/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "malloc_elem.h" #include "test.h" /* * Memzone * ======= * * - Search for three reserved zones or reserve them if they do not exist: * * - One is on any socket id. * - The second is on socket 0. * - The last one is on socket 1 (if socket 1 exists). * * - Check that the zones exist. * * - Check that the zones are cache-aligned. * * - Check that zones do not overlap. * * - Check that the zones are on the correct socket id. * * - Check that a lookup of the first zone returns the same pointer. * * - Check that it is not possible to create another zone with the * same name as an existing zone. * * - Check flags for specific huge page size reservation */ #define TEST_MEMZONE_NAME(suffix) "MZ_TEST_" suffix /* Test if memory overlaps: return 1 if true, or 0 if false. */ static int is_memory_overlap(rte_iova_t ptr1, size_t len1, rte_iova_t ptr2, size_t len2) { if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1) return 1; else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2) return 1; return 0; } static int test_memzone_invalid_alignment(void) { const struct rte_memzone * mz; mz = rte_memzone_lookup(TEST_MEMZONE_NAME("invalid_alignment")); if (mz != NULL) { printf("Zone with invalid alignment has been reserved\n"); return -1; } mz = rte_memzone_reserve_aligned(TEST_MEMZONE_NAME("invalid_alignment"), 100, SOCKET_ID_ANY, 0, 100); if (mz != NULL) { printf("Zone with invalid alignment has been reserved\n"); return -1; } return 0; } static int test_memzone_invalid_flags(void) { const struct rte_memzone *mz; mz = rte_memzone_lookup(TEST_MEMZONE_NAME("invalid_flags")); if (mz != NULL) { printf("Zone with invalid flags has been reserved\n"); return -1; } mz = rte_memzone_reserve(TEST_MEMZONE_NAME("invalid_flags"), 100, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG << 1); if (mz != NULL) { printf("Zone with invalid flags has been reserved\n"); return -1; } return 0; } static int test_memzone_reserving_zone_size_bigger_than_the_maximum(void) { const struct rte_memzone * mz; mz = rte_memzone_lookup( TEST_MEMZONE_NAME("zone_size_bigger_than_the_maximum")); if (mz != NULL) { printf("zone_size_bigger_than_the_maximum has been reserved\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("zone_size_bigger_than_the_maximum"), (size_t)-1, SOCKET_ID_ANY, 0); if (mz != NULL) { printf("It is impossible to reserve such big a memzone\n"); return -1; } return 0; } struct walk_arg { int hugepage_2MB_avail; int hugepage_1GB_avail; int hugepage_16MB_avail; int hugepage_16GB_avail; }; static int find_available_pagesz(const struct rte_memseg_list *msl, void *arg) { struct walk_arg *wa = arg; if (msl->external) return 0; if (msl->page_sz == RTE_PGSIZE_2M) wa->hugepage_2MB_avail = 1; if (msl->page_sz == RTE_PGSIZE_1G) wa->hugepage_1GB_avail = 1; if (msl->page_sz == RTE_PGSIZE_16M) wa->hugepage_16MB_avail = 1; if (msl->page_sz == RTE_PGSIZE_16G) wa->hugepage_16GB_avail = 1; return 0; } static int test_memzone_reserve_flags(void) { const struct rte_memzone *mz; struct walk_arg wa; int hugepage_2MB_avail, hugepage_1GB_avail; int hugepage_16MB_avail, hugepage_16GB_avail; const size_t size = 100; memset(&wa, 0, sizeof(wa)); rte_memseg_list_walk(find_available_pagesz, &wa); hugepage_2MB_avail = wa.hugepage_2MB_avail; hugepage_1GB_avail = wa.hugepage_1GB_avail; hugepage_16MB_avail = wa.hugepage_16MB_avail; hugepage_16GB_avail = wa.hugepage_16GB_avail; /* Display the availability of 2MB ,1GB, 16MB, 16GB pages */ if (hugepage_2MB_avail) printf("2MB Huge pages available\n"); if (hugepage_1GB_avail) printf("1GB Huge pages available\n"); if (hugepage_16MB_avail) printf("16MB Huge pages available\n"); if (hugepage_16GB_avail) printf("16GB Huge pages available\n"); /* * If 2MB pages available, check that a small memzone is correctly * reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag. * Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an * available page size (i.e 1GB ) when 2MB pages are unavailable. */ if (hugepage_2MB_avail) { mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_2M"), size, SOCKET_ID_ANY, RTE_MEMZONE_2MB); if (mz == NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_2M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails unless * HINT flag is indicated */ if (!hugepage_1GB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_1G_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 1GB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_2M) { printf("hugepage_sz not equal 2M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_1G"), size, SOCKET_ID_ANY, RTE_MEMZONE_1GB); if (mz != NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } } } /*As with 2MB tests above for 1GB huge page requests*/ if (hugepage_1GB_avail) { mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_1G"), size, SOCKET_ID_ANY, RTE_MEMZONE_1GB); if (mz == NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_1G_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 1GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails unless * HINT flag is indicated */ if (!hugepage_2MB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_2M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL){ printf("MEMZONE FLAG 2MB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G) { printf("hugepage_sz not equal 1G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_2M"), size, SOCKET_ID_ANY, RTE_MEMZONE_2MB); if (mz != NULL) { printf("MEMZONE FLAG 2MB\n"); return -1; } } if (hugepage_2MB_avail && hugepage_1GB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_2M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_2MB|RTE_MEMZONE_1GB); if (mz == NULL) { printf("BOTH SIZES SET\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_1G && mz->hugepage_sz != RTE_PGSIZE_2M) { printf("Wrong size when both sizes set\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } } } /* * This option is for IBM Power. If 16MB pages available, check * that a small memzone is correctly reserved from 16MB huge pages * when requested by the RTE_MEMZONE_16MB flag. Also check that * RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available * page size (i.e 16GB ) when 16MB pages are unavailable. */ if (hugepage_16MB_avail) { mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_16M"), size, SOCKET_ID_ANY, RTE_MEMZONE_16MB); if (mz == NULL) { printf("MEMZONE FLAG 16MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16MB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails * unless HINT flag is indicated */ if (!hugepage_16GB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16G_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_16GB | RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16GB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16M) { printf("hugepage_sz not equal 16M\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16G"), size, SOCKET_ID_ANY, RTE_MEMZONE_16GB); if (mz != NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } } } /*As with 16MB tests above for 16GB huge page requests*/ if (hugepage_16GB_avail) { mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_16G"), size, SOCKET_ID_ANY, RTE_MEMZONE_16GB); if (mz == NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16G_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16GB\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } /* Check if 1GB huge pages are unavailable, that function fails * unless HINT flag is indicated */ if (!hugepage_16MB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_16MB | RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("MEMZONE FLAG 16MB & HINT\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G) { printf("hugepage_sz not equal 16G\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16M"), size, SOCKET_ID_ANY, RTE_MEMZONE_16MB); if (mz != NULL) { printf("MEMZONE FLAG 16MB\n"); return -1; } } if (hugepage_16MB_avail && hugepage_16GB_avail) { mz = rte_memzone_reserve( TEST_MEMZONE_NAME("flag_zone_16M_HINT"), size, SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_16GB); if (mz == NULL) { printf("BOTH SIZES SET\n"); return -1; } if (mz->hugepage_sz != RTE_PGSIZE_16G && mz->hugepage_sz != RTE_PGSIZE_16M) { printf("Wrong size when both sizes set\n"); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } } } return 0; } /* Find the heap with the greatest free block size */ static size_t find_max_block_free_size(unsigned int align, unsigned int socket_id) { struct rte_malloc_socket_stats stats; size_t len, overhead; if (rte_malloc_get_socket_stats(socket_id, &stats) < 0) return 0; len = stats.greatest_free_size; overhead = MALLOC_ELEM_OVERHEAD; if (len == 0) return 0; align = RTE_CACHE_LINE_ROUNDUP(align); overhead += align; if (len < overhead) return 0; return len - overhead; } static int test_memzone_reserve_max(void) { unsigned int i; for (i = 0; i < rte_socket_count(); i++) { const struct rte_memzone *mz; size_t maxlen; int socket; socket = rte_socket_id_by_idx(i); maxlen = find_max_block_free_size(0, socket); if (maxlen == 0) { printf("There is no space left!\n"); return 0; } mz = rte_memzone_reserve(TEST_MEMZONE_NAME("max_zone"), 0, socket, 0); if (mz == NULL) { printf("Failed to reserve a big chunk of memory - %s\n", rte_strerror(rte_errno)); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (mz->len != maxlen) { printf("Memzone reserve with 0 size did not return bigest block\n"); printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } } return 0; } static int test_memzone_reserve_max_aligned(void) { unsigned int i; for (i = 0; i < rte_socket_count(); i++) { const struct rte_memzone *mz; size_t maxlen, minlen = 0; int socket; socket = rte_socket_id_by_idx(i); /* random alignment */ rte_srand((unsigned int)rte_rdtsc()); const unsigned int align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */ /* memzone size may be between size and size - align */ minlen = find_max_block_free_size(align, socket); maxlen = find_max_block_free_size(0, socket); if (minlen == 0 || maxlen == 0) { printf("There is no space left for biggest %u-aligned memzone!\n", align); return 0; } mz = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("max_zone_aligned"), 0, socket, 0, align); if (mz == NULL) { printf("Failed to reserve a big chunk of memory - %s\n", rte_strerror(rte_errno)); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (mz->addr != RTE_PTR_ALIGN(mz->addr, align)) { printf("Memzone reserve with 0 size and alignment %u did not return aligned block\n", align); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (mz->len < minlen || mz->len > maxlen) { printf("Memzone reserve with 0 size and alignment %u did not return" " bigest block\n", align); printf("Expected size = %zu-%zu, actual size = %zu\n", minlen, maxlen, mz->len); rte_dump_physmem_layout(stdout); rte_memzone_dump(stdout); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } } return 0; } static int test_memzone_aligned(void) { const struct rte_memzone *memzone_aligned_32; const struct rte_memzone *memzone_aligned_128; const struct rte_memzone *memzone_aligned_256; const struct rte_memzone *memzone_aligned_512; const struct rte_memzone *memzone_aligned_1024; /* memzone that should automatically be adjusted to align on 64 bytes */ memzone_aligned_32 = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("aligned_32"), 100, SOCKET_ID_ANY, 0, 32); /* memzone that is supposed to be aligned on a 128 byte boundary */ memzone_aligned_128 = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("aligned_128"), 100, SOCKET_ID_ANY, 0, 128); /* memzone that is supposed to be aligned on a 256 byte boundary */ memzone_aligned_256 = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("aligned_256"), 100, SOCKET_ID_ANY, 0, 256); /* memzone that is supposed to be aligned on a 512 byte boundary */ memzone_aligned_512 = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("aligned_512"), 100, SOCKET_ID_ANY, 0, 512); /* memzone that is supposed to be aligned on a 1024 byte boundary */ memzone_aligned_1024 = rte_memzone_reserve_aligned( TEST_MEMZONE_NAME("aligned_1024"), 100, SOCKET_ID_ANY, 0, 1024); printf("check alignments and lengths\n"); if (memzone_aligned_32 == NULL) { printf("Unable to reserve 64-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_32->iova & RTE_CACHE_LINE_MASK) != 0) return -1; if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_128 == NULL) { printf("Unable to reserve 128-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_128->iova & 127) != 0) return -1; if (((uintptr_t) memzone_aligned_128->addr & 127) != 0) return -1; if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_256 == NULL) { printf("Unable to reserve 256-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_256->iova & 255) != 0) return -1; if (((uintptr_t) memzone_aligned_256->addr & 255) != 0) return -1; if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_512 == NULL) { printf("Unable to reserve 512-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_512->iova & 511) != 0) return -1; if (((uintptr_t) memzone_aligned_512->addr & 511) != 0) return -1; if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone_aligned_1024 == NULL) { printf("Unable to reserve 1024-byte aligned memzone!\n"); return -1; } if ((memzone_aligned_1024->iova & 1023) != 0) return -1; if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0) return -1; if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0) return -1; /* check that zones don't overlap */ printf("check overlapping\n"); if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len, memzone_aligned_128->iova, memzone_aligned_128->len)) return -1; if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len, memzone_aligned_256->iova, memzone_aligned_256->len)) return -1; if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len, memzone_aligned_512->iova, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len, memzone_aligned_1024->iova, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len, memzone_aligned_256->iova, memzone_aligned_256->len)) return -1; if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len, memzone_aligned_512->iova, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len, memzone_aligned_1024->iova, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_256->iova, memzone_aligned_256->len, memzone_aligned_512->iova, memzone_aligned_512->len)) return -1; if (is_memory_overlap(memzone_aligned_256->iova, memzone_aligned_256->len, memzone_aligned_1024->iova, memzone_aligned_1024->len)) return -1; if (is_memory_overlap(memzone_aligned_512->iova, memzone_aligned_512->len, memzone_aligned_1024->iova, memzone_aligned_1024->len)) return -1; /* free all used zones */ if (rte_memzone_free(memzone_aligned_32)) { printf("Fail memzone free\n"); return -1; } if (rte_memzone_free(memzone_aligned_128)) { printf("Fail memzone free\n"); return -1; } if (rte_memzone_free(memzone_aligned_256)) { printf("Fail memzone free\n"); return -1; } if (rte_memzone_free(memzone_aligned_512)) { printf("Fail memzone free\n"); return -1; } if (rte_memzone_free(memzone_aligned_1024)) { printf("Fail memzone free\n"); return -1; } return 0; } static int check_memzone_bounded(const char *name, uint32_t len, uint32_t align, uint32_t bound) { const struct rte_memzone *mz; rte_iova_t bmask; bmask = ~((rte_iova_t)bound - 1); if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0, align, bound)) == NULL) { printf("%s(%s): memzone creation failed\n", __func__, name); return -1; } if ((mz->iova & ((rte_iova_t)align - 1)) != 0) { printf("%s(%s): invalid phys addr alignment\n", __func__, mz->name); return -1; } if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) { printf("%s(%s): invalid virtual addr alignment\n", __func__, mz->name); return -1; } if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len || mz->len < RTE_CACHE_LINE_SIZE) { printf("%s(%s): invalid length\n", __func__, mz->name); return -1; } if ((mz->iova & bmask) != ((mz->iova + mz->len - 1) & bmask)) { printf("%s(%s): invalid memzone boundary %u crossed\n", __func__, mz->name, bound); return -1; } if (rte_memzone_free(mz)) { printf("Fail memzone free\n"); return -1; } return 0; } static int test_memzone_bounded(void) { const struct rte_memzone *memzone_err; int rc; /* should fail as boundary is not power of two */ memzone_err = rte_memzone_reserve_bounded( TEST_MEMZONE_NAME("bounded_error_31"), 100, SOCKET_ID_ANY, 0, 32, UINT32_MAX); if (memzone_err != NULL) { printf("%s(%s)created a memzone with invalid boundary " "conditions\n", __func__, memzone_err->name); return -1; } /* should fail as len is greater then boundary */ memzone_err = rte_memzone_reserve_bounded( TEST_MEMZONE_NAME("bounded_error_32"), 100, SOCKET_ID_ANY, 0, 32, 32); if (memzone_err != NULL) { printf("%s(%s)created a memzone with invalid boundary " "conditions\n", __func__, memzone_err->name); return -1; } rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_128"), 100, 128, 128); if (rc != 0) return rc; rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_256"), 100, 256, 128); if (rc != 0) return rc; rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_1K"), 100, 64, 1024); if (rc != 0) return rc; rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_1K_MAX"), 0, 64, 1024); if (rc != 0) return rc; return 0; } static int test_memzone_free(void) { const struct rte_memzone *mz[RTE_MAX_MEMZONE + 1]; int i; char name[20]; mz[0] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone0"), 2000, SOCKET_ID_ANY, 0); mz[1] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone1"), 4000, SOCKET_ID_ANY, 0); if (mz[0] > mz[1]) return -1; if (!rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone0"))) return -1; if (!rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone1"))) return -1; if (rte_memzone_free(mz[0])) { printf("Fail memzone free - tempzone0\n"); return -1; } if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone0"))) { printf("Found previously free memzone - tempzone0\n"); return -1; } mz[2] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone2"), 2000, SOCKET_ID_ANY, 0); if (mz[2] > mz[1]) { printf("tempzone2 should have gotten the free entry from tempzone0\n"); return -1; } if (rte_memzone_free(mz[2])) { printf("Fail memzone free - tempzone2\n"); return -1; } if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone2"))) { printf("Found previously free memzone - tempzone2\n"); return -1; } if (rte_memzone_free(mz[1])) { printf("Fail memzone free - tempzone1\n"); return -1; } if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone1"))) { printf("Found previously free memzone - tempzone1\n"); return -1; } i = 0; do { snprintf(name, sizeof(name), TEST_MEMZONE_NAME("tempzone%u"), i); mz[i] = rte_memzone_reserve(name, 1, SOCKET_ID_ANY, 0); } while (mz[i++] != NULL); if (rte_memzone_free(mz[0])) { printf("Fail memzone free - tempzone0\n"); return -1; } mz[0] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone0new"), 0, SOCKET_ID_ANY, 0); if (mz[0] == NULL) { printf("Fail to create memzone - tempzone0new - when MAX memzones were " "created and one was free\n"); return -1; } for (i = i - 2; i >= 0; i--) { if (rte_memzone_free(mz[i])) { printf("Fail memzone free - tempzone%d\n", i); return -1; } } return 0; } static int test_memzones_left; static int memzone_walk_cnt; static void memzone_walk_clb(const struct rte_memzone *mz, void *arg __rte_unused) { memzone_walk_cnt++; if (!strncmp(TEST_MEMZONE_NAME(""), mz->name, RTE_MEMZONE_NAMESIZE)) test_memzones_left++; } static int test_memzone_basic(void) { const struct rte_memzone *memzone1; const struct rte_memzone *memzone2; const struct rte_memzone *memzone3; const struct rte_memzone *memzone4; const struct rte_memzone *mz; int memzone_cnt_after, memzone_cnt_expected; int memzone_cnt_before; memzone_walk_cnt = 0; test_memzones_left = 0; rte_memzone_walk(memzone_walk_clb, NULL); memzone_cnt_before = memzone_walk_cnt; memzone1 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone1"), 100, SOCKET_ID_ANY, 0); memzone2 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone2"), 1000, 0, 0); memzone3 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone3"), 1000, 1, 0); memzone4 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone4"), 1024, SOCKET_ID_ANY, 0); /* memzone3 may be NULL if we don't have NUMA */ if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL) return -1; /* check how many memzones we are expecting */ memzone_cnt_expected = memzone_cnt_before + (memzone1 != NULL) + (memzone2 != NULL) + (memzone3 != NULL) + (memzone4 != NULL); memzone_walk_cnt = 0; test_memzones_left = 0; rte_memzone_walk(memzone_walk_clb, NULL); memzone_cnt_after = memzone_walk_cnt; if (memzone_cnt_after != memzone_cnt_expected) return -1; rte_memzone_dump(stdout); /* check cache-line alignments */ printf("check alignments and lengths\n"); if ((memzone1->iova & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone2->iova & RTE_CACHE_LINE_MASK) != 0) return -1; if (memzone3 != NULL && (memzone3->iova & RTE_CACHE_LINE_MASK) != 0) return -1; if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0) return -1; if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0) return -1; if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 || memzone3->len == 0)) return -1; if (memzone4->len != 1024) return -1; /* check that zones don't overlap */ printf("check overlapping\n"); if (is_memory_overlap(memzone1->iova, memzone1->len, memzone2->iova, memzone2->len)) return -1; if (memzone3 != NULL && is_memory_overlap(memzone1->iova, memzone1->len, memzone3->iova, memzone3->len)) return -1; if (memzone3 != NULL && is_memory_overlap(memzone2->iova, memzone2->len, memzone3->iova, memzone3->len)) return -1; printf("check socket ID\n"); /* memzone2 must be on socket id 0 and memzone3 on socket 1 */ if (memzone2->socket_id != 0) return -1; if (memzone3 != NULL && memzone3->socket_id != 1) return -1; printf("test zone lookup\n"); mz = rte_memzone_lookup(TEST_MEMZONE_NAME("testzone1")); if (mz != memzone1) return -1; printf("test duplcate zone name\n"); mz = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone1"), 100, SOCKET_ID_ANY, 0); if (mz != NULL) return -1; if (rte_memzone_free(memzone1)) { printf("Fail memzone free - memzone1\n"); return -1; } if (rte_memzone_free(memzone2)) { printf("Fail memzone free - memzone2\n"); return -1; } if (memzone3 && rte_memzone_free(memzone3)) { printf("Fail memzone free - memzone3\n"); return -1; } if (rte_memzone_free(memzone4)) { printf("Fail memzone free - memzone4\n"); return -1; } memzone_walk_cnt = 0; test_memzones_left = 0; rte_memzone_walk(memzone_walk_clb, NULL); memzone_cnt_after = memzone_walk_cnt; if (memzone_cnt_after != memzone_cnt_before) return -1; return 0; } static int test_memzone(void) { /* take note of how many memzones were allocated before running */ int memzone_cnt; memzone_walk_cnt = 0; test_memzones_left = 0; rte_memzone_walk(memzone_walk_clb, NULL); memzone_cnt = memzone_walk_cnt; printf("test basic memzone API\n"); if (test_memzone_basic() < 0) return -1; printf("test free memzone\n"); if (test_memzone_free() < 0) return -1; printf("test reserving memzone with bigger size than the maximum\n"); if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0) return -1; printf("test memzone_reserve flags\n"); if (test_memzone_reserve_flags() < 0) return -1; printf("test alignment for memzone_reserve\n"); if (test_memzone_aligned() < 0) return -1; printf("test boundary alignment for memzone_reserve\n"); if (test_memzone_bounded() < 0) return -1; printf("test invalid alignment for memzone_reserve\n"); if (test_memzone_invalid_alignment() < 0) return -1; printf("test invalid flags for memzone_reserve\n"); if (test_memzone_invalid_flags() < 0) return -1; printf("test reserving the largest size memzone possible\n"); if (test_memzone_reserve_max() < 0) return -1; printf("test reserving the largest size aligned memzone possible\n"); if (test_memzone_reserve_max_aligned() < 0) return -1; printf("check memzone cleanup\n"); memzone_walk_cnt = 0; test_memzones_left = 0; rte_memzone_walk(memzone_walk_clb, NULL); if (memzone_walk_cnt != memzone_cnt || test_memzones_left > 0) { printf("there are some memzones left after test\n"); rte_memzone_dump(stdout); return -1; } return 0; } REGISTER_TEST_COMMAND(memzone_autotest, test_memzone);