/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2020 Xilinx, Inc. * Copyright(c) 2016-2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include "sfc.h" #include "sfc_debug.h" #include "sfc_log.h" #include "sfc_ev.h" #include "sfc_tx.h" #include "sfc_tweak.h" #include "sfc_kvargs.h" /* * Maximum number of TX queue flush attempts in case of * failure or flush timeout */ #define SFC_TX_QFLUSH_ATTEMPTS (3) /* * Time to wait between event queue polling attempts when waiting for TX * queue flush done or flush failed events */ #define SFC_TX_QFLUSH_POLL_WAIT_MS (1) /* * Maximum number of event queue polling attempts when waiting for TX queue * flush done or flush failed events; it defines TX queue flush attempt timeout * together with SFC_TX_QFLUSH_POLL_WAIT_MS */ #define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000) static uint64_t sfc_tx_get_offload_mask(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); uint64_t no_caps = 0; if (!encp->enc_hw_tx_insert_vlan_enabled) no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT; if (!encp->enc_tunnel_encapsulations_supported) no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; if (!sa->tso) no_caps |= DEV_TX_OFFLOAD_TCP_TSO; if (!sa->tso_encap) no_caps |= (DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO); return ~no_caps; } uint64_t sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa) { return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa); } uint64_t sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa) { return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa); } static int sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level, const struct rte_eth_txconf *tx_conf, uint64_t offloads) { int rc = 0; if (tx_conf->tx_rs_thresh != 0) { sfc_err(sa, "RS bit in transmit descriptor is not supported"); rc = EINVAL; } if (tx_conf->tx_free_thresh > txq_max_fill_level) { sfc_err(sa, "TxQ free threshold too large: %u vs maximum %u", tx_conf->tx_free_thresh, txq_max_fill_level); rc = EINVAL; } if (tx_conf->tx_thresh.pthresh != 0 || tx_conf->tx_thresh.hthresh != 0 || tx_conf->tx_thresh.wthresh != 0) { sfc_warn(sa, "prefetch/host/writeback thresholds are not supported"); } /* We either perform both TCP and UDP offload, or no offload at all */ if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) != ((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) { sfc_err(sa, "TCP and UDP offloads can't be set independently"); rc = EINVAL; } return rc; } void sfc_tx_qflush_done(struct sfc_txq_info *txq_info) { txq_info->state |= SFC_TXQ_FLUSHED; txq_info->state &= ~SFC_TXQ_FLUSHING; } int sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); unsigned int txq_entries; unsigned int evq_entries; unsigned int txq_max_fill_level; struct sfc_txq_info *txq_info; struct sfc_evq *evq; struct sfc_txq *txq; int rc = 0; struct sfc_dp_tx_qcreate_info info; uint64_t offloads; struct sfc_dp_tx_hw_limits hw_limits; sfc_log_init(sa, "TxQ = %u", sw_index); memset(&hw_limits, 0, sizeof(hw_limits)); hw_limits.txq_max_entries = sa->txq_max_entries; hw_limits.txq_min_entries = sa->txq_min_entries; rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits, &txq_entries, &evq_entries, &txq_max_fill_level); if (rc != 0) goto fail_size_up_rings; SFC_ASSERT(txq_entries >= sa->txq_min_entries); SFC_ASSERT(txq_entries <= sa->txq_max_entries); SFC_ASSERT(txq_entries >= nb_tx_desc); SFC_ASSERT(txq_max_fill_level <= nb_tx_desc); offloads = tx_conf->offloads | sa->eth_dev->data->dev_conf.txmode.offloads; rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads); if (rc != 0) goto fail_bad_conf; SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count); txq_info = &sfc_sa2shared(sa)->txq_info[sw_index]; txq_info->entries = txq_entries; rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index, evq_entries, socket_id, &evq); if (rc != 0) goto fail_ev_qinit; txq = &sa->txq_ctrl[sw_index]; txq->hw_index = sw_index; txq->evq = evq; txq_info->free_thresh = (tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh : SFC_TX_DEFAULT_FREE_THRESH; txq_info->offloads = offloads; rc = sfc_dma_alloc(sa, "txq", sw_index, efx_txq_size(sa->nic, txq_info->entries), socket_id, &txq->mem); if (rc != 0) goto fail_dma_alloc; memset(&info, 0, sizeof(info)); info.max_fill_level = txq_max_fill_level; info.free_thresh = txq_info->free_thresh; info.offloads = offloads; info.txq_entries = txq_info->entries; info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max; info.txq_hw_ring = txq->mem.esm_base; info.evq_entries = evq_entries; info.evq_hw_ring = evq->mem.esm_base; info.hw_index = txq->hw_index; info.mem_bar = sa->mem_bar.esb_base; info.vi_window_shift = encp->enc_vi_window_shift; info.tso_tcp_header_offset_limit = encp->enc_tx_tso_tcp_header_offset_limit; rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index, &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr, socket_id, &info, &txq_info->dp); if (rc != 0) goto fail_dp_tx_qinit; evq->dp_txq = txq_info->dp; txq_info->state = SFC_TXQ_INITIALIZED; txq_info->deferred_start = (tx_conf->tx_deferred_start != 0); return 0; fail_dp_tx_qinit: sfc_dma_free(sa, &txq->mem); fail_dma_alloc: sfc_ev_qfini(evq); fail_ev_qinit: txq_info->entries = 0; fail_bad_conf: fail_size_up_rings: sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc); return rc; } void sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_txq_info *txq_info; struct sfc_txq *txq; sfc_log_init(sa, "TxQ = %u", sw_index); SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count); sa->eth_dev->data->tx_queues[sw_index] = NULL; txq_info = &sfc_sa2shared(sa)->txq_info[sw_index]; SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED); sa->priv.dp_tx->qdestroy(txq_info->dp); txq_info->dp = NULL; txq_info->state &= ~SFC_TXQ_INITIALIZED; txq_info->entries = 0; txq = &sa->txq_ctrl[sw_index]; sfc_dma_free(sa, &txq->mem); sfc_ev_qfini(txq->evq); txq->evq = NULL; } static int sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index) { sfc_log_init(sa, "TxQ = %u", sw_index); return 0; } static int sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode) { int rc = 0; switch (txmode->mq_mode) { case ETH_MQ_TX_NONE: break; default: sfc_err(sa, "Tx multi-queue mode %u not supported", txmode->mq_mode); rc = EINVAL; } /* * These features are claimed to be i40e-specific, * but it does make sense to double-check their absence */ if (txmode->hw_vlan_reject_tagged) { sfc_err(sa, "Rejecting tagged packets not supported"); rc = EINVAL; } if (txmode->hw_vlan_reject_untagged) { sfc_err(sa, "Rejecting untagged packets not supported"); rc = EINVAL; } if (txmode->hw_vlan_insert_pvid) { sfc_err(sa, "Port-based VLAN insertion not supported"); rc = EINVAL; } return rc; } /** * Destroy excess queues that are no longer needed after reconfiguration * or complete close. */ static void sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); int sw_index; SFC_ASSERT(nb_tx_queues <= sas->txq_count); sw_index = sas->txq_count; while (--sw_index >= (int)nb_tx_queues) { if (sas->txq_info[sw_index].state & SFC_TXQ_INITIALIZED) sfc_tx_qfini(sa, sw_index); } sas->txq_count = nb_tx_queues; } int sfc_tx_configure(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf; const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues; int rc = 0; sfc_log_init(sa, "nb_tx_queues=%u (old %u)", nb_tx_queues, sas->txq_count); /* * The datapath implementation assumes absence of boundary * limits on Tx DMA descriptors. Addition of these checks on * datapath would simply make the datapath slower. */ if (encp->enc_tx_dma_desc_boundary != 0) { rc = ENOTSUP; goto fail_tx_dma_desc_boundary; } rc = sfc_tx_check_mode(sa, &dev_conf->txmode); if (rc != 0) goto fail_check_mode; if (nb_tx_queues == sas->txq_count) goto done; if (sas->txq_info == NULL) { sas->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues, sizeof(sas->txq_info[0]), 0, sa->socket_id); if (sas->txq_info == NULL) goto fail_txqs_alloc; /* * Allocate primary process only TxQ control from heap * since it should not be shared. */ rc = ENOMEM; sa->txq_ctrl = calloc(nb_tx_queues, sizeof(sa->txq_ctrl[0])); if (sa->txq_ctrl == NULL) goto fail_txqs_ctrl_alloc; } else { struct sfc_txq_info *new_txq_info; struct sfc_txq *new_txq_ctrl; if (nb_tx_queues < sas->txq_count) sfc_tx_fini_queues(sa, nb_tx_queues); new_txq_info = rte_realloc(sas->txq_info, nb_tx_queues * sizeof(sas->txq_info[0]), 0); if (new_txq_info == NULL && nb_tx_queues > 0) goto fail_txqs_realloc; new_txq_ctrl = realloc(sa->txq_ctrl, nb_tx_queues * sizeof(sa->txq_ctrl[0])); if (new_txq_ctrl == NULL && nb_tx_queues > 0) goto fail_txqs_ctrl_realloc; sas->txq_info = new_txq_info; sa->txq_ctrl = new_txq_ctrl; if (nb_tx_queues > sas->txq_count) { memset(&sas->txq_info[sas->txq_count], 0, (nb_tx_queues - sas->txq_count) * sizeof(sas->txq_info[0])); memset(&sa->txq_ctrl[sas->txq_count], 0, (nb_tx_queues - sas->txq_count) * sizeof(sa->txq_ctrl[0])); } } while (sas->txq_count < nb_tx_queues) { rc = sfc_tx_qinit_info(sa, sas->txq_count); if (rc != 0) goto fail_tx_qinit_info; sas->txq_count++; } done: return 0; fail_tx_qinit_info: fail_txqs_ctrl_realloc: fail_txqs_realloc: fail_txqs_ctrl_alloc: fail_txqs_alloc: sfc_tx_close(sa); fail_check_mode: fail_tx_dma_desc_boundary: sfc_log_init(sa, "failed (rc = %d)", rc); return rc; } void sfc_tx_close(struct sfc_adapter *sa) { sfc_tx_fini_queues(sa, 0); free(sa->txq_ctrl); sa->txq_ctrl = NULL; rte_free(sfc_sa2shared(sa)->txq_info); sfc_sa2shared(sa)->txq_info = NULL; } int sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) | sfc_tx_get_queue_offload_caps(sa); struct rte_eth_dev_data *dev_data; struct sfc_txq_info *txq_info; struct sfc_txq *txq; struct sfc_evq *evq; uint16_t flags = 0; unsigned int desc_index; int rc = 0; sfc_log_init(sa, "TxQ = %u", sw_index); SFC_ASSERT(sw_index < sas->txq_count); txq_info = &sas->txq_info[sw_index]; SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED); txq = &sa->txq_ctrl[sw_index]; evq = txq->evq; rc = sfc_ev_qstart(evq, sfc_evq_index_by_txq_sw_index(sa, sw_index)); if (rc != 0) goto fail_ev_qstart; if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) flags |= EFX_TXQ_CKSUM_IPV4; if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) flags |= EFX_TXQ_CKSUM_INNER_IPV4; if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) || (txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) { flags |= EFX_TXQ_CKSUM_TCPUDP; if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) flags |= EFX_TXQ_CKSUM_INNER_TCPUDP; } if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO)) flags |= EFX_TXQ_FATSOV2; rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem, txq_info->entries, 0 /* not used on EF10 */, flags, evq->common, &txq->common, &desc_index); if (rc != 0) { if (sa->tso && (rc == ENOSPC)) sfc_err(sa, "ran out of TSO contexts"); goto fail_tx_qcreate; } efx_tx_qenable(txq->common); txq_info->state |= SFC_TXQ_STARTED; rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index); if (rc != 0) goto fail_dp_qstart; /* * It seems to be used by DPDK for debug purposes only ('rte_ether') */ dev_data = sa->eth_dev->data; dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED; return 0; fail_dp_qstart: txq_info->state = SFC_TXQ_INITIALIZED; efx_tx_qdestroy(txq->common); fail_tx_qcreate: sfc_ev_qstop(evq); fail_ev_qstart: return rc; } void sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); struct rte_eth_dev_data *dev_data; struct sfc_txq_info *txq_info; struct sfc_txq *txq; unsigned int retry_count; unsigned int wait_count; int rc; sfc_log_init(sa, "TxQ = %u", sw_index); SFC_ASSERT(sw_index < sas->txq_count); txq_info = &sas->txq_info[sw_index]; if (txq_info->state == SFC_TXQ_INITIALIZED) return; SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED); txq = &sa->txq_ctrl[sw_index]; sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr); /* * Retry TX queue flushing in case of flush failed or * timeout; in the worst case it can delay for 6 seconds */ for (retry_count = 0; ((txq_info->state & SFC_TXQ_FLUSHED) == 0) && (retry_count < SFC_TX_QFLUSH_ATTEMPTS); ++retry_count) { rc = efx_tx_qflush(txq->common); if (rc != 0) { txq_info->state |= (rc == EALREADY) ? SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED; break; } /* * Wait for TX queue flush done or flush failed event at least * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied * by SFC_TX_QFLUSH_POLL_ATTEMPTS) */ wait_count = 0; do { rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS); sfc_ev_qpoll(txq->evq); } while ((txq_info->state & SFC_TXQ_FLUSHING) && wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS); if (txq_info->state & SFC_TXQ_FLUSHING) sfc_err(sa, "TxQ %u flush timed out", sw_index); if (txq_info->state & SFC_TXQ_FLUSHED) sfc_notice(sa, "TxQ %u flushed", sw_index); } sa->priv.dp_tx->qreap(txq_info->dp); txq_info->state = SFC_TXQ_INITIALIZED; efx_tx_qdestroy(txq->common); sfc_ev_qstop(txq->evq); /* * It seems to be used by DPDK for debug purposes only ('rte_ether') */ dev_data = sa->eth_dev->data; dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED; } int sfc_tx_start(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); unsigned int sw_index; int rc = 0; sfc_log_init(sa, "txq_count = %u", sas->txq_count); if (sa->tso) { if (!encp->enc_fw_assisted_tso_v2_enabled) { sfc_warn(sa, "TSO support was unable to be restored"); sa->tso = B_FALSE; sa->tso_encap = B_FALSE; } } if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled) { sfc_warn(sa, "Encapsulated TSO support was unable to be restored"); sa->tso_encap = B_FALSE; } rc = efx_tx_init(sa->nic); if (rc != 0) goto fail_efx_tx_init; for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) { if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED && (!(sas->txq_info[sw_index].deferred_start) || sas->txq_info[sw_index].deferred_started)) { rc = sfc_tx_qstart(sa, sw_index); if (rc != 0) goto fail_tx_qstart; } } return 0; fail_tx_qstart: while (sw_index-- > 0) sfc_tx_qstop(sa, sw_index); efx_tx_fini(sa->nic); fail_efx_tx_init: sfc_log_init(sa, "failed (rc = %d)", rc); return rc; } void sfc_tx_stop(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); unsigned int sw_index; sfc_log_init(sa, "txq_count = %u", sas->txq_count); sw_index = sas->txq_count; while (sw_index-- > 0) { if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED) sfc_tx_qstop(sa, sw_index); } efx_tx_fini(sa->nic); } static void sfc_efx_tx_reap(struct sfc_efx_txq *txq) { unsigned int completed; sfc_ev_qpoll(txq->evq); for (completed = txq->completed; completed != txq->pending; completed++) { struct sfc_efx_tx_sw_desc *txd; txd = &txq->sw_ring[completed & txq->ptr_mask]; if (txd->mbuf != NULL) { rte_pktmbuf_free(txd->mbuf); txd->mbuf = NULL; } } txq->completed = completed; } /* * The function is used to insert or update VLAN tag; * the firmware has state of the firmware tag to insert per TxQ * (controlled by option descriptors), hence, if the tag of the * packet to be sent is different from one remembered by the firmware, * the function will update it */ static unsigned int sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m, efx_desc_t **pend) { uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ? m->vlan_tci : 0); if (this_tag == txq->hw_vlan_tci) return 0; /* * The expression inside SFC_ASSERT() is not desired to be checked in * a non-debug build because it might be too expensive on the data path */ SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled); efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag), *pend); (*pend)++; txq->hw_vlan_tci = this_tag; return 1; } static uint16_t sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_dp_txq *dp_txq = tx_queue; struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic); uint16_t i; for (i = 0; i < nb_pkts; i++) { int ret; /* * EFX Tx datapath may require extra VLAN descriptor if VLAN * insertion offload is requested regardless the offload * requested/supported. */ ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], encp->enc_tx_tso_tcp_header_offset_limit, txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS, 1); if (unlikely(ret != 0)) { rte_errno = ret; break; } } return i; } static uint16_t sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue; struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); unsigned int added = txq->added; unsigned int pushed = added; unsigned int pkts_sent = 0; efx_desc_t *pend = &txq->pend_desc[0]; const unsigned int hard_max_fill = txq->max_fill_level; const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh; unsigned int fill_level = added - txq->completed; boolean_t reap_done; int rc __rte_unused; struct rte_mbuf **pktp; if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0)) goto done; /* * If insufficient space for a single packet is present, * we should reap; otherwise, we shouldn't do that all the time * to avoid latency increase */ reap_done = (fill_level > soft_max_fill); if (reap_done) { sfc_efx_tx_reap(txq); /* * Recalculate fill level since 'txq->completed' * might have changed on reap */ fill_level = added - txq->completed; } for (pkts_sent = 0, pktp = &tx_pkts[0]; (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill); pkts_sent++, pktp++) { uint16_t hw_vlan_tci_prev = txq->hw_vlan_tci; struct rte_mbuf *m_seg = *pktp; size_t pkt_len = m_seg->pkt_len; unsigned int pkt_descs = 0; size_t in_off = 0; /* * Here VLAN TCI is expected to be zero in case if no * DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised; * if the calling app ignores the absence of * DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then * TX_ERROR will occur */ pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend); if (m_seg->ol_flags & PKT_TX_TCP_SEG) { /* * We expect correct 'pkt->l[2, 3, 4]_len' values * to be set correctly by the caller */ if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend, &pkt_descs, &pkt_len) != 0) { /* We may have reached this place if packet * header linearization is needed but the * header length is greater than * SFC_TSOH_STD_LEN * * We will deceive RTE saying that we have sent * the packet, but we will actually drop it. * Hence, we should revert 'pend' to the * previous state (in case we have added * VLAN descriptor) and start processing * another one packet. But the original * mbuf shouldn't be orphaned */ pend -= pkt_descs; txq->hw_vlan_tci = hw_vlan_tci_prev; rte_pktmbuf_free(*pktp); continue; } /* * We've only added 2 FATSOv2 option descriptors * and 1 descriptor for the linearized packet header. * The outstanding work will be done in the same manner * as for the usual non-TSO path */ } for (; m_seg != NULL; m_seg = m_seg->next) { efsys_dma_addr_t next_frag; size_t seg_len; seg_len = m_seg->data_len; next_frag = rte_mbuf_data_iova(m_seg); /* * If we've started TSO transaction few steps earlier, * we'll skip packet header using an offset in the * current segment (which has been set to the * first one containing payload) */ seg_len -= in_off; next_frag += in_off; in_off = 0; do { efsys_dma_addr_t frag_addr = next_frag; size_t frag_len; /* * It is assumed here that there is no * limitation on address boundary * crossing by DMA descriptor. */ frag_len = MIN(seg_len, txq->dma_desc_size_max); next_frag += frag_len; seg_len -= frag_len; pkt_len -= frag_len; efx_tx_qdesc_dma_create(txq->common, frag_addr, frag_len, (pkt_len == 0), pend++); pkt_descs++; } while (seg_len != 0); } added += pkt_descs; fill_level += pkt_descs; if (unlikely(fill_level > hard_max_fill)) { /* * Our estimation for maximum number of descriptors * required to send a packet seems to be wrong. * Try to reap (if we haven't yet). */ if (!reap_done) { sfc_efx_tx_reap(txq); reap_done = B_TRUE; fill_level = added - txq->completed; if (fill_level > hard_max_fill) { pend -= pkt_descs; txq->hw_vlan_tci = hw_vlan_tci_prev; break; } } else { pend -= pkt_descs; txq->hw_vlan_tci = hw_vlan_tci_prev; break; } } /* Assign mbuf to the last used desc */ txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp; } if (likely(pkts_sent > 0)) { rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, pend - &txq->pend_desc[0], txq->completed, &txq->added); SFC_ASSERT(rc == 0); if (likely(pushed != txq->added)) efx_tx_qpush(txq->common, txq->added, pushed); } #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE if (!reap_done) sfc_efx_tx_reap(txq); #endif done: return pkts_sent; } const struct sfc_dp_tx * sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq) { const struct sfc_dp_queue *dpq = &dp_txq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter_priv *sap; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sap = sfc_adapter_priv_by_eth_dev(eth_dev); return sap->dp_tx; } struct sfc_txq_info * sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq) { const struct sfc_dp_queue *dpq = &dp_txq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter_shared *sas; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sas = sfc_adapter_shared_by_eth_dev(eth_dev); SFC_ASSERT(dpq->queue_id < sas->txq_count); return &sas->txq_info[dpq->queue_id]; } struct sfc_txq * sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq) { const struct sfc_dp_queue *dpq = &dp_txq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter *sa; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sa = sfc_adapter_by_eth_dev(eth_dev); SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count); return &sa->txq_ctrl[dpq->queue_id]; } static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings; static int sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc, __rte_unused struct sfc_dp_tx_hw_limits *limits, unsigned int *txq_entries, unsigned int *evq_entries, unsigned int *txq_max_fill_level) { *txq_entries = nb_tx_desc; *evq_entries = nb_tx_desc; *txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries); return 0; } static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate; static int sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_tx_qcreate_info *info, struct sfc_dp_txq **dp_txqp) { struct sfc_efx_txq *txq; struct sfc_txq *ctrl_txq; int rc; rc = ENOMEM; txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) goto fail_txq_alloc; sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr); rc = ENOMEM; txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc", EFX_TXQ_LIMIT(info->txq_entries), sizeof(*txq->pend_desc), 0, socket_id); if (txq->pend_desc == NULL) goto fail_pend_desc_alloc; rc = ENOMEM; txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring", info->txq_entries, sizeof(*txq->sw_ring), RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) goto fail_sw_ring_alloc; ctrl_txq = sfc_txq_by_dp_txq(&txq->dp); if (ctrl_txq->evq->sa->tso) { rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring, info->txq_entries, socket_id); if (rc != 0) goto fail_alloc_tsoh_objs; } txq->evq = ctrl_txq->evq; txq->ptr_mask = info->txq_entries - 1; txq->max_fill_level = info->max_fill_level; txq->free_thresh = info->free_thresh; txq->dma_desc_size_max = info->dma_desc_size_max; *dp_txqp = &txq->dp; return 0; fail_alloc_tsoh_objs: rte_free(txq->sw_ring); fail_sw_ring_alloc: rte_free(txq->pend_desc); fail_pend_desc_alloc: rte_free(txq); fail_txq_alloc: return rc; } static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy; static void sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq) { struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1); rte_free(txq->sw_ring); rte_free(txq->pend_desc); rte_free(txq); } static sfc_dp_tx_qstart_t sfc_efx_tx_qstart; static int sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int evq_read_ptr, unsigned int txq_desc_index) { /* libefx-based datapath is specific to libefx-based PMD */ struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq); txq->common = ctrl_txq->common; txq->pending = txq->completed = txq->added = txq_desc_index; txq->hw_vlan_tci = 0; txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING); return 0; } static sfc_dp_tx_qstop_t sfc_efx_tx_qstop; static void sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int *evq_read_ptr) { struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING; } static sfc_dp_tx_qreap_t sfc_efx_tx_qreap; static void sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq) { struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); unsigned int txds; sfc_efx_tx_reap(txq); for (txds = 0; txds <= txq->ptr_mask; txds++) { if (txq->sw_ring[txds].mbuf != NULL) { rte_pktmbuf_free(txq->sw_ring[txds].mbuf); txq->sw_ring[txds].mbuf = NULL; } } txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED; } static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status; static int sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset) { struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); if (unlikely(offset > txq->ptr_mask)) return -EINVAL; if (unlikely(offset >= txq->max_fill_level)) return RTE_ETH_TX_DESC_UNAVAIL; /* * Poll EvQ to derive up-to-date 'txq->pending' figure; * it is required for the queue to be running, but the * check is omitted because API design assumes that it * is the duty of the caller to satisfy all conditions */ SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == SFC_EFX_TXQ_FLAG_RUNNING); sfc_ev_qpoll(txq->evq); /* * Ring tail is 'txq->pending', and although descriptors * between 'txq->completed' and 'txq->pending' are still * in use by the driver, they should be reported as DONE */ if (unlikely(offset < (txq->added - txq->pending))) return RTE_ETH_TX_DESC_FULL; /* * There is no separate return value for unused descriptors; * the latter will be reported as DONE because genuine DONE * descriptors will be freed anyway in SW on the next burst */ return RTE_ETH_TX_DESC_DONE; } struct sfc_dp_tx sfc_efx_tx = { .dp = { .name = SFC_KVARG_DATAPATH_EFX, .type = SFC_DP_TX, .hw_fw_caps = 0, }, .features = 0, .dev_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_MULTI_SEGS, .queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO, .qsize_up_rings = sfc_efx_tx_qsize_up_rings, .qcreate = sfc_efx_tx_qcreate, .qdestroy = sfc_efx_tx_qdestroy, .qstart = sfc_efx_tx_qstart, .qstop = sfc_efx_tx_qstop, .qreap = sfc_efx_tx_qreap, .qdesc_status = sfc_efx_tx_qdesc_status, .pkt_prepare = sfc_efx_prepare_pkts, .pkt_burst = sfc_efx_xmit_pkts, };