO_RXQ]->backend != VIRTIO_DEV_STOPPED)) return notify_ops->new_device(dev); /* Otherwise we remove it. */ } else if (file->fd == VIRTIO_DEV_STOPPED) { notify_ops->destroy_device(dev); } return 0; } /* * Function pointers are set for the device operations to allow CUSE to call functions * when an IOCTL, device_add or device_release is received. */ static const struct vhost_net_device_ops vhost_device_ops = { .new_device = new_device, .destroy_device = destroy_device, .get_features = get_features, .set_features = set_features, .set_mem_table = set_mem_table, .set_vring_num = set_vring_num, .set_vring_addr = set_vring_addr, .set_vring_base = set_vring_base, .get_vring_base = get_vring_base, .set_vring_kick = set_vring_kick, .set_vring_call = set_vring_call, .set_backend = set_backend, .set_owner = set_owner, .reset_owner = reset_owner, }; /* * Called by main to setup callbacks when registering CUSE device. */ struct vhost_net_device_ops const * get_virtio_net_callbacks(void) { return &vhost_device_ops; } /* * Register ops so that we can add/remove device to data core. */ int init_virtio_net(struct virtio_net_device_ops const * const ops) { notify_ops = ops; return 0; } /* * Currently not used as we Ctrl+c to exit application. */ int deinit_virtio_net(void) { return 0; }