/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2017 Intel Corporation */ #include #include #include #include #include #include "rte_table_hash.h" #define KEYS_PER_BUCKET 4 struct bucket { union { uintptr_t next; uint64_t lru_list; }; uint16_t sig[KEYS_PER_BUCKET]; uint32_t key_pos[KEYS_PER_BUCKET]; }; #define BUCKET_NEXT(bucket) \ ((void *) ((bucket)->next & (~1LU))) #define BUCKET_NEXT_VALID(bucket) \ ((bucket)->next & 1LU) #define BUCKET_NEXT_SET(bucket, bucket_next) \ do \ (bucket)->next = (((uintptr_t) ((void *) (bucket_next))) | 1LU);\ while (0) #define BUCKET_NEXT_SET_NULL(bucket) \ do \ (bucket)->next = 0; \ while (0) #define BUCKET_NEXT_COPY(bucket, bucket2) \ do \ (bucket)->next = (bucket2)->next; \ while (0) #ifdef RTE_TABLE_STATS_COLLECT #define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val) \ table->stats.n_pkts_in += val #define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val) \ table->stats.n_pkts_lookup_miss += val #else #define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val) #define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val) #endif struct grinder { struct bucket *bkt; uint64_t sig; uint64_t match; uint32_t key_index; }; struct rte_table_hash { struct rte_table_stats stats; /* Input parameters */ uint32_t key_size; uint32_t entry_size; uint32_t n_keys; uint32_t n_buckets; uint32_t n_buckets_ext; rte_table_hash_op_hash f_hash; uint64_t seed; uint32_t key_offset; /* Internal */ uint64_t bucket_mask; uint32_t key_size_shl; uint32_t data_size_shl; uint32_t key_stack_tos; uint32_t bkt_ext_stack_tos; /* Grinder */ struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX]; /* Tables */ uint64_t *key_mask; struct bucket *buckets; struct bucket *buckets_ext; uint8_t *key_mem; uint8_t *data_mem; uint32_t *key_stack; uint32_t *bkt_ext_stack; /* Table memory */ uint8_t memory[0] __rte_cache_aligned; }; static int keycmp(void *a, void *b, void *b_mask, uint32_t n_bytes) { uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask; uint32_t i; for (i = 0; i < n_bytes / sizeof(uint64_t); i++) if (a64[i] != (b64[i] & b_mask64[i])) return 1; return 0; } static void keycpy(void *dst, void *src, void *src_mask, uint32_t n_bytes) { uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask; uint32_t i; for (i = 0; i < n_bytes / sizeof(uint64_t); i++) dst64[i] = src64[i] & src_mask64[i]; } static int check_params_create(struct rte_table_hash_params *params) { /* name */ if (params->name == NULL) { RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__); return -EINVAL; } /* key_size */ if ((params->key_size < sizeof(uint64_t)) || (!rte_is_power_of_2(params->key_size))) { RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__); return -EINVAL; } /* n_keys */ if (params->n_keys == 0) { RTE_LOG(ERR, TABLE, "%s: n_keys invalid value\n", __func__); return -EINVAL; } /* n_buckets */ if ((params->n_buckets == 0) || (!rte_is_power_of_2(params->n_buckets))) { RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__); return -EINVAL; } /* f_hash */ if (params->f_hash == NULL) { RTE_LOG(ERR, TABLE, "%s: f_hash invalid value\n", __func__); return -EINVAL; } return 0; } static void * rte_table_hash_ext_create(void *params, int socket_id, uint32_t entry_size) { struct rte_table_hash_params *p = params; struct rte_table_hash *t; uint64_t table_meta_sz, key_mask_sz, bucket_sz, bucket_ext_sz, key_sz; uint64_t key_stack_sz, bkt_ext_stack_sz, data_sz, total_size; uint64_t key_mask_offset, bucket_offset, bucket_ext_offset, key_offset; uint64_t key_stack_offset, bkt_ext_stack_offset, data_offset; uint32_t n_buckets_ext, i; /* Check input parameters */ if ((check_params_create(p) != 0) || (!rte_is_power_of_2(entry_size)) || ((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) || (sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2))) return NULL; /* * Table dimensioning * * Objective: Pick the number of bucket extensions (n_buckets_ext) so that * it is guaranteed that n_keys keys can be stored in the table at any time. * * The worst case scenario takes place when all the n_keys keys fall into * the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst * case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the * same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall * into a different bucket. This case defeats the purpose of the hash table. * It indicates unsuitable f_hash or n_keys to n_buckets ratio. * * n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1 */ n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1; /* Memory allocation */ table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash)); key_mask_sz = RTE_CACHE_LINE_ROUNDUP(p->key_size); bucket_sz = RTE_CACHE_LINE_ROUNDUP(p->n_buckets * sizeof(struct bucket)); bucket_ext_sz = RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(struct bucket)); key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size); key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t)); bkt_ext_stack_sz = RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t)); data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size); total_size = table_meta_sz + key_mask_sz + bucket_sz + bucket_ext_sz + key_sz + key_stack_sz + bkt_ext_stack_sz + data_sz; if (total_size > SIZE_MAX) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes" " for hash table %s\n", __func__, total_size, p->name); return NULL; } t = rte_zmalloc_socket(p->name, (size_t)total_size, RTE_CACHE_LINE_SIZE, socket_id); if (t == NULL) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes" " for hash table %s\n", __func__, total_size, p->name); return NULL; } RTE_LOG(INFO, TABLE, "%s (%u-byte key): Hash table %s memory " "footprint is %" PRIu64 " bytes\n", __func__, p->key_size, p->name, total_size); /* Memory initialization */ t->key_size = p->key_size; t->entry_size = entry_size; t->n_keys = p->n_keys; t->n_buckets = p->n_buckets; t->n_buckets_ext = n_buckets_ext; t->f_hash = p->f_hash; t->seed = p->seed; t->key_offset = p->key_offset; /* Internal */ t->bucket_mask = t->n_buckets - 1; t->key_size_shl = __builtin_ctzl(p->key_size); t->data_size_shl = __builtin_ctzl(entry_size); /* Tables */ key_mask_offset = 0; bucket_offset = key_mask_offset + key_mask_sz; bucket_ext_offset = bucket_offset + bucket_sz; key_offset = bucket_ext_offset + bucket_ext_sz; key_stack_offset = key_offset + key_sz; bkt_ext_stack_offset = key_stack_offset + key_stack_sz; data_offset = bkt_ext_stack_offset + bkt_ext_stack_sz; t->key_mask = (uint64_t *) &t->memory[key_mask_offset]; t->buckets = (struct bucket *) &t->memory[bucket_offset]; t->buckets_ext = (struct bucket *) &t->memory[bucket_ext_offset]; t->key_mem = &t->memory[key_offset]; t->key_stack = (uint32_t *) &t->memory[key_stack_offset]; t->bkt_ext_stack = (uint32_t *) &t->memory[bkt_ext_stack_offset]; t->data_mem = &t->memory[data_offset]; /* Key mask */ if (p->key_mask == NULL) memset(t->key_mask, 0xFF, p->key_size); else memcpy(t->key_mask, p->key_mask, p->key_size); /* Key stack */ for (i = 0; i < t->n_keys; i++) t->key_stack[i] = t->n_keys - 1 - i; t->key_stack_tos = t->n_keys; /* Bucket ext stack */ for (i = 0; i < t->n_buckets_ext; i++) t->bkt_ext_stack[i] = t->n_buckets_ext - 1 - i; t->bkt_ext_stack_tos = t->n_buckets_ext; return t; } static int rte_table_hash_ext_free(void *table) { struct rte_table_hash *t = table; /* Check input parameters */ if (t == NULL) return -EINVAL; rte_free(t); return 0; } static int rte_table_hash_ext_entry_add(void *table, void *key, void *entry, int *key_found, void **entry_ptr) { struct rte_table_hash *t = table; struct bucket *bkt0, *bkt, *bkt_prev; uint64_t sig; uint32_t bkt_index, i; sig = t->f_hash(key, t->key_mask, t->key_size, t->seed); bkt_index = sig & t->bucket_mask; bkt0 = &t->buckets[bkt_index]; sig = (sig >> 16) | 1LLU; /* Key is present in the bucket */ for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt)) for (i = 0; i < KEYS_PER_BUCKET; i++) { uint64_t bkt_sig = (uint64_t) bkt->sig[i]; uint32_t bkt_key_index = bkt->key_pos[i]; uint8_t *bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl]; if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask, t->key_size) == 0)) { uint8_t *data = &t->data_mem[bkt_key_index << t->data_size_shl]; memcpy(data, entry, t->entry_size); *key_found = 1; *entry_ptr = (void *) data; return 0; } } /* Key is not present in the bucket */ for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt, bkt = BUCKET_NEXT(bkt)) for (i = 0; i < KEYS_PER_BUCKET; i++) { uint64_t bkt_sig = (uint64_t) bkt->sig[i]; if (bkt_sig == 0) { uint32_t bkt_key_index; uint8_t *bkt_key, *data; /* Allocate new key */ if (t->key_stack_tos == 0) /* No free keys */ return -ENOSPC; bkt_key_index = t->key_stack[ --t->key_stack_tos]; /* Install new key */ bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl]; data = &t->data_mem[bkt_key_index << t->data_size_shl]; bkt->sig[i] = (uint16_t) sig; bkt->key_pos[i] = bkt_key_index; keycpy(bkt_key, key, t->key_mask, t->key_size); memcpy(data, entry, t->entry_size); *key_found = 0; *entry_ptr = (void *) data; return 0; } } /* Bucket full: extend bucket */ if ((t->bkt_ext_stack_tos > 0) && (t->key_stack_tos > 0)) { uint32_t bkt_key_index; uint8_t *bkt_key, *data; /* Allocate new bucket ext */ bkt_index = t->bkt_ext_stack[--t->bkt_ext_stack_tos]; bkt = &t->buckets_ext[bkt_index]; /* Chain the new bucket ext */ BUCKET_NEXT_SET(bkt_prev, bkt); BUCKET_NEXT_SET_NULL(bkt); /* Allocate new key */ bkt_key_index = t->key_stack[--t->key_stack_tos]; bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl]; data = &t->data_mem[bkt_key_index << t->data_size_shl]; /* Install new key into bucket */ bkt->sig[0] = (uint16_t) sig; bkt->key_pos[0] = bkt_key_index; keycpy(bkt_key, key, t->key_mask, t->key_size); memcpy(data, entry, t->entry_size); *key_found = 0; *entry_ptr = (void *) data; return 0; } return -ENOSPC; } static int rte_table_hash_ext_entry_delete(void *table, void *key, int *key_found, void *entry) { struct rte_table_hash *t = table; struct bucket *bkt0, *bkt, *bkt_prev; uint64_t sig; uint32_t bkt_index, i; sig = t->f_hash(key, t->key_mask, t->key_size, t->seed); bkt_index = sig & t->bucket_mask; bkt0 = &t->buckets[bkt_index]; sig = (sig >> 16) | 1LLU; /* Key is present in the bucket */ for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt, bkt = BUCKET_NEXT(bkt)) for (i = 0; i < KEYS_PER_BUCKET; i++) { uint64_t bkt_sig = (uint64_t) bkt->sig[i]; uint32_t bkt_key_index = bkt->key_pos[i]; uint8_t *bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl]; if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask, t->key_size) == 0)) { uint8_t *data = &t->data_mem[bkt_key_index << t->data_size_shl]; /* Uninstall key from bucket */ bkt->sig[i] = 0; *key_found = 1; if (entry) memcpy(entry, data, t->entry_size); /* Free key */ t->key_stack[t->key_stack_tos++] = bkt_key_index; /*Check if bucket is unused */ if ((bkt_prev != NULL) && (bkt->sig[0] == 0) && (bkt->sig[1] == 0) && (bkt->sig[2] == 0) && (bkt->sig[3] == 0)) { /* Unchain bucket */ BUCKET_NEXT_COPY(bkt_prev, bkt); /* Clear bucket */ memset(bkt, 0, sizeof(struct bucket)); /* Free bucket back to buckets ext */ bkt_index = bkt - t->buckets_ext; t->bkt_ext_stack[t->bkt_ext_stack_tos++] = bkt_index; } return 0; } } /* Key is not present in the bucket */ *key_found = 0; return 0; } static int rte_table_hash_ext_lookup_unoptimized( void *table, struct rte_mbuf **pkts, uint64_t pkts_mask, uint64_t *lookup_hit_mask, void **entries) { struct rte_table_hash *t = (struct rte_table_hash *) table; uint64_t pkts_mask_out = 0; __rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask); for ( ; pkts_mask; ) { struct bucket *bkt0, *bkt; struct rte_mbuf *pkt; uint8_t *key; uint64_t pkt_mask, sig; uint32_t pkt_index, bkt_index, i; pkt_index = __builtin_ctzll(pkts_mask); pkt_mask = 1LLU << pkt_index; pkts_mask &= ~pkt_mask; pkt = pkts[pkt_index]; key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset); sig = (uint64_t) t->f_hash(key, t->key_mask, t->key_size, t->seed); bkt_index = sig & t->bucket_mask; bkt0 = &t->buckets[bkt_index]; sig = (sig >> 16) | 1LLU; /* Key is present in the bucket */ for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt)) for (i = 0; i < KEYS_PER_BUCKET; i++) { uint64_t bkt_sig = (uint64_t) bkt->sig[i]; uint32_t bkt_key_index = bkt->key_pos[i]; uint8_t *bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl]; if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask, t->key_size) == 0)) { uint8_t *data = &t->data_mem[ bkt_key_index << t->data_size_shl]; pkts_mask_out |= pkt_mask; entries[pkt_index] = (void *) data; break; } } } *lookup_hit_mask = pkts_mask_out; return 0; } /*** * * mask = match bitmask * match = at least one match * match_many = more than one match * match_pos = position of first match * *---------------------------------------- * mask match match_many match_pos *---------------------------------------- * 0000 0 0 00 * 0001 1 0 00 * 0010 1 0 01 * 0011 1 1 00 *---------------------------------------- * 0100 1 0 10 * 0101 1 1 00 * 0110 1 1 01 * 0111 1 1 00 *---------------------------------------- * 1000 1 0 11 * 1001 1 1 00 * 1010 1 1 01 * 1011 1 1 00 *---------------------------------------- * 1100 1 1 10 * 1101 1 1 00 * 1110 1 1 01 * 1111 1 1 00 *---------------------------------------- * * match = 1111_1111_1111_1110 * match_many = 1111_1110_1110_1000 * match_pos = 0001_0010_0001_0011__0001_0010_0001_0000 * * match = 0xFFFELLU * match_many = 0xFEE8LLU * match_pos = 0x12131210LLU * ***/ #define LUT_MATCH 0xFFFELLU #define LUT_MATCH_MANY 0xFEE8LLU #define LUT_MATCH_POS 0x12131210LLU #define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos) \ { \ uint64_t bucket_sig[4], mask[4], mask_all; \ \ bucket_sig[0] = bucket->sig[0]; \ bucket_sig[1] = bucket->sig[1]; \ bucket_sig[2] = bucket->sig[2]; \ bucket_sig[3] = bucket->sig[3]; \ \ bucket_sig[0] ^= mbuf_sig; \ bucket_sig[1] ^= mbuf_sig; \ bucket_sig[2] ^= mbuf_sig; \ bucket_sig[3] ^= mbuf_sig; \ \ mask[0] = 0; \ mask[1] = 0; \ mask[2] = 0; \ mask[3] = 0; \ \ if (bucket_sig[0] == 0) \ mask[0] = 1; \ if (bucket_sig[1] == 0) \ mask[1] = 2; \ if (bucket_sig[2] == 0) \ mask[2] = 4; \ if (bucket_sig[3] == 0) \ mask[3] = 8; \ \ mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]); \ \ match = (LUT_MATCH >> mask_all) & 1; \ match_many = (LUT_MATCH_MANY >> mask_all) & 1; \ match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3; \ } #define lookup_cmp_key(mbuf, key, match_key, f) \ { \ uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\ uint64_t *bkt_key = (uint64_t *) key; \ uint64_t *key_mask = f->key_mask; \ \ switch (f->key_size) { \ case 8: \ { \ uint64_t xor = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \ match_key = 0; \ if (xor == 0) \ match_key = 1; \ } \ break; \ \ case 16: \ { \ uint64_t xor[2], or; \ \ xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \ xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \ or = xor[0] | xor[1]; \ match_key = 0; \ if (or == 0) \ match_key = 1; \ } \ break; \ \ case 32: \ { \ uint64_t xor[4], or; \ \ xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \ xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \ xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \ xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \ or = xor[0] | xor[1] | xor[2] | xor[3]; \ match_key = 0; \ if (or == 0) \ match_key = 1; \ } \ break; \ \ case 64: \ { \ uint64_t xor[8], or; \ \ xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \ xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \ xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \ xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \ xor[4] = (pkt_key[4] & key_mask[4]) ^ bkt_key[4]; \ xor[5] = (pkt_key[5] & key_mask[5]) ^ bkt_key[5]; \ xor[6] = (pkt_key[6] & key_mask[6]) ^ bkt_key[6]; \ xor[7] = (pkt_key[7] & key_mask[7]) ^ bkt_key[7]; \ or = xor[0] | xor[1] | xor[2] | xor[3] | \ xor[4] | xor[5] | xor[6] | xor[7]; \ match_key = 0; \ if (or == 0) \ match_key = 1; \ } \ break; \ \ default: \ match_key = 0; \ if (keycmp(bkt_key, pkt_key, key_mask, f->key_size) == 0) \ match_key = 1; \ } \ } #define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index) \ { \ uint64_t pkt00_mask, pkt01_mask; \ struct rte_mbuf *mbuf00, *mbuf01; \ uint32_t key_offset = t->key_offset; \ \ pkt00_index = __builtin_ctzll(pkts_mask); \ pkt00_mask = 1LLU << pkt00_index; \ pkts_mask &= ~pkt00_mask; \ mbuf00 = pkts[pkt00_index]; \ \ pkt01_index = __builtin_ctzll(pkts_mask); \ pkt01_mask = 1LLU << pkt01_index; \ pkts_mask &= ~pkt01_mask; \ mbuf01 = pkts[pkt01_index]; \ \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\ } #define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \ pkt01_index) \ { \ uint64_t pkt00_mask, pkt01_mask; \ struct rte_mbuf *mbuf00, *mbuf01; \ uint32_t key_offset = t->key_offset; \ \ pkt00_index = __builtin_ctzll(pkts_mask); \ pkt00_mask = 1LLU << pkt00_index; \ pkts_mask &= ~pkt00_mask; \ mbuf00 = pkts[pkt00_index]; \ \ pkt01_index = __builtin_ctzll(pkts_mask); \ if (pkts_mask == 0) \ pkt01_index = pkt00_index; \ pkt01_mask = 1LLU << pkt01_index; \ pkts_mask &= ~pkt01_mask; \ mbuf01 = pkts[pkt01_index]; \ \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\ } #define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index) \ { \ struct grinder *g10, *g11; \ uint64_t sig10, sig11, bkt10_index, bkt11_index; \ struct rte_mbuf *mbuf10, *mbuf11; \ struct bucket *bkt10, *bkt11, *buckets = t->buckets; \ uint8_t *key10, *key11; \ uint64_t bucket_mask = t->bucket_mask; \ rte_table_hash_op_hash f_hash = t->f_hash; \ uint64_t seed = t->seed; \ uint32_t key_size = t->key_size; \ uint32_t key_offset = t->key_offset; \ \ mbuf10 = pkts[pkt10_index]; \ key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset); \ sig10 = (uint64_t) f_hash(key10, t->key_mask, key_size, seed); \ bkt10_index = sig10 & bucket_mask; \ bkt10 = &buckets[bkt10_index]; \ \ mbuf11 = pkts[pkt11_index]; \ key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset); \ sig11 = (uint64_t) f_hash(key11, t->key_mask, key_size, seed); \ bkt11_index = sig11 & bucket_mask; \ bkt11 = &buckets[bkt11_index]; \ \ rte_prefetch0(bkt10); \ rte_prefetch0(bkt11); \ \ g10 = &g[pkt10_index]; \ g10->sig = sig10; \ g10->bkt = bkt10; \ \ g11 = &g[pkt11_index]; \ g11->sig = sig11; \ g11->bkt = bkt11; \ } #define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\ { \ struct grinder *g20, *g21; \ uint64_t sig20, sig21; \ struct bucket *bkt20, *bkt21; \ uint8_t *key20, *key21, *key_mem = t->key_mem; \ uint64_t match20, match21, match_many20, match_many21; \ uint64_t match_pos20, match_pos21; \ uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\ \ g20 = &g[pkt20_index]; \ sig20 = g20->sig; \ bkt20 = g20->bkt; \ sig20 = (sig20 >> 16) | 1LLU; \ lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\ match20 <<= pkt20_index; \ match_many20 |= BUCKET_NEXT_VALID(bkt20); \ match_many20 <<= pkt20_index; \ key20_index = bkt20->key_pos[match_pos20]; \ key20 = &key_mem[key20_index << key_size_shl]; \ \ g21 = &g[pkt21_index]; \ sig21 = g21->sig; \ bkt21 = g21->bkt; \ sig21 = (sig21 >> 16) | 1LLU; \ lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\ match21 <<= pkt21_index; \ match_many21 |= BUCKET_NEXT_VALID(bkt21); \ match_many21 <<= pkt21_index; \ key21_index = bkt21->key_pos[match_pos21]; \ key21 = &key_mem[key21_index << key_size_shl]; \ \ rte_prefetch0(key20); \ rte_prefetch0(key21); \ \ pkts_mask_match_many |= match_many20 | match_many21; \ \ g20->match = match20; \ g20->key_index = key20_index; \ \ g21->match = match21; \ g21->key_index = key21_index; \ } #define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \ entries) \ { \ struct grinder *g30, *g31; \ struct rte_mbuf *mbuf30, *mbuf31; \ uint8_t *key30, *key31, *key_mem = t->key_mem; \ uint8_t *data30, *data31, *data_mem = t->data_mem; \ uint64_t match30, match31, match_key30, match_key31, match_keys;\ uint32_t key30_index, key31_index; \ uint32_t key_size_shl = t->key_size_shl; \ uint32_t data_size_shl = t->data_size_shl; \ \ mbuf30 = pkts[pkt30_index]; \ g30 = &g[pkt30_index]; \ match30 = g30->match; \ key30_index = g30->key_index; \ key30 = &key_mem[key30_index << key_size_shl]; \ lookup_cmp_key(mbuf30, key30, match_key30, t); \ match_key30 <<= pkt30_index; \ match_key30 &= match30; \ data30 = &data_mem[key30_index << data_size_shl]; \ entries[pkt30_index] = data30; \ \ mbuf31 = pkts[pkt31_index]; \ g31 = &g[pkt31_index]; \ match31 = g31->match; \ key31_index = g31->key_index; \ key31 = &key_mem[key31_index << key_size_shl]; \ lookup_cmp_key(mbuf31, key31, match_key31, t); \ match_key31 <<= pkt31_index; \ match_key31 &= match31; \ data31 = &data_mem[key31_index << data_size_shl]; \ entries[pkt31_index] = data31; \ \ rte_prefetch0(data30); \ rte_prefetch0(data31); \ \ match_keys = match_key30 | match_key31; \ pkts_mask_out |= match_keys; \ } /*** * The lookup function implements a 4-stage pipeline, with each stage processing * two different packets. The purpose of pipelined implementation is to hide the * latency of prefetching the data structures and loosen the data dependency * between instructions. * * p00 _______ p10 _______ p20 _______ p30 _______ *----->| |----->| |----->| |----->| |-----> * | 0 | | 1 | | 2 | | 3 | *----->|_______|----->|_______|----->|_______|----->|_______|-----> * p01 p11 p21 p31 * * The naming convention is: * pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1 * ***/ static int rte_table_hash_ext_lookup( void *table, struct rte_mbuf **pkts, uint64_t pkts_mask, uint64_t *lookup_hit_mask, void **entries) { struct rte_table_hash *t = (struct rte_table_hash *) table; struct grinder *g = t->grinders; uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index; uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index; uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0; int status = 0; __rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask); RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(t, n_pkts_in); /* Cannot run the pipeline with less than 7 packets */ if (__builtin_popcountll(pkts_mask) < 7) { status = rte_table_hash_ext_lookup_unoptimized(table, pkts, pkts_mask, lookup_hit_mask, entries); RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(*lookup_hit_mask)); return status; } /* Pipeline stage 0 */ lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index); /* Pipeline feed */ pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index); /* Pipeline stage 1 */ lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index); /* Pipeline feed */ pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index); /* Pipeline stage 1 */ lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index); /* Pipeline stage 2 */ lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many); /* * Pipeline run * */ for ( ; pkts_mask; ) { /* Pipeline feed */ pkt30_index = pkt20_index; pkt31_index = pkt21_index; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, pkt01_index); /* Pipeline stage 1 */ lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index); /* Pipeline stage 2 */ lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many); /* Pipeline stage 3 */ lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, entries); } /* Pipeline feed */ pkt30_index = pkt20_index; pkt31_index = pkt21_index; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 1 */ lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index); /* Pipeline stage 2 */ lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many); /* Pipeline stage 3 */ lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, entries); /* Pipeline feed */ pkt30_index = pkt20_index; pkt31_index = pkt21_index; pkt20_index = pkt10_index; pkt21_index = pkt11_index; /* Pipeline stage 2 */ lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many); /* Pipeline stage 3 */ lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, entries); /* Pipeline feed */ pkt30_index = pkt20_index; pkt31_index = pkt21_index; /* Pipeline stage 3 */ lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, entries); /* Slow path */ pkts_mask_match_many &= ~pkts_mask_out; if (pkts_mask_match_many) { uint64_t pkts_mask_out_slow = 0; status = rte_table_hash_ext_lookup_unoptimized(table, pkts, pkts_mask_match_many, &pkts_mask_out_slow, entries); pkts_mask_out |= pkts_mask_out_slow; } *lookup_hit_mask = pkts_mask_out; RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out)); return status; } static int rte_table_hash_ext_stats_read(void *table, struct rte_table_stats *stats, int clear) { struct rte_table_hash *t = table; if (stats != NULL) memcpy(stats, &t->stats, sizeof(t->stats)); if (clear) memset(&t->stats, 0, sizeof(t->stats)); return 0; } struct rte_table_ops rte_table_hash_ext_ops = { .f_create = rte_table_hash_ext_create, .f_free = rte_table_hash_ext_free, .f_add = rte_table_hash_ext_entry_add, .f_delete = rte_table_hash_ext_entry_delete, .f_add_bulk = NULL, .f_delete_bulk = NULL, .f_lookup = rte_table_hash_ext_lookup, .f_stats = rte_table_hash_ext_stats_read, };