/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" #define MAX_QUEUES 512 /* the maximum number of external ports supported */ #define MAX_SUP_PORTS 1 /* * Calculate the number of buffers needed per port */ #define NUM_MBUFS_PER_PORT ((MAX_QUEUES*RTE_TEST_RX_DESC_DEFAULT) + \ (num_switching_cores*MAX_PKT_BURST) + \ (num_switching_cores*RTE_TEST_TX_DESC_DEFAULT) +\ (num_switching_cores*MBUF_CACHE_SIZE)) #define MBUF_CACHE_SIZE 128 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE /* * No frame data buffer allocated from host are required for zero copy * implementation, guest will allocate the frame data buffer, and vhost * directly use it. */ #define VIRTIO_DESCRIPTOR_LEN_ZCP RTE_MBUF_DEFAULT_DATAROOM #define MBUF_DATA_SIZE_ZCP RTE_MBUF_DEFAULT_BUF_SIZE #define MBUF_CACHE_SIZE_ZCP 0 #define MAX_PKT_BURST 32 /* Max burst size for RX/TX */ #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define BURST_RX_WAIT_US 15 /* Defines how long we wait between retries on RX */ #define BURST_RX_RETRIES 4 /* Number of retries on RX. */ #define JUMBO_FRAME_MAX_SIZE 0x2600 /* State of virtio device. */ #define DEVICE_MAC_LEARNING 0 #define DEVICE_RX 1 #define DEVICE_SAFE_REMOVE 2 /* Config_core_flag status definitions. */ #define REQUEST_DEV_REMOVAL 1 #define ACK_DEV_REMOVAL 0 /* Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 512 /* * Need refine these 2 macros for legacy and DPDK based front end: * Max vring avail descriptor/entries from guest - MAX_PKT_BURST * And then adjust power 2. */ /* * For legacy front end, 128 descriptors, * half for virtio header, another half for mbuf. */ #define RTE_TEST_RX_DESC_DEFAULT_ZCP 32 /* legacy: 32, DPDK virt FE: 128. */ #define RTE_TEST_TX_DESC_DEFAULT_ZCP 64 /* legacy: 64, DPDK virt FE: 64. */ /* Get first 4 bytes in mbuf headroom. */ #define MBUF_HEADROOM_UINT32(mbuf) (*(uint32_t *)((uint8_t *)(mbuf) \ + sizeof(struct rte_mbuf))) /* true if x is a power of 2 */ #define POWEROF2(x) ((((x)-1) & (x)) == 0) #define INVALID_PORT_ID 0xFF /* Max number of devices. Limited by vmdq. */ #define MAX_DEVICES 64 /* Size of buffers used for snprintfs. */ #define MAX_PRINT_BUFF 6072 /* Maximum character device basename size. */ #define MAX_BASENAME_SZ 10 /* Maximum long option length for option parsing. */ #define MAX_LONG_OPT_SZ 64 /* Used to compare MAC addresses. */ #define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL /* Number of descriptors per cacheline. */ #define DESC_PER_CACHELINE (RTE_CACHE_LINE_SIZE / sizeof(struct vring_desc)) #define MBUF_EXT_MEM(mb) (rte_mbuf_from_indirect(mb) != (mb)) /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; /* Promiscuous mode */ static uint32_t promiscuous; /*Number of switching cores enabled*/ static uint32_t num_switching_cores = 0; /* number of devices/queues to support*/ static uint32_t num_queues = 0; static uint32_t num_devices; /* * Enable zero copy, pkts buffer will directly dma to hw descriptor, * disabled on default. */ static uint32_t zero_copy; static int mergeable; /* Do vlan strip on host, enabled on default */ static uint32_t vlan_strip = 1; /* number of descriptors to apply*/ static uint32_t num_rx_descriptor = RTE_TEST_RX_DESC_DEFAULT_ZCP; static uint32_t num_tx_descriptor = RTE_TEST_TX_DESC_DEFAULT_ZCP; /* max ring descriptor, ixgbe, i40e, e1000 all are 4096. */ #define MAX_RING_DESC 4096 struct vpool { struct rte_mempool *pool; struct rte_ring *ring; uint32_t buf_size; } vpool_array[MAX_QUEUES+MAX_QUEUES]; /* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */ typedef enum { VM2VM_DISABLED = 0, VM2VM_SOFTWARE = 1, VM2VM_HARDWARE = 2, VM2VM_LAST } vm2vm_type; static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE; /* The type of host physical address translated from guest physical address. */ typedef enum { PHYS_ADDR_CONTINUOUS = 0, PHYS_ADDR_CROSS_SUBREG = 1, PHYS_ADDR_INVALID = 2, PHYS_ADDR_LAST } hpa_type; /* Enable stats. */ static uint32_t enable_stats = 0; /* Enable retries on RX. */ static uint32_t enable_retry = 1; /* Specify timeout (in useconds) between retries on RX. */ static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US; /* Specify the number of retries on RX. */ static uint32_t burst_rx_retry_num = BURST_RX_RETRIES; /* Character device basename. Can be set by user. */ static char dev_basename[MAX_BASENAME_SZ] = "vhost-net"; /* empty vmdq configuration structure. Filled in programatically */ static struct rte_eth_conf vmdq_conf_default = { .rxmode = { .mq_mode = ETH_MQ_RX_VMDQ_ONLY, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 0, /**< IP checksum offload disabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ /* * It is necessary for 1G NIC such as I350, * this fixes bug of ipv4 forwarding in guest can't * forward pakets from one virtio dev to another virtio dev. */ .hw_vlan_strip = 1, /**< VLAN strip enabled. */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 0, /**< CRC stripped by hardware */ }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, .rx_adv_conf = { /* * should be overridden separately in code with * appropriate values */ .vmdq_rx_conf = { .nb_queue_pools = ETH_8_POOLS, .enable_default_pool = 0, .default_pool = 0, .nb_pool_maps = 0, .pool_map = {{0, 0},}, }, }, }; static unsigned lcore_ids[RTE_MAX_LCORE]; static uint8_t ports[RTE_MAX_ETHPORTS]; static unsigned num_ports = 0; /**< The number of ports specified in command line */ static uint16_t num_pf_queues, num_vmdq_queues; static uint16_t vmdq_pool_base, vmdq_queue_base; static uint16_t queues_per_pool; static const uint16_t external_pkt_default_vlan_tag = 2000; const uint16_t vlan_tags[] = { 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, }; /* ethernet addresses of ports */ static struct ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS]; /* heads for the main used and free linked lists for the data path. */ static struct virtio_net_data_ll *ll_root_used = NULL; static struct virtio_net_data_ll *ll_root_free = NULL; /* Array of data core structures containing information on individual core linked lists. */ static struct lcore_info lcore_info[RTE_MAX_LCORE]; /* Used for queueing bursts of TX packets. */ struct mbuf_table { unsigned len; unsigned txq_id; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; /* TX queue for each data core. */ struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE]; /* TX queue fori each virtio device for zero copy. */ struct mbuf_table tx_queue_zcp[MAX_QUEUES]; /* Vlan header struct used to insert vlan tags on TX. */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /* IPv4 Header */ struct ipv4_hdr { uint8_t version_ihl; /**< version and header length */ uint8_t type_of_service; /**< type of service */ uint16_t total_length; /**< length of packet */ uint16_t packet_id; /**< packet ID */ uint16_t fragment_offset; /**< fragmentation offset */ uint8_t time_to_live; /**< time to live */ uint8_t next_proto_id; /**< protocol ID */ uint16_t hdr_checksum; /**< header checksum */ uint32_t src_addr; /**< source address */ uint32_t dst_addr; /**< destination address */ } __attribute__((__packed__)); /* Header lengths. */ #define VLAN_HLEN 4 #define VLAN_ETH_HLEN 18 /* Per-device statistics struct */ struct device_statistics { uint64_t tx_total; rte_atomic64_t rx_total_atomic; uint64_t rx_total; uint64_t tx; rte_atomic64_t rx_atomic; uint64_t rx; } __rte_cache_aligned; struct device_statistics dev_statistics[MAX_DEVICES]; /* * Builds up the correct configuration for VMDQ VLAN pool map * according to the pool & queue limits. */ static inline int get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices) { struct rte_eth_vmdq_rx_conf conf; struct rte_eth_vmdq_rx_conf *def_conf = &vmdq_conf_default.rx_adv_conf.vmdq_rx_conf; unsigned i; memset(&conf, 0, sizeof(conf)); conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices; conf.nb_pool_maps = num_devices; conf.enable_loop_back = def_conf->enable_loop_back; conf.rx_mode = def_conf->rx_mode; for (i = 0; i < conf.nb_pool_maps; i++) { conf.pool_map[i].vlan_id = vlan_tags[ i ]; conf.pool_map[i].pools = (1UL << i); } (void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf))); (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &conf, sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf))); return 0; } /* * Validate the device number according to the max pool number gotten form * dev_info. If the device number is invalid, give the error message and * return -1. Each device must have its own pool. */ static inline int validate_num_devices(uint32_t max_nb_devices) { if (num_devices > max_nb_devices) { RTE_LOG(ERR, VHOST_PORT, "invalid number of devices\n"); return -1; } return 0; } /* * Initialises a given port using global settings and with the rx buffers * coming from the mbuf_pool passed as parameter */ static inline int port_init(uint8_t port) { struct rte_eth_dev_info dev_info; struct rte_eth_conf port_conf; struct rte_eth_rxconf *rxconf; struct rte_eth_txconf *txconf; int16_t rx_rings, tx_rings; uint16_t rx_ring_size, tx_ring_size; int retval; uint16_t q; /* The max pool number from dev_info will be used to validate the pool number specified in cmd line */ rte_eth_dev_info_get (port, &dev_info); if (dev_info.max_rx_queues > MAX_QUEUES) { rte_exit(EXIT_FAILURE, "please define MAX_QUEUES no less than %u in %s\n", dev_info.max_rx_queues, __FILE__); } rxconf = &dev_info.default_rxconf; txconf = &dev_info.default_txconf; rxconf->rx_drop_en = 1; /* Enable vlan offload */ txconf->txq_flags &= ~ETH_TXQ_FLAGS_NOVLANOFFL; /* * Zero copy defers queue RX/TX start to the time when guest * finishes its startup and packet buffers from that guest are * available. */ if (zero_copy) { rxconf->rx_deferred_start = 1; rxconf->rx_drop_en = 0; txconf->tx_deferred_start = 1; } /*configure the number of supported virtio devices based on VMDQ limits */ num_devices = dev_info.max_vmdq_pools; if (zero_copy) { rx_ring_size = num_rx_descriptor; tx_ring_size = num_tx_descriptor; tx_rings = dev_info.max_tx_queues; } else { rx_ring_size = RTE_TEST_RX_DESC_DEFAULT; tx_ring_size = RTE_TEST_TX_DESC_DEFAULT; tx_rings = (uint16_t)rte_lcore_count(); } retval = validate_num_devices(MAX_DEVICES); if (retval < 0) return retval; /* Get port configuration. */ retval = get_eth_conf(&port_conf, num_devices); if (retval < 0) return retval; /* NIC queues are divided into pf queues and vmdq queues. */ num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num; queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools; num_vmdq_queues = num_devices * queues_per_pool; num_queues = num_pf_queues + num_vmdq_queues; vmdq_queue_base = dev_info.vmdq_queue_base; vmdq_pool_base = dev_info.vmdq_pool_base; printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n", num_pf_queues, num_devices, queues_per_pool); if (port >= rte_eth_dev_count()) return -1; rx_rings = (uint16_t)dev_info.max_rx_queues; /* Configure ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; /* Setup the queues. */ for (q = 0; q < rx_rings; q ++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), rxconf, vpool_array[q].pool); if (retval < 0) return retval; } for (q = 0; q < tx_rings; q ++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), txconf); if (retval < 0) return retval; } /* Start the device. */ retval = rte_eth_dev_start(port); if (retval < 0) { RTE_LOG(ERR, VHOST_DATA, "Failed to start the device.\n"); return retval; } if (promiscuous) rte_eth_promiscuous_enable(port); rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]); RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices); RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8 " %02"PRIx8" %02"PRIx8" %02"PRIx8"\n", (unsigned)port, vmdq_ports_eth_addr[port].addr_bytes[0], vmdq_ports_eth_addr[port].addr_bytes[1], vmdq_ports_eth_addr[port].addr_bytes[2], vmdq_ports_eth_addr[port].addr_bytes[3], vmdq_ports_eth_addr[port].addr_bytes[4], vmdq_ports_eth_addr[port].addr_bytes[5]); return 0; } /* * Set character device basename. */ static int us_vhost_parse_basename(const char *q_arg) { /* parse number string */ if (strnlen(q_arg, MAX_BASENAME_SZ) > MAX_BASENAME_SZ) return -1; else snprintf((char*)&dev_basename, MAX_BASENAME_SZ, "%s", q_arg); return 0; } /* * Parse the portmask provided at run time. */ static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; errno = 0; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (pm == 0) return -1; return pm; } /* * Parse num options at run time. */ static int parse_num_opt(const char *q_arg, uint32_t max_valid_value) { char *end = NULL; unsigned long num; errno = 0; /* parse unsigned int string */ num = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (num > max_valid_value) return -1; return num; } /* * Display usage */ static void us_vhost_usage(const char *prgname) { RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n" " --vm2vm [0|1|2]\n" " --rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n" " --dev-basename \n" " --nb-devices ND\n" " -p PORTMASK: Set mask for ports to be used by application\n" " --vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n" " --rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n" " --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n" " --rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n" " --mergeable [0|1]: disable(default)/enable RX mergeable buffers\n" " --vlan-strip [0|1]: disable/enable(default) RX VLAN strip on host\n" " --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n" " --dev-basename: The basename to be used for the character device.\n" " --zero-copy [0|1]: disable(default)/enable rx/tx " "zero copy\n" " --rx-desc-num [0-N]: the number of descriptors on rx, " "used only when zero copy is enabled.\n" " --tx-desc-num [0-N]: the number of descriptors on tx, " "used only when zero copy is enabled.\n", prgname); } /* * Parse the arguments given in the command line of the application. */ static int us_vhost_parse_args(int argc, char **argv) { int opt, ret; int option_index; unsigned i; const char *prgname = argv[0]; static struct option long_option[] = { {"vm2vm", required_argument, NULL, 0}, {"rx-retry", required_argument, NULL, 0}, {"rx-retry-delay", required_argument, NULL, 0}, {"rx-retry-num", required_argument, NULL, 0}, {"mergeable", required_argument, NULL, 0}, {"vlan-strip", required_argument, NULL, 0}, {"stats", required_argument, NULL, 0}, {"dev-basename", required_argument, NULL, 0}, {"zero-copy", required_argument, NULL, 0}, {"rx-desc-num", required_argument, NULL, 0}, {"tx-desc-num", required_argument, NULL, 0}, {NULL, 0, 0, 0}, }; /* Parse command line */ while ((opt = getopt_long(argc, argv, "p:P", long_option, &option_index)) != EOF) { switch (opt) { /* Portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n"); us_vhost_usage(prgname); return -1; } break; case 'P': promiscuous = 1; vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode = ETH_VMDQ_ACCEPT_BROADCAST | ETH_VMDQ_ACCEPT_MULTICAST; rte_vhost_feature_enable(1ULL << VIRTIO_NET_F_CTRL_RX); break; case 0: /* Enable/disable vm2vm comms. */ if (!strncmp(long_option[option_index].name, "vm2vm", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, (VM2VM_LAST - 1)); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for " "vm2vm [0|1|2]\n"); us_vhost_usage(prgname); return -1; } else { vm2vm_mode = (vm2vm_type)ret; } } /* Enable/disable retries on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n"); us_vhost_usage(prgname); return -1; } else { enable_retry = ret; } } /* Specify the retries delay time (in useconds) on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry-delay", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n"); us_vhost_usage(prgname); return -1; } else { burst_rx_delay_time = ret; } } /* Specify the retries number on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry-num", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n"); us_vhost_usage(prgname); return -1; } else { burst_rx_retry_num = ret; } } /* Enable/disable RX mergeable buffers. */ if (!strncmp(long_option[option_index].name, "mergeable", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n"); us_vhost_usage(prgname); return -1; } else { mergeable = !!ret; if (ret) { vmdq_conf_default.rxmode.jumbo_frame = 1; vmdq_conf_default.rxmode.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE; } } } /* Enable/disable RX VLAN strip on host. */ if (!strncmp(long_option[option_index].name, "vlan-strip", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for VLAN strip [0|1]\n"); us_vhost_usage(prgname); return -1; } else { vlan_strip = !!ret; vmdq_conf_default.rxmode.hw_vlan_strip = vlan_strip; } } /* Enable/disable stats. */ if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for stats [0..N]\n"); us_vhost_usage(prgname); return -1; } else { enable_stats = ret; } } /* Set character device basename. */ if (!strncmp(long_option[option_index].name, "dev-basename", MAX_LONG_OPT_SZ)) { if (us_vhost_parse_basename(optarg) == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for character device basename (Max %d characters)\n", MAX_BASENAME_SZ); us_vhost_usage(prgname); return -1; } } /* Enable/disable rx/tx zero copy. */ if (!strncmp(long_option[option_index].name, "zero-copy", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument" " for zero-copy [0|1]\n"); us_vhost_usage(prgname); return -1; } else zero_copy = ret; } /* Specify the descriptor number on RX. */ if (!strncmp(long_option[option_index].name, "rx-desc-num", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, MAX_RING_DESC); if ((ret == -1) || (!POWEROF2(ret))) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-desc-num[0-N]," "power of 2 required.\n"); us_vhost_usage(prgname); return -1; } else { num_rx_descriptor = ret; } } /* Specify the descriptor number on TX. */ if (!strncmp(long_option[option_index].name, "tx-desc-num", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, MAX_RING_DESC); if ((ret == -1) || (!POWEROF2(ret))) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-desc-num [0-N]," "power of 2 required.\n"); us_vhost_usage(prgname); return -1; } else { num_tx_descriptor = ret; } } break; /* Invalid option - print options. */ default: us_vhost_usage(prgname); return -1; } } for (i = 0; i < RTE_MAX_ETHPORTS; i++) { if (enabled_port_mask & (1 << i)) ports[num_ports++] = (uint8_t)i; } if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } if ((zero_copy == 1) && (vm2vm_mode == VM2VM_SOFTWARE)) { RTE_LOG(INFO, VHOST_PORT, "Vhost zero copy doesn't support software vm2vm," "please specify 'vm2vm 2' to use hardware vm2vm.\n"); return -1; } if ((zero_copy == 1) && (vmdq_conf_default.rxmode.jumbo_frame == 1)) { RTE_LOG(INFO, VHOST_PORT, "Vhost zero copy doesn't support jumbo frame," "please specify '--mergeable 0' to disable the " "mergeable feature.\n"); return -1; } return 0; } /* * Update the global var NUM_PORTS and array PORTS according to system ports number * and return valid ports number */ static unsigned check_ports_num(unsigned nb_ports) { unsigned valid_num_ports = num_ports; unsigned portid; if (num_ports > nb_ports) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n", num_ports, nb_ports); num_ports = nb_ports; } for (portid = 0; portid < num_ports; portid ++) { if (ports[portid] >= nb_ports) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port ID(%u) exceeds max system port ID(%u)\n", ports[portid], (nb_ports - 1)); ports[portid] = INVALID_PORT_ID; valid_num_ports--; } } return valid_num_ports; } /* * Macro to print out packet contents. Wrapped in debug define so that the * data path is not effected when debug is disabled. */ #ifdef DEBUG #define PRINT_PACKET(device, addr, size, header) do { \ char *pkt_addr = (char*)(addr); \ unsigned int index; \ char packet[MAX_PRINT_BUFF]; \ \ if ((header)) \ snprintf(packet, MAX_PRINT_BUFF, "(%"PRIu64") Header size %d: ", (device->device_fh), (size)); \ else \ snprintf(packet, MAX_PRINT_BUFF, "(%"PRIu64") Packet size %d: ", (device->device_fh), (size)); \ for (index = 0; index < (size); index++) { \ snprintf(packet + strnlen(packet, MAX_PRINT_BUFF), MAX_PRINT_BUFF - strnlen(packet, MAX_PRINT_BUFF), \ "%02hhx ", pkt_addr[index]); \ } \ snprintf(packet + strnlen(packet, MAX_PRINT_BUFF), MAX_PRINT_BUFF - strnlen(packet, MAX_PRINT_BUFF), "\n"); \ \ LOG_DEBUG(VHOST_DATA, "%s", packet); \ } while(0) #else #define PRINT_PACKET(device, addr, size, header) do{} while(0) #endif /* * Function to convert guest physical addresses to vhost physical addresses. * This is used to convert virtio buffer addresses. */ static inline uint64_t __attribute__((always_inline)) gpa_to_hpa(struct vhost_dev *vdev, uint64_t guest_pa, uint32_t buf_len, hpa_type *addr_type) { struct virtio_memory_regions_hpa *region; uint32_t regionidx; uint64_t vhost_pa = 0; *addr_type = PHYS_ADDR_INVALID; for (regionidx = 0; regionidx < vdev->nregions_hpa; regionidx++) { region = &vdev->regions_hpa[regionidx]; if ((guest_pa >= region->guest_phys_address) && (guest_pa <= region->guest_phys_address_end)) { vhost_pa = region->host_phys_addr_offset + guest_pa; if (likely((guest_pa + buf_len - 1) <= region->guest_phys_address_end)) *addr_type = PHYS_ADDR_CONTINUOUS; else *addr_type = PHYS_ADDR_CROSS_SUBREG; break; } } LOG_DEBUG(VHOST_DATA, "(%"PRIu64") GPA %p| HPA %p\n", vdev->dev->device_fh, (void *)(uintptr_t)guest_pa, (void *)(uintptr_t)vhost_pa); return vhost_pa; } /* * Compares a packet destination MAC address to a device MAC address. */ static inline int __attribute__((always_inline)) ether_addr_cmp(struct ether_addr *ea, struct ether_addr *eb) { return (((*(uint64_t *)ea ^ *(uint64_t *)eb) & MAC_ADDR_CMP) == 0); } /* * This function learns the MAC address of the device and registers this along with a * vlan tag to a VMDQ. */ static int link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m) { struct ether_hdr *pkt_hdr; struct virtio_net_data_ll *dev_ll; struct virtio_net *dev = vdev->dev; int i, ret; /* Learn MAC address of guest device from packet */ pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); dev_ll = ll_root_used; while (dev_ll != NULL) { if (ether_addr_cmp(&(pkt_hdr->s_addr), &dev_ll->vdev->mac_address)) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") WARNING: This device is using an existing MAC address and has not been registered.\n", dev->device_fh); return -1; } dev_ll = dev_ll->next; } for (i = 0; i < ETHER_ADDR_LEN; i++) vdev->mac_address.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i]; /* vlan_tag currently uses the device_id. */ vdev->vlan_tag = vlan_tags[dev->device_fh]; /* Print out VMDQ registration info. */ RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VLAN_TAG %d registered\n", dev->device_fh, vdev->mac_address.addr_bytes[0], vdev->mac_address.addr_bytes[1], vdev->mac_address.addr_bytes[2], vdev->mac_address.addr_bytes[3], vdev->mac_address.addr_bytes[4], vdev->mac_address.addr_bytes[5], vdev->vlan_tag); /* Register the MAC address. */ ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address, (uint32_t)dev->device_fh + vmdq_pool_base); if (ret) RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Failed to add device MAC address to VMDQ\n", dev->device_fh); /* Enable stripping of the vlan tag as we handle routing. */ if (vlan_strip) rte_eth_dev_set_vlan_strip_on_queue(ports[0], (uint16_t)vdev->vmdq_rx_q, 1); /* Set device as ready for RX. */ vdev->ready = DEVICE_RX; return 0; } /* * Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX * queue before disabling RX on the device. */ static inline void unlink_vmdq(struct vhost_dev *vdev) { unsigned i = 0; unsigned rx_count; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; if (vdev->ready == DEVICE_RX) { /*clear MAC and VLAN settings*/ rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address); for (i = 0; i < 6; i++) vdev->mac_address.addr_bytes[i] = 0; vdev->vlan_tag = 0; /*Clear out the receive buffers*/ rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); while (rx_count) { for (i = 0; i < rx_count; i++) rte_pktmbuf_free(pkts_burst[i]); rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); } vdev->ready = DEVICE_MAC_LEARNING; } } /* * Check if the packet destination MAC address is for a local device. If so then put * the packet on that devices RX queue. If not then return. */ static inline int __attribute__((always_inline)) virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m) { struct virtio_net_data_ll *dev_ll; struct ether_hdr *pkt_hdr; uint64_t ret = 0; struct virtio_net *dev = vdev->dev; struct virtio_net *tdev; /* destination virito device */ pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); /*get the used devices list*/ dev_ll = ll_root_used; while (dev_ll != NULL) { if ((dev_ll->vdev->ready == DEVICE_RX) && ether_addr_cmp(&(pkt_hdr->d_addr), &dev_ll->vdev->mac_address)) { /* Drop the packet if the TX packet is destined for the TX device. */ if (dev_ll->vdev->dev->device_fh == dev->device_fh) { LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: Source and destination MAC addresses are the same. Dropping packet.\n", dev->device_fh); return 0; } tdev = dev_ll->vdev->dev; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: MAC address is local\n", tdev->device_fh); if (unlikely(dev_ll->vdev->remove)) { /*drop the packet if the device is marked for removal*/ LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Device is marked for removal\n", tdev->device_fh); } else { /*send the packet to the local virtio device*/ ret = rte_vhost_enqueue_burst(tdev, VIRTIO_RXQ, &m, 1); if (enable_stats) { rte_atomic64_add( &dev_statistics[tdev->device_fh].rx_total_atomic, 1); rte_atomic64_add( &dev_statistics[tdev->device_fh].rx_atomic, ret); dev_statistics[dev->device_fh].tx_total++; dev_statistics[dev->device_fh].tx += ret; } } return 0; } dev_ll = dev_ll->next; } return -1; } /* * Check if the destination MAC of a packet is one local VM, * and get its vlan tag, and offset if it is. */ static inline int __attribute__((always_inline)) find_local_dest(struct virtio_net *dev, struct rte_mbuf *m, uint32_t *offset, uint16_t *vlan_tag) { struct virtio_net_data_ll *dev_ll = ll_root_used; struct ether_hdr *pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); while (dev_ll != NULL) { if ((dev_ll->vdev->ready == DEVICE_RX) && ether_addr_cmp(&(pkt_hdr->d_addr), &dev_ll->vdev->mac_address)) { /* * Drop the packet if the TX packet is * destined for the TX device. */ if (dev_ll->vdev->dev->device_fh == dev->device_fh) { LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: Source and destination" " MAC addresses are the same. Dropping " "packet.\n", dev_ll->vdev->dev->device_fh); return -1; } /* * HW vlan strip will reduce the packet length * by minus length of vlan tag, so need restore * the packet length by plus it. */ *offset = VLAN_HLEN; *vlan_tag = (uint16_t) vlan_tags[(uint16_t)dev_ll->vdev->dev->device_fh]; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: pkt to local VM device id:" "(%"PRIu64") vlan tag: %d.\n", dev->device_fh, dev_ll->vdev->dev->device_fh, (int)*vlan_tag); break; } dev_ll = dev_ll->next; } return 0; } /* * This function routes the TX packet to the correct interface. This may be a local device * or the physical port. */ static inline void __attribute__((always_inline)) virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag) { struct mbuf_table *tx_q; struct rte_mbuf **m_table; unsigned len, ret, offset = 0; const uint16_t lcore_id = rte_lcore_id(); struct virtio_net *dev = vdev->dev; struct ether_hdr *nh; /*check if destination is local VM*/ if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0)) { rte_pktmbuf_free(m); return; } if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) { if (unlikely(find_local_dest(dev, m, &offset, &vlan_tag) != 0)) { rte_pktmbuf_free(m); return; } } LOG_DEBUG(VHOST_DATA, "(%"PRIu64") TX: MAC address is external\n", dev->device_fh); /*Add packet to the port tx queue*/ tx_q = &lcore_tx_queue[lcore_id]; len = tx_q->len; nh = rte_pktmbuf_mtod(m, struct ether_hdr *); if (unlikely(nh->ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN))) { /* Guest has inserted the vlan tag. */ struct vlan_hdr *vh = (struct vlan_hdr *) (nh + 1); uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag); if ((vm2vm_mode == VM2VM_HARDWARE) && (vh->vlan_tci != vlan_tag_be)) vh->vlan_tci = vlan_tag_be; } else { m->ol_flags = PKT_TX_VLAN_PKT; /* * Find the right seg to adjust the data len when offset is * bigger than tail room size. */ if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) { if (likely(offset <= rte_pktmbuf_tailroom(m))) m->data_len += offset; else { struct rte_mbuf *seg = m; while ((seg->next != NULL) && (offset > rte_pktmbuf_tailroom(seg))) seg = seg->next; seg->data_len += offset; } m->pkt_len += offset; } m->vlan_tci = vlan_tag; } tx_q->m_table[len] = m; len++; if (enable_stats) { dev_statistics[dev->device_fh].tx_total++; dev_statistics[dev->device_fh].tx++; } if (unlikely(len == MAX_PKT_BURST)) { m_table = (struct rte_mbuf **)tx_q->m_table; ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len); /* Free any buffers not handled by TX and update the port stats. */ if (unlikely(ret < len)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < len); } len = 0; } tx_q->len = len; return; } /* * This function is called by each data core. It handles all RX/TX registered with the * core. For TX the specific lcore linked list is used. For RX, MAC addresses are compared * with all devices in the main linked list. */ static int switch_worker(__attribute__((unused)) void *arg) { struct rte_mempool *mbuf_pool = arg; struct virtio_net *dev = NULL; struct vhost_dev *vdev = NULL; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct virtio_net_data_ll *dev_ll; struct mbuf_table *tx_q; volatile struct lcore_ll_info *lcore_ll; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0; unsigned ret, i; const uint16_t lcore_id = rte_lcore_id(); const uint16_t num_cores = (uint16_t)rte_lcore_count(); uint16_t rx_count = 0; uint16_t tx_count; uint32_t retry = 0; RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id); lcore_ll = lcore_info[lcore_id].lcore_ll; prev_tsc = 0; tx_q = &lcore_tx_queue[lcore_id]; for (i = 0; i < num_cores; i ++) { if (lcore_ids[i] == lcore_id) { tx_q->txq_id = i; break; } } while(1) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { if (tx_q->len) { LOG_DEBUG(VHOST_DATA, "TX queue drained after timeout with burst size %u \n", tx_q->len); /*Tx any packets in the queue*/ ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, (struct rte_mbuf **)tx_q->m_table, (uint16_t)tx_q->len); if (unlikely(ret < tx_q->len)) { do { rte_pktmbuf_free(tx_q->m_table[ret]); } while (++ret < tx_q->len); } tx_q->len = 0; } prev_tsc = cur_tsc; } rte_prefetch0(lcore_ll->ll_root_used); /* * Inform the configuration core that we have exited the linked list and that no devices are * in use if requested. */ if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL) lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL; /* * Process devices */ dev_ll = lcore_ll->ll_root_used; while (dev_ll != NULL) { /*get virtio device ID*/ vdev = dev_ll->vdev; dev = vdev->dev; if (unlikely(vdev->remove)) { dev_ll = dev_ll->next; unlink_vmdq(vdev); vdev->ready = DEVICE_SAFE_REMOVE; continue; } if (likely(vdev->ready == DEVICE_RX)) { /*Handle guest RX*/ rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); if (rx_count) { /* * Retry is enabled and the queue is full then we wait and retry to avoid packet loss * Here MAX_PKT_BURST must be less than virtio queue size */ if (enable_retry && unlikely(rx_count > rte_vring_available_entries(dev, VIRTIO_RXQ))) { for (retry = 0; retry < burst_rx_retry_num; retry++) { rte_delay_us(burst_rx_delay_time); if (rx_count <= rte_vring_available_entries(dev, VIRTIO_RXQ)) break; } } ret_count = rte_vhost_enqueue_burst(dev, VIRTIO_RXQ, pkts_burst, rx_count); if (enable_stats) { rte_atomic64_add( &dev_statistics[dev_ll->vdev->dev->device_fh].rx_total_atomic, rx_count); rte_atomic64_add( &dev_statistics[dev_ll->vdev->dev->device_fh].rx_atomic, ret_count); } while (likely(rx_count)) { rx_count--; rte_pktmbuf_free(pkts_burst[rx_count]); } } } if (likely(!vdev->remove)) { /* Handle guest TX*/ tx_count = rte_vhost_dequeue_burst(dev, VIRTIO_TXQ, mbuf_pool, pkts_burst, MAX_PKT_BURST); /* If this is the first received packet we need to learn the MAC and setup VMDQ */ if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && tx_count) { if (vdev->remove || (link_vmdq(vdev, pkts_burst[0]) == -1)) { while (tx_count) rte_pktmbuf_free(pkts_burst[--tx_count]); } } while (tx_count) virtio_tx_route(vdev, pkts_burst[--tx_count], (uint16_t)dev->device_fh); } /*move to the next device in the list*/ dev_ll = dev_ll->next; } } return 0; } /* * This function gets available ring number for zero copy rx. * Only one thread will call this funciton for a paticular virtio device, * so, it is designed as non-thread-safe function. */ static inline uint32_t __attribute__((always_inline)) get_available_ring_num_zcp(struct virtio_net *dev) { struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_RXQ]; uint16_t avail_idx; avail_idx = *((volatile uint16_t *)&vq->avail->idx); return (uint32_t)(avail_idx - vq->last_used_idx_res); } /* * This function gets available ring index for zero copy rx, * it will retry 'burst_rx_retry_num' times till it get enough ring index. * Only one thread will call this funciton for a paticular virtio device, * so, it is designed as non-thread-safe function. */ static inline uint32_t __attribute__((always_inline)) get_available_ring_index_zcp(struct virtio_net *dev, uint16_t *res_base_idx, uint32_t count) { struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_RXQ]; uint16_t avail_idx; uint32_t retry = 0; uint16_t free_entries; *res_base_idx = vq->last_used_idx_res; avail_idx = *((volatile uint16_t *)&vq->avail->idx); free_entries = (avail_idx - *res_base_idx); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in get_available_ring_index_zcp: " "avail idx: %d, " "res base idx:%d, free entries:%d\n", dev->device_fh, avail_idx, *res_base_idx, free_entries); /* * If retry is enabled and the queue is full then we wait * and retry to avoid packet loss. */ if (enable_retry && unlikely(count > free_entries)) { for (retry = 0; retry < burst_rx_retry_num; retry++) { rte_delay_us(burst_rx_delay_time); avail_idx = *((volatile uint16_t *)&vq->avail->idx); free_entries = (avail_idx - *res_base_idx); if (count <= free_entries) break; } } /*check that we have enough buffers*/ if (unlikely(count > free_entries)) count = free_entries; if (unlikely(count == 0)) { LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Fail in get_available_ring_index_zcp: " "avail idx: %d, res base idx:%d, free entries:%d\n", dev->device_fh, avail_idx, *res_base_idx, free_entries); return 0; } vq->last_used_idx_res = *res_base_idx + count; return count; } /* * This function put descriptor back to used list. */ static inline void __attribute__((always_inline)) put_desc_to_used_list_zcp(struct vhost_virtqueue *vq, uint16_t desc_idx) { uint16_t res_cur_idx = vq->last_used_idx; vq->used->ring[res_cur_idx & (vq->size - 1)].id = (uint32_t)desc_idx; vq->used->ring[res_cur_idx & (vq->size - 1)].len = 0; rte_compiler_barrier(); *(volatile uint16_t *)&vq->used->idx += 1; vq->last_used_idx += 1; /* Kick the guest if necessary. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)) eventfd_write(vq->callfd, (eventfd_t)1); } /* * This function get available descriptor from vitio vring and un-attached mbuf * from vpool->ring, and then attach them together. It needs adjust the offset * for buff_addr and phys_addr accroding to PMD implementation, otherwise the * frame data may be put to wrong location in mbuf. */ static inline void __attribute__((always_inline)) attach_rxmbuf_zcp(struct virtio_net *dev) { uint16_t res_base_idx, desc_idx; uint64_t buff_addr, phys_addr; struct vhost_virtqueue *vq; struct vring_desc *desc; struct rte_mbuf *mbuf = NULL; struct vpool *vpool; hpa_type addr_type; struct vhost_dev *vdev = (struct vhost_dev *)dev->priv; vpool = &vpool_array[vdev->vmdq_rx_q]; vq = dev->virtqueue[VIRTIO_RXQ]; do { if (unlikely(get_available_ring_index_zcp(vdev->dev, &res_base_idx, 1) != 1)) return; desc_idx = vq->avail->ring[(res_base_idx) & (vq->size - 1)]; desc = &vq->desc[desc_idx]; if (desc->flags & VRING_DESC_F_NEXT) { desc = &vq->desc[desc->next]; buff_addr = gpa_to_vva(dev, desc->addr); phys_addr = gpa_to_hpa(vdev, desc->addr, desc->len, &addr_type); } else { buff_addr = gpa_to_vva(dev, desc->addr + vq->vhost_hlen); phys_addr = gpa_to_hpa(vdev, desc->addr + vq->vhost_hlen, desc->len, &addr_type); } if (unlikely(addr_type == PHYS_ADDR_INVALID)) { RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Invalid frame buffer" " address found when attaching RX frame buffer" " address!\n", dev->device_fh); put_desc_to_used_list_zcp(vq, desc_idx); continue; } /* * Check if the frame buffer address from guest crosses * sub-region or not. */ if (unlikely(addr_type == PHYS_ADDR_CROSS_SUBREG)) { RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Frame buffer address cross " "sub-regioin found when attaching RX frame " "buffer address!\n", dev->device_fh); put_desc_to_used_list_zcp(vq, desc_idx); continue; } } while (unlikely(phys_addr == 0)); rte_ring_sc_dequeue(vpool->ring, (void **)&mbuf); if (unlikely(mbuf == NULL)) { LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in attach_rxmbuf_zcp: " "ring_sc_dequeue fail.\n", dev->device_fh); put_desc_to_used_list_zcp(vq, desc_idx); return; } if (unlikely(vpool->buf_size > desc->len)) { LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in attach_rxmbuf_zcp: frame buffer " "length(%d) of descriptor idx: %d less than room " "size required: %d\n", dev->device_fh, desc->len, desc_idx, vpool->buf_size); put_desc_to_used_list_zcp(vq, desc_idx); rte_ring_sp_enqueue(vpool->ring, (void *)mbuf); return; } mbuf->buf_addr = (void *)(uintptr_t)(buff_addr - RTE_PKTMBUF_HEADROOM); mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->buf_physaddr = phys_addr - RTE_PKTMBUF_HEADROOM; mbuf->data_len = desc->len; MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in attach_rxmbuf_zcp: res base idx:%d, " "descriptor idx:%d\n", dev->device_fh, res_base_idx, desc_idx); __rte_mbuf_raw_free(mbuf); return; } /* * Detach an attched packet mbuf - * - restore original mbuf address and length values. * - reset pktmbuf data and data_len to their default values. * All other fields of the given packet mbuf will be left intact. * * @param m * The attached packet mbuf. */ static inline void pktmbuf_detach_zcp(struct rte_mbuf *m) { const struct rte_mempool *mp = m->pool; void *buf = rte_mbuf_to_baddr(m); uint32_t buf_ofs; uint32_t buf_len = mp->elt_size - sizeof(*m); m->buf_physaddr = rte_mempool_virt2phy(mp, m) + sizeof(*m); m->buf_addr = buf; m->buf_len = (uint16_t)buf_len; buf_ofs = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ? RTE_PKTMBUF_HEADROOM : m->buf_len; m->data_off = buf_ofs; m->data_len = 0; } /* * This function is called after packets have been transimited. It fetchs mbuf * from vpool->pool, detached it and put into vpool->ring. It also update the * used index and kick the guest if necessary. */ static inline uint32_t __attribute__((always_inline)) txmbuf_clean_zcp(struct virtio_net *dev, struct vpool *vpool) { struct rte_mbuf *mbuf; struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_TXQ]; uint32_t used_idx = vq->last_used_idx & (vq->size - 1); uint32_t index = 0; uint32_t mbuf_count = rte_mempool_count(vpool->pool); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: mbuf count in mempool before " "clean is: %d\n", dev->device_fh, mbuf_count); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: mbuf count in ring before " "clean is : %d\n", dev->device_fh, rte_ring_count(vpool->ring)); for (index = 0; index < mbuf_count; index++) { mbuf = __rte_mbuf_raw_alloc(vpool->pool); if (likely(MBUF_EXT_MEM(mbuf))) pktmbuf_detach_zcp(mbuf); rte_ring_sp_enqueue(vpool->ring, mbuf); /* Update used index buffer information. */ vq->used->ring[used_idx].id = MBUF_HEADROOM_UINT32(mbuf); vq->used->ring[used_idx].len = 0; used_idx = (used_idx + 1) & (vq->size - 1); } LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: mbuf count in mempool after " "clean is: %d\n", dev->device_fh, rte_mempool_count(vpool->pool)); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: mbuf count in ring after " "clean is : %d\n", dev->device_fh, rte_ring_count(vpool->ring)); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: before updated " "vq->last_used_idx:%d\n", dev->device_fh, vq->last_used_idx); vq->last_used_idx += mbuf_count; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in txmbuf_clean_zcp: after updated " "vq->last_used_idx:%d\n", dev->device_fh, vq->last_used_idx); rte_compiler_barrier(); *(volatile uint16_t *)&vq->used->idx += mbuf_count; /* Kick guest if required. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)) eventfd_write(vq->callfd, (eventfd_t)1); return 0; } /* * This function is called when a virtio device is destroy. * It fetchs mbuf from vpool->pool, and detached it, and put into vpool->ring. */ static void mbuf_destroy_zcp(struct vpool *vpool) { struct rte_mbuf *mbuf = NULL; uint32_t index, mbuf_count = rte_mempool_count(vpool->pool); LOG_DEBUG(VHOST_CONFIG, "in mbuf_destroy_zcp: mbuf count in mempool before " "mbuf_destroy_zcp is: %d\n", mbuf_count); LOG_DEBUG(VHOST_CONFIG, "in mbuf_destroy_zcp: mbuf count in ring before " "mbuf_destroy_zcp is : %d\n", rte_ring_count(vpool->ring)); for (index = 0; index < mbuf_count; index++) { mbuf = __rte_mbuf_raw_alloc(vpool->pool); if (likely(mbuf != NULL)) { if (likely(MBUF_EXT_MEM(mbuf))) pktmbuf_detach_zcp(mbuf); rte_ring_sp_enqueue(vpool->ring, (void *)mbuf); } } LOG_DEBUG(VHOST_CONFIG, "in mbuf_destroy_zcp: mbuf count in mempool after " "mbuf_destroy_zcp is: %d\n", rte_mempool_count(vpool->pool)); LOG_DEBUG(VHOST_CONFIG, "in mbuf_destroy_zcp: mbuf count in ring after " "mbuf_destroy_zcp is : %d\n", rte_ring_count(vpool->ring)); } /* * This function update the use flag and counter. */ static inline uint32_t __attribute__((always_inline)) virtio_dev_rx_zcp(struct virtio_net *dev, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; struct vring_desc *desc; struct rte_mbuf *buff; /* The virtio_hdr is initialised to 0. */ struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0}; uint64_t buff_hdr_addr = 0; uint32_t head[MAX_PKT_BURST], packet_len = 0; uint32_t head_idx, packet_success = 0; uint16_t res_cur_idx; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_rx()\n", dev->device_fh); if (count == 0) return 0; vq = dev->virtqueue[VIRTIO_RXQ]; count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count; res_cur_idx = vq->last_used_idx; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| End Index %d\n", dev->device_fh, res_cur_idx, res_cur_idx + count); /* Retrieve all of the head indexes first to avoid caching issues. */ for (head_idx = 0; head_idx < count; head_idx++) head[head_idx] = MBUF_HEADROOM_UINT32(pkts[head_idx]); /*Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); while (packet_success != count) { /* Get descriptor from available ring */ desc = &vq->desc[head[packet_success]]; buff = pkts[packet_success]; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in dev_rx_zcp: update the used idx for " "pkt[%d] descriptor idx: %d\n", dev->device_fh, packet_success, MBUF_HEADROOM_UINT32(buff)); PRINT_PACKET(dev, (uintptr_t)(((uint64_t)(uintptr_t)buff->buf_addr) + RTE_PKTMBUF_HEADROOM), rte_pktmbuf_data_len(buff), 0); /* Buffer address translation for virtio header. */ buff_hdr_addr = gpa_to_vva(dev, desc->addr); packet_len = rte_pktmbuf_data_len(buff) + vq->vhost_hlen; /* * If the descriptors are chained the header and data are * placed in separate buffers. */ if (desc->flags & VRING_DESC_F_NEXT) { desc->len = vq->vhost_hlen; desc = &vq->desc[desc->next]; desc->len = rte_pktmbuf_data_len(buff); } else { desc->len = packet_len; } /* Update used ring with desc information */ vq->used->ring[res_cur_idx & (vq->size - 1)].id = head[packet_success]; vq->used->ring[res_cur_idx & (vq->size - 1)].len = packet_len; res_cur_idx++; packet_success++; /* A header is required per buffer. */ rte_memcpy((void *)(uintptr_t)buff_hdr_addr, (const void *)&virtio_hdr, vq->vhost_hlen); PRINT_PACKET(dev, (uintptr_t)buff_hdr_addr, vq->vhost_hlen, 1); if (likely(packet_success < count)) { /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); } } rte_compiler_barrier(); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in dev_rx_zcp: before update used idx: " "vq.last_used_idx: %d, vq->used->idx: %d\n", dev->device_fh, vq->last_used_idx, vq->used->idx); *(volatile uint16_t *)&vq->used->idx += count; vq->last_used_idx += count; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in dev_rx_zcp: after update used idx: " "vq.last_used_idx: %d, vq->used->idx: %d\n", dev->device_fh, vq->last_used_idx, vq->used->idx); /* Kick the guest if necessary. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)) eventfd_write(vq->callfd, (eventfd_t)1); return count; } /* * This function routes the TX packet to the correct interface. * This may be a local device or the physical port. */ static inline void __attribute__((always_inline)) virtio_tx_route_zcp(struct virtio_net *dev, struct rte_mbuf *m, uint32_t desc_idx, uint8_t need_copy) { struct mbuf_table *tx_q; struct rte_mbuf **m_table; struct rte_mbuf *mbuf = NULL; unsigned len, ret, offset = 0; struct vpool *vpool; uint16_t vlan_tag = (uint16_t)vlan_tags[(uint16_t)dev->device_fh]; uint16_t vmdq_rx_q = ((struct vhost_dev *)dev->priv)->vmdq_rx_q; /*Add packet to the port tx queue*/ tx_q = &tx_queue_zcp[vmdq_rx_q]; len = tx_q->len; /* Allocate an mbuf and populate the structure. */ vpool = &vpool_array[MAX_QUEUES + vmdq_rx_q]; rte_ring_sc_dequeue(vpool->ring, (void **)&mbuf); if (unlikely(mbuf == NULL)) { struct vhost_virtqueue *vq = dev->virtqueue[VIRTIO_TXQ]; RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Failed to allocate memory for mbuf.\n", dev->device_fh); put_desc_to_used_list_zcp(vq, desc_idx); return; } if (vm2vm_mode == VM2VM_HARDWARE) { /* Avoid using a vlan tag from any vm for external pkt, such as * vlan_tags[dev->device_fh], oterwise, it conflicts when pool * selection, MAC address determines it as an external pkt * which should go to network, while vlan tag determine it as * a vm2vm pkt should forward to another vm. Hardware confuse * such a ambiguous situation, so pkt will lost. */ vlan_tag = external_pkt_default_vlan_tag; if (find_local_dest(dev, m, &offset, &vlan_tag) != 0) { MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx; __rte_mbuf_raw_free(mbuf); return; } } mbuf->nb_segs = m->nb_segs; mbuf->next = m->next; mbuf->data_len = m->data_len + offset; mbuf->pkt_len = mbuf->data_len; if (unlikely(need_copy)) { /* Copy the packet contents to the mbuf. */ rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), rte_pktmbuf_mtod(m, void *), m->data_len); } else { mbuf->data_off = m->data_off; mbuf->buf_physaddr = m->buf_physaddr; mbuf->buf_addr = m->buf_addr; } mbuf->ol_flags = PKT_TX_VLAN_PKT; mbuf->vlan_tci = vlan_tag; mbuf->l2_len = sizeof(struct ether_hdr); mbuf->l3_len = sizeof(struct ipv4_hdr); MBUF_HEADROOM_UINT32(mbuf) = (uint32_t)desc_idx; tx_q->m_table[len] = mbuf; len++; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") in tx_route_zcp: pkt: nb_seg: %d, next:%s\n", dev->device_fh, mbuf->nb_segs, (mbuf->next == NULL) ? "null" : "non-null"); if (enable_stats) { dev_statistics[dev->device_fh].tx_total++; dev_statistics[dev->device_fh].tx++; } if (unlikely(len == MAX_PKT_BURST)) { m_table = (struct rte_mbuf **)tx_q->m_table; ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len); /* * Free any buffers not handled by TX and update * the port stats. */ if (unlikely(ret < len)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < len); } len = 0; txmbuf_clean_zcp(dev, vpool); } tx_q->len = len; return; } /* * This function TX all available packets in virtio TX queue for one * virtio-net device. If it is first packet, it learns MAC address and * setup VMDQ. */ static inline void __attribute__((always_inline)) virtio_dev_tx_zcp(struct virtio_net *dev) { struct rte_mbuf m; struct vhost_virtqueue *vq; struct vring_desc *desc; uint64_t buff_addr = 0, phys_addr; uint32_t head[MAX_PKT_BURST]; uint32_t i; uint16_t free_entries, packet_success = 0; uint16_t avail_idx; uint8_t need_copy = 0; hpa_type addr_type; struct vhost_dev *vdev = (struct vhost_dev *)dev->priv; vq = dev->virtqueue[VIRTIO_TXQ]; avail_idx = *((volatile uint16_t *)&vq->avail->idx); /* If there are no available buffers then return. */ if (vq->last_used_idx_res == avail_idx) return; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_tx()\n", dev->device_fh); /* Prefetch available ring to retrieve head indexes. */ rte_prefetch0(&vq->avail->ring[vq->last_used_idx_res & (vq->size - 1)]); /* Get the number of free entries in the ring */ free_entries = (avail_idx - vq->last_used_idx_res); /* Limit to MAX_PKT_BURST. */ free_entries = (free_entries > MAX_PKT_BURST) ? MAX_PKT_BURST : free_entries; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Buffers available %d\n", dev->device_fh, free_entries); /* Retrieve all of the head indexes first to avoid caching issues. */ for (i = 0; i < free_entries; i++) head[i] = vq->avail->ring[(vq->last_used_idx_res + i) & (vq->size - 1)]; vq->last_used_idx_res += free_entries; /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success]]); rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]); while (packet_success < free_entries) { desc = &vq->desc[head[packet_success]]; /* Discard first buffer as it is the virtio header */ desc = &vq->desc[desc->next]; /* Buffer address translation. */ buff_addr = gpa_to_vva(dev, desc->addr); /* Need check extra VLAN_HLEN size for inserting VLAN tag */ phys_addr = gpa_to_hpa(vdev, desc->addr, desc->len + VLAN_HLEN, &addr_type); if (likely(packet_success < (free_entries - 1))) /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[head[packet_success + 1]]); if (unlikely(addr_type == PHYS_ADDR_INVALID)) { RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Invalid frame buffer address found" "when TX packets!\n", dev->device_fh); packet_success++; continue; } /* Prefetch buffer address. */ rte_prefetch0((void *)(uintptr_t)buff_addr); /* * Setup dummy mbuf. This is copied to a real mbuf if * transmitted out the physical port. */ m.data_len = desc->len; m.nb_segs = 1; m.next = NULL; m.data_off = 0; m.buf_addr = (void *)(uintptr_t)buff_addr; m.buf_physaddr = phys_addr; /* * Check if the frame buffer address from guest crosses * sub-region or not. */ if (unlikely(addr_type == PHYS_ADDR_CROSS_SUBREG)) { RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Frame buffer address cross " "sub-regioin found when attaching TX frame " "buffer address!\n", dev->device_fh); need_copy = 1; } else need_copy = 0; PRINT_PACKET(dev, (uintptr_t)buff_addr, desc->len, 0); /* * If this is the first received packet we need to learn * the MAC and setup VMDQ */ if (unlikely(vdev->ready == DEVICE_MAC_LEARNING)) { if (vdev->remove || (link_vmdq(vdev, &m) == -1)) { /* * Discard frame if device is scheduled for * removal or a duplicate MAC address is found. */ packet_success += free_entries; vq->last_used_idx += packet_success; break; } } virtio_tx_route_zcp(dev, &m, head[packet_success], need_copy); packet_success++; } } /* * This function is called by each data core. It handles all RX/TX registered * with the core. For TX the specific lcore linked list is used. For RX, MAC * addresses are compared with all devices in the main linked list. */ static int switch_worker_zcp(__attribute__((unused)) void *arg) { struct virtio_net *dev = NULL; struct vhost_dev *vdev = NULL; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct virtio_net_data_ll *dev_ll; struct mbuf_table *tx_q; volatile struct lcore_ll_info *lcore_ll; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0; unsigned ret; const uint16_t lcore_id = rte_lcore_id(); uint16_t count_in_ring, rx_count = 0; RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id); lcore_ll = lcore_info[lcore_id].lcore_ll; prev_tsc = 0; while (1) { cur_tsc = rte_rdtsc(); /* TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* * Get mbuf from vpool.pool and detach mbuf and * put back into vpool.ring. */ dev_ll = lcore_ll->ll_root_used; while ((dev_ll != NULL) && (dev_ll->vdev != NULL)) { /* Get virtio device ID */ vdev = dev_ll->vdev; dev = vdev->dev; if (likely(!vdev->remove)) { tx_q = &tx_queue_zcp[(uint16_t)vdev->vmdq_rx_q]; if (tx_q->len) { LOG_DEBUG(VHOST_DATA, "TX queue drained after timeout" " with burst size %u\n", tx_q->len); /* * Tx any packets in the queue */ ret = rte_eth_tx_burst( ports[0], (uint16_t)tx_q->txq_id, (struct rte_mbuf **) tx_q->m_table, (uint16_t)tx_q->len); if (unlikely(ret < tx_q->len)) { do { rte_pktmbuf_free( tx_q->m_table[ret]); } while (++ret < tx_q->len); } tx_q->len = 0; txmbuf_clean_zcp(dev, &vpool_array[MAX_QUEUES+vdev->vmdq_rx_q]); } } dev_ll = dev_ll->next; } prev_tsc = cur_tsc; } rte_prefetch0(lcore_ll->ll_root_used); /* * Inform the configuration core that we have exited the linked * list and that no devices are in use if requested. */ if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL) lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL; /* Process devices */ dev_ll = lcore_ll->ll_root_used; while ((dev_ll != NULL) && (dev_ll->vdev != NULL)) { vdev = dev_ll->vdev; dev = vdev->dev; if (unlikely(vdev->remove)) { dev_ll = dev_ll->next; unlink_vmdq(vdev); vdev->ready = DEVICE_SAFE_REMOVE; continue; } if (likely(vdev->ready == DEVICE_RX)) { uint32_t index = vdev->vmdq_rx_q; uint16_t i; count_in_ring = rte_ring_count(vpool_array[index].ring); uint16_t free_entries = (uint16_t)get_available_ring_num_zcp(dev); /* * Attach all mbufs in vpool.ring and put back * into vpool.pool. */ for (i = 0; i < RTE_MIN(free_entries, RTE_MIN(count_in_ring, MAX_PKT_BURST)); i++) attach_rxmbuf_zcp(dev); /* Handle guest RX */ rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); if (rx_count) { ret_count = virtio_dev_rx_zcp(dev, pkts_burst, rx_count); if (enable_stats) { dev_statistics[dev->device_fh].rx_total += rx_count; dev_statistics[dev->device_fh].rx += ret_count; } while (likely(rx_count)) { rx_count--; pktmbuf_detach_zcp( pkts_burst[rx_count]); rte_ring_sp_enqueue( vpool_array[index].ring, (void *)pkts_burst[rx_count]); } } } if (likely(!vdev->remove)) /* Handle guest TX */ virtio_dev_tx_zcp(dev); /* Move to the next device in the list */ dev_ll = dev_ll->next; } } return 0; } /* * Add an entry to a used linked list. A free entry must first be found * in the free linked list using get_data_ll_free_entry(); */ static void add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev) { struct virtio_net_data_ll *ll = *ll_root_addr; /* Set next as NULL and use a compiler barrier to avoid reordering. */ ll_dev->next = NULL; rte_compiler_barrier(); /* If ll == NULL then this is the first device. */ if (ll) { /* Increment to the tail of the linked list. */ while ((ll->next != NULL) ) ll = ll->next; ll->next = ll_dev; } else { *ll_root_addr = ll_dev; } } /* * Remove an entry from a used linked list. The entry must then be added to * the free linked list using put_data_ll_free_entry(). */ static void rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev, struct virtio_net_data_ll *ll_dev_last) { struct virtio_net_data_ll *ll = *ll_root_addr; if (unlikely((ll == NULL) || (ll_dev == NULL))) return; if (ll_dev == ll) *ll_root_addr = ll_dev->next; else if (likely(ll_dev_last != NULL)) ll_dev_last->next = ll_dev->next; else RTE_LOG(ERR, VHOST_CONFIG, "Remove entry form ll failed.\n"); } /* * Find and return an entry from the free linked list. */ static struct virtio_net_data_ll * get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr) { struct virtio_net_data_ll *ll_free = *ll_root_addr; struct virtio_net_data_ll *ll_dev; if (ll_free == NULL) return NULL; ll_dev = ll_free; *ll_root_addr = ll_free->next; return ll_dev; } /* * Place an entry back on to the free linked list. */ static void put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev) { struct virtio_net_data_ll *ll_free = *ll_root_addr; if (ll_dev == NULL) return; ll_dev->next = ll_free; *ll_root_addr = ll_dev; } /* * Creates a linked list of a given size. */ static struct virtio_net_data_ll * alloc_data_ll(uint32_t size) { struct virtio_net_data_ll *ll_new; uint32_t i; /* Malloc and then chain the linked list. */ ll_new = malloc(size * sizeof(struct virtio_net_data_ll)); if (ll_new == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for ll_new.\n"); return NULL; } for (i = 0; i < size - 1; i++) { ll_new[i].vdev = NULL; ll_new[i].next = &ll_new[i+1]; } ll_new[i].next = NULL; return (ll_new); } /* * Create the main linked list along with each individual cores linked list. A used and a free list * are created to manage entries. */ static int init_data_ll (void) { int lcore; RTE_LCORE_FOREACH_SLAVE(lcore) { lcore_info[lcore].lcore_ll = malloc(sizeof(struct lcore_ll_info)); if (lcore_info[lcore].lcore_ll == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for lcore_ll.\n"); return -1; } lcore_info[lcore].lcore_ll->device_num = 0; lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL; lcore_info[lcore].lcore_ll->ll_root_used = NULL; if (num_devices % num_switching_cores) lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll((num_devices / num_switching_cores) + 1); else lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll(num_devices / num_switching_cores); } /* Allocate devices up to a maximum of MAX_DEVICES. */ ll_root_free = alloc_data_ll(MIN((num_devices), MAX_DEVICES)); return 0; } /* * Remove a device from the specific data core linked list and from the main linked list. Synchonization * occurs through the use of the lcore dev_removal_flag. Device is made volatile here to avoid re-ordering * of dev->remove=1 which can cause an infinite loop in the rte_pause loop. */ static void destroy_device (volatile struct virtio_net *dev) { struct virtio_net_data_ll *ll_lcore_dev_cur; struct virtio_net_data_ll *ll_main_dev_cur; struct virtio_net_data_ll *ll_lcore_dev_last = NULL; struct virtio_net_data_ll *ll_main_dev_last = NULL; struct vhost_dev *vdev; int lcore; dev->flags &= ~VIRTIO_DEV_RUNNING; vdev = (struct vhost_dev *)dev->priv; /*set the remove flag. */ vdev->remove = 1; while(vdev->ready != DEVICE_SAFE_REMOVE) { rte_pause(); } /* Search for entry to be removed from lcore ll */ ll_lcore_dev_cur = lcore_info[vdev->coreid].lcore_ll->ll_root_used; while (ll_lcore_dev_cur != NULL) { if (ll_lcore_dev_cur->vdev == vdev) { break; } else { ll_lcore_dev_last = ll_lcore_dev_cur; ll_lcore_dev_cur = ll_lcore_dev_cur->next; } } if (ll_lcore_dev_cur == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "(%"PRIu64") Failed to find the dev to be destroy.\n", dev->device_fh); return; } /* Search for entry to be removed from main ll */ ll_main_dev_cur = ll_root_used; ll_main_dev_last = NULL; while (ll_main_dev_cur != NULL) { if (ll_main_dev_cur->vdev == vdev) { break; } else { ll_main_dev_last = ll_main_dev_cur; ll_main_dev_cur = ll_main_dev_cur->next; } } /* Remove entries from the lcore and main ll. */ rm_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used, ll_lcore_dev_cur, ll_lcore_dev_last); rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last); /* Set the dev_removal_flag on each lcore. */ RTE_LCORE_FOREACH_SLAVE(lcore) { lcore_info[lcore].lcore_ll->dev_removal_flag = REQUEST_DEV_REMOVAL; } /* * Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL we can be sure that * they can no longer access the device removed from the linked lists and that the devices * are no longer in use. */ RTE_LCORE_FOREACH_SLAVE(lcore) { while (lcore_info[lcore].lcore_ll->dev_removal_flag != ACK_DEV_REMOVAL) { rte_pause(); } } /* Add the entries back to the lcore and main free ll.*/ put_data_ll_free_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_free, ll_lcore_dev_cur); put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur); /* Decrement number of device on the lcore. */ lcore_info[vdev->coreid].lcore_ll->device_num--; RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been removed from data core\n", dev->device_fh); if (zero_copy) { struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q]; /* Stop the RX queue. */ if (rte_eth_dev_rx_queue_stop(ports[0], vdev->vmdq_rx_q) != 0) { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") In destroy_device: Failed to stop " "rx queue:%d\n", dev->device_fh, vdev->vmdq_rx_q); } LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in destroy_device: Start put mbuf in " "mempool back to ring for RX queue: %d\n", dev->device_fh, vdev->vmdq_rx_q); mbuf_destroy_zcp(vpool); /* Stop the TX queue. */ if (rte_eth_dev_tx_queue_stop(ports[0], vdev->vmdq_rx_q) != 0) { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") In destroy_device: Failed to " "stop tx queue:%d\n", dev->device_fh, vdev->vmdq_rx_q); } vpool = &vpool_array[vdev->vmdq_rx_q + MAX_QUEUES]; LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") destroy_device: Start put mbuf in mempool " "back to ring for TX queue: %d, dev:(%"PRIu64")\n", dev->device_fh, (vdev->vmdq_rx_q + MAX_QUEUES), dev->device_fh); mbuf_destroy_zcp(vpool); rte_free(vdev->regions_hpa); } rte_free(vdev); } /* * Calculate the region count of physical continous regions for one particular * region of whose vhost virtual address is continous. The particular region * start from vva_start, with size of 'size' in argument. */ static uint32_t check_hpa_regions(uint64_t vva_start, uint64_t size) { uint32_t i, nregions = 0, page_size = getpagesize(); uint64_t cur_phys_addr = 0, next_phys_addr = 0; if (vva_start % page_size) { LOG_DEBUG(VHOST_CONFIG, "in check_countinous: vva start(%p) mod page_size(%d) " "has remainder\n", (void *)(uintptr_t)vva_start, page_size); return 0; } if (size % page_size) { LOG_DEBUG(VHOST_CONFIG, "in check_countinous: " "size((%"PRIu64")) mod page_size(%d) has remainder\n", size, page_size); return 0; } for (i = 0; i < size - page_size; i = i + page_size) { cur_phys_addr = rte_mem_virt2phy((void *)(uintptr_t)(vva_start + i)); next_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i + page_size)); if ((cur_phys_addr + page_size) != next_phys_addr) { ++nregions; LOG_DEBUG(VHOST_CONFIG, "in check_continuous: hva addr:(%p) is not " "continuous with hva addr:(%p), diff:%d\n", (void *)(uintptr_t)(vva_start + (uint64_t)i), (void *)(uintptr_t)(vva_start + (uint64_t)i + page_size), page_size); LOG_DEBUG(VHOST_CONFIG, "in check_continuous: hpa addr:(%p) is not " "continuous with hpa addr:(%p), " "diff:(%"PRIu64")\n", (void *)(uintptr_t)cur_phys_addr, (void *)(uintptr_t)next_phys_addr, (next_phys_addr-cur_phys_addr)); } } return nregions; } /* * Divide each region whose vhost virtual address is continous into a few * sub-regions, make sure the physical address within each sub-region are * continous. And fill offset(to GPA) and size etc. information of each * sub-region into regions_hpa. */ static uint32_t fill_hpa_memory_regions(struct virtio_memory_regions_hpa *mem_region_hpa, struct virtio_memory *virtio_memory) { uint32_t regionidx, regionidx_hpa = 0, i, k, page_size = getpagesize(); uint64_t cur_phys_addr = 0, next_phys_addr = 0, vva_start; if (mem_region_hpa == NULL) return 0; for (regionidx = 0; regionidx < virtio_memory->nregions; regionidx++) { vva_start = virtio_memory->regions[regionidx].guest_phys_address + virtio_memory->regions[regionidx].address_offset; mem_region_hpa[regionidx_hpa].guest_phys_address = virtio_memory->regions[regionidx].guest_phys_address; mem_region_hpa[regionidx_hpa].host_phys_addr_offset = rte_mem_virt2phy((void *)(uintptr_t)(vva_start)) - mem_region_hpa[regionidx_hpa].guest_phys_address; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: host phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].host_phys_addr_offset)); for (i = 0, k = 0; i < virtio_memory->regions[regionidx].memory_size - page_size; i += page_size) { cur_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i)); next_phys_addr = rte_mem_virt2phy( (void *)(uintptr_t)(vva_start + i + page_size)); if ((cur_phys_addr + page_size) != next_phys_addr) { mem_region_hpa[regionidx_hpa].guest_phys_address_end = mem_region_hpa[regionidx_hpa].guest_phys_address + k + page_size; mem_region_hpa[regionidx_hpa].memory_size = k + page_size; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest " "phys addr end [%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address_end)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr " "size [%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].memory_size)); mem_region_hpa[regionidx_hpa + 1].guest_phys_address = mem_region_hpa[regionidx_hpa].guest_phys_address_end; ++regionidx_hpa; mem_region_hpa[regionidx_hpa].host_phys_addr_offset = next_phys_addr - mem_region_hpa[regionidx_hpa].guest_phys_address; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest" " phys addr start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: host phys addr " "start[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].host_phys_addr_offset)); k = 0; } else { k += page_size; } } mem_region_hpa[regionidx_hpa].guest_phys_address_end = mem_region_hpa[regionidx_hpa].guest_phys_address + k + page_size; mem_region_hpa[regionidx_hpa].memory_size = k + page_size; LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr end " "[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].guest_phys_address_end)); LOG_DEBUG(VHOST_CONFIG, "in fill_hpa_regions: guest phys addr size " "[%d]:(%p)\n", regionidx_hpa, (void *)(uintptr_t) (mem_region_hpa[regionidx_hpa].memory_size)); ++regionidx_hpa; } return regionidx_hpa; } /* * A new device is added to a data core. First the device is added to the main linked list * and the allocated to a specific data core. */ static int new_device (struct virtio_net *dev) { struct virtio_net_data_ll *ll_dev; int lcore, core_add = 0; uint32_t device_num_min = num_devices; struct vhost_dev *vdev; uint32_t regionidx; vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE); if (vdev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Couldn't allocate memory for vhost dev\n", dev->device_fh); return -1; } vdev->dev = dev; dev->priv = vdev; if (zero_copy) { vdev->nregions_hpa = dev->mem->nregions; for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) { vdev->nregions_hpa += check_hpa_regions( dev->mem->regions[regionidx].guest_phys_address + dev->mem->regions[regionidx].address_offset, dev->mem->regions[regionidx].memory_size); } vdev->regions_hpa = rte_calloc("vhost hpa region", vdev->nregions_hpa, sizeof(struct virtio_memory_regions_hpa), RTE_CACHE_LINE_SIZE); if (vdev->regions_hpa == NULL) { RTE_LOG(ERR, VHOST_CONFIG, "Cannot allocate memory for hpa region\n"); rte_free(vdev); return -1; } if (fill_hpa_memory_regions( vdev->regions_hpa, dev->mem ) != vdev->nregions_hpa) { RTE_LOG(ERR, VHOST_CONFIG, "hpa memory regions number mismatch: " "[%d]\n", vdev->nregions_hpa); rte_free(vdev->regions_hpa); rte_free(vdev); return -1; } } /* Add device to main ll */ ll_dev = get_data_ll_free_entry(&ll_root_free); if (ll_dev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") No free entry found in linked list. Device limit " "of %d devices per core has been reached\n", dev->device_fh, num_devices); if (vdev->regions_hpa) rte_free(vdev->regions_hpa); rte_free(vdev); return -1; } ll_dev->vdev = vdev; add_data_ll_entry(&ll_root_used, ll_dev); vdev->vmdq_rx_q = dev->device_fh * queues_per_pool + vmdq_queue_base; if (zero_copy) { uint32_t index = vdev->vmdq_rx_q; uint32_t count_in_ring, i; struct mbuf_table *tx_q; count_in_ring = rte_ring_count(vpool_array[index].ring); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in mempool " "before attach is: %d\n", dev->device_fh, rte_mempool_count(vpool_array[index].pool)); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in ring " "before attach is : %d\n", dev->device_fh, count_in_ring); /* * Attach all mbufs in vpool.ring and put back intovpool.pool. */ for (i = 0; i < count_in_ring; i++) attach_rxmbuf_zcp(dev); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in " "mempool after attach is: %d\n", dev->device_fh, rte_mempool_count(vpool_array[index].pool)); LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") in new_device: mbuf count in " "ring after attach is : %d\n", dev->device_fh, rte_ring_count(vpool_array[index].ring)); tx_q = &tx_queue_zcp[(uint16_t)vdev->vmdq_rx_q]; tx_q->txq_id = vdev->vmdq_rx_q; if (rte_eth_dev_tx_queue_start(ports[0], vdev->vmdq_rx_q) != 0) { struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q]; LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") In new_device: Failed to start " "tx queue:%d\n", dev->device_fh, vdev->vmdq_rx_q); mbuf_destroy_zcp(vpool); rte_free(vdev->regions_hpa); rte_free(vdev); return -1; } if (rte_eth_dev_rx_queue_start(ports[0], vdev->vmdq_rx_q) != 0) { struct vpool *vpool = &vpool_array[vdev->vmdq_rx_q]; LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") In new_device: Failed to start " "rx queue:%d\n", dev->device_fh, vdev->vmdq_rx_q); /* Stop the TX queue. */ if (rte_eth_dev_tx_queue_stop(ports[0], vdev->vmdq_rx_q) != 0) { LOG_DEBUG(VHOST_CONFIG, "(%"PRIu64") In new_device: Failed to " "stop tx queue:%d\n", dev->device_fh, vdev->vmdq_rx_q); } mbuf_destroy_zcp(vpool); rte_free(vdev->regions_hpa); rte_free(vdev); return -1; } } /*reset ready flag*/ vdev->ready = DEVICE_MAC_LEARNING; vdev->remove = 0; /* Find a suitable lcore to add the device. */ RTE_LCORE_FOREACH_SLAVE(lcore) { if (lcore_info[lcore].lcore_ll->device_num < device_num_min) { device_num_min = lcore_info[lcore].lcore_ll->device_num; core_add = lcore; } } /* Add device to lcore ll */ ll_dev = get_data_ll_free_entry(&lcore_info[core_add].lcore_ll->ll_root_free); if (ll_dev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Failed to add device to data core\n", dev->device_fh); vdev->ready = DEVICE_SAFE_REMOVE; destroy_device(dev); rte_free(vdev->regions_hpa); rte_free(vdev); return -1; } ll_dev->vdev = vdev; vdev->coreid = core_add; add_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used, ll_dev); /* Initialize device stats */ memset(&dev_statistics[dev->device_fh], 0, sizeof(struct device_statistics)); /* Disable notifications. */ rte_vhost_enable_guest_notification(dev, VIRTIO_RXQ, 0); rte_vhost_enable_guest_notification(dev, VIRTIO_TXQ, 0); lcore_info[vdev->coreid].lcore_ll->device_num++; dev->flags |= VIRTIO_DEV_RUNNING; RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been added to data core %d\n", dev->device_fh, vdev->coreid); return 0; } /* * These callback allow devices to be added to the data core when configuration * has been fully complete. */ static const struct virtio_net_device_ops virtio_net_device_ops = { .new_device = new_device, .destroy_device = destroy_device, }; /* * This is a thread will wake up after a period to print stats if the user has * enabled them. */ static void print_stats(void) { struct virtio_net_data_ll *dev_ll; uint64_t tx_dropped, rx_dropped; uint64_t tx, tx_total, rx, rx_total; uint32_t device_fh; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' }; while(1) { sleep(enable_stats); /* Clear screen and move to top left */ printf("%s%s", clr, top_left); printf("\nDevice statistics ===================================="); dev_ll = ll_root_used; while (dev_ll != NULL) { device_fh = (uint32_t)dev_ll->vdev->dev->device_fh; tx_total = dev_statistics[device_fh].tx_total; tx = dev_statistics[device_fh].tx; tx_dropped = tx_total - tx; if (zero_copy == 0) { rx_total = rte_atomic64_read( &dev_statistics[device_fh].rx_total_atomic); rx = rte_atomic64_read( &dev_statistics[device_fh].rx_atomic); } else { rx_total = dev_statistics[device_fh].rx_total; rx = dev_statistics[device_fh].rx; } rx_dropped = rx_total - rx; printf("\nStatistics for device %"PRIu32" ------------------------------" "\nTX total: %"PRIu64"" "\nTX dropped: %"PRIu64"" "\nTX successful: %"PRIu64"" "\nRX total: %"PRIu64"" "\nRX dropped: %"PRIu64"" "\nRX successful: %"PRIu64"", device_fh, tx_total, tx_dropped, tx, rx_total, rx_dropped, rx); dev_ll = dev_ll->next; } printf("\n======================================================\n"); } } static void setup_mempool_tbl(int socket, uint32_t index, char *pool_name, char *ring_name, uint32_t nb_mbuf) { vpool_array[index].pool = rte_pktmbuf_pool_create(pool_name, nb_mbuf, MBUF_CACHE_SIZE_ZCP, 0, MBUF_DATA_SIZE_ZCP, socket); if (vpool_array[index].pool != NULL) { vpool_array[index].ring = rte_ring_create(ring_name, rte_align32pow2(nb_mbuf + 1), socket, RING_F_SP_ENQ | RING_F_SC_DEQ); if (likely(vpool_array[index].ring != NULL)) { LOG_DEBUG(VHOST_CONFIG, "in setup_mempool_tbl: mbuf count in " "mempool is: %d\n", rte_mempool_count(vpool_array[index].pool)); LOG_DEBUG(VHOST_CONFIG, "in setup_mempool_tbl: mbuf count in " "ring is: %d\n", rte_ring_count(vpool_array[index].ring)); } else { rte_exit(EXIT_FAILURE, "ring_create(%s) failed", ring_name); } /* Need consider head room. */ vpool_array[index].buf_size = VIRTIO_DESCRIPTOR_LEN_ZCP; } else { rte_exit(EXIT_FAILURE, "mempool_create(%s) failed", pool_name); } } /* When we receive a INT signal, unregister vhost driver */ static void sigint_handler(__rte_unused int signum) { /* Unregister vhost driver. */ int ret = rte_vhost_driver_unregister((char *)&dev_basename); if (ret != 0) rte_exit(EXIT_FAILURE, "vhost driver unregister failure.\n"); exit(0); } /* * Main function, does initialisation and calls the per-lcore functions. The CUSE * device is also registered here to handle the IOCTLs. */ int main(int argc, char *argv[]) { struct rte_mempool *mbuf_pool = NULL; unsigned lcore_id, core_id = 0; unsigned nb_ports, valid_num_ports; int ret; uint8_t portid; uint16_t queue_id; static pthread_t tid; char thread_name[RTE_MAX_THREAD_NAME_LEN]; signal(SIGINT, sigint_handler); /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); argc -= ret; argv += ret; /* parse app arguments */ ret = us_vhost_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid argument\n"); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++) if (rte_lcore_is_enabled(lcore_id)) lcore_ids[core_id ++] = lcore_id; if (rte_lcore_count() > RTE_MAX_LCORE) rte_exit(EXIT_FAILURE,"Not enough cores\n"); /*set the number of swithcing cores available*/ num_switching_cores = rte_lcore_count()-1; /* Get the number of physical ports. */ nb_ports = rte_eth_dev_count(); if (nb_ports > RTE_MAX_ETHPORTS) nb_ports = RTE_MAX_ETHPORTS; /* * Update the global var NUM_PORTS and global array PORTS * and get value of var VALID_NUM_PORTS according to system ports number */ valid_num_ports = check_ports_num(nb_ports); if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } if (zero_copy == 0) { /* Create the mbuf pool. */ mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS_PER_PORT * valid_num_ports, MBUF_CACHE_SIZE, 0, MBUF_DATA_SIZE, rte_socket_id()); if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); for (queue_id = 0; queue_id < MAX_QUEUES + 1; queue_id++) vpool_array[queue_id].pool = mbuf_pool; if (vm2vm_mode == VM2VM_HARDWARE) { /* Enable VT loop back to let L2 switch to do it. */ vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1; LOG_DEBUG(VHOST_CONFIG, "Enable loop back for L2 switch in vmdq.\n"); } } else { uint32_t nb_mbuf; char pool_name[RTE_MEMPOOL_NAMESIZE]; char ring_name[RTE_MEMPOOL_NAMESIZE]; nb_mbuf = num_rx_descriptor + num_switching_cores * MBUF_CACHE_SIZE_ZCP + num_switching_cores * MAX_PKT_BURST; for (queue_id = 0; queue_id < MAX_QUEUES; queue_id++) { snprintf(pool_name, sizeof(pool_name), "rxmbuf_pool_%u", queue_id); snprintf(ring_name, sizeof(ring_name), "rxmbuf_ring_%u", queue_id); setup_mempool_tbl(rte_socket_id(), queue_id, pool_name, ring_name, nb_mbuf); } nb_mbuf = num_tx_descriptor + num_switching_cores * MBUF_CACHE_SIZE_ZCP + num_switching_cores * MAX_PKT_BURST; for (queue_id = 0; queue_id < MAX_QUEUES; queue_id++) { snprintf(pool_name, sizeof(pool_name), "txmbuf_pool_%u", queue_id); snprintf(ring_name, sizeof(ring_name), "txmbuf_ring_%u", queue_id); setup_mempool_tbl(rte_socket_id(), (queue_id + MAX_QUEUES), pool_name, ring_name, nb_mbuf); } if (vm2vm_mode == VM2VM_HARDWARE) { /* Enable VT loop back to let L2 switch to do it. */ vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1; LOG_DEBUG(VHOST_CONFIG, "Enable loop back for L2 switch in vmdq.\n"); } } /* Set log level. */ rte_set_log_level(LOG_LEVEL); /* initialize all ports */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { RTE_LOG(INFO, VHOST_PORT, "Skipping disabled port %d\n", portid); continue; } if (port_init(portid) != 0) rte_exit(EXIT_FAILURE, "Cannot initialize network ports\n"); } /* Initialise all linked lists. */ if (init_data_ll() == -1) rte_exit(EXIT_FAILURE, "Failed to initialize linked list\n"); /* Initialize device stats */ memset(&dev_statistics, 0, sizeof(dev_statistics)); /* Enable stats if the user option is set. */ if (enable_stats) { ret = pthread_create(&tid, NULL, (void *)print_stats, NULL); if (ret != 0) rte_exit(EXIT_FAILURE, "Cannot create print-stats thread\n"); /* Set thread_name for aid in debugging. */ snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN, "print-stats"); ret = rte_thread_setname(tid, thread_name); if (ret != 0) RTE_LOG(ERR, VHOST_CONFIG, "Cannot set print-stats name\n"); } /* Launch all data cores. */ if (zero_copy == 0) { RTE_LCORE_FOREACH_SLAVE(lcore_id) { rte_eal_remote_launch(switch_worker, mbuf_pool, lcore_id); } } else { uint32_t count_in_mempool, index, i; for (index = 0; index < 2*MAX_QUEUES; index++) { /* For all RX and TX queues. */ count_in_mempool = rte_mempool_count(vpool_array[index].pool); /* * Transfer all un-attached mbufs from vpool.pool * to vpoo.ring. */ for (i = 0; i < count_in_mempool; i++) { struct rte_mbuf *mbuf = __rte_mbuf_raw_alloc( vpool_array[index].pool); rte_ring_sp_enqueue(vpool_array[index].ring, (void *)mbuf); } LOG_DEBUG(VHOST_CONFIG, "in main: mbuf count in mempool at initial " "is: %d\n", count_in_mempool); LOG_DEBUG(VHOST_CONFIG, "in main: mbuf count in ring at initial is :" " %d\n", rte_ring_count(vpool_array[index].ring)); } RTE_LCORE_FOREACH_SLAVE(lcore_id) rte_eal_remote_launch(switch_worker_zcp, NULL, lcore_id); } if (mergeable == 0) rte_vhost_feature_disable(1ULL << VIRTIO_NET_F_MRG_RXBUF); /* Register vhost(cuse or user) driver to handle vhost messages. */ ret = rte_vhost_driver_register((char *)&dev_basename); if (ret != 0) rte_exit(EXIT_FAILURE, "vhost driver register failure.\n"); rte_vhost_driver_callback_register(&virtio_net_device_ops); /* Start CUSE session. */ rte_vhost_driver_session_start(); return 0; }