/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iotlb.h" #include "vhost.h" #define MAX_BATCH_LEN 256 #define VHOST_ASYNC_BATCH_THRESHOLD 32 static __rte_always_inline bool rxvq_is_mergeable(struct virtio_net *dev) { return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF); } static __rte_always_inline bool virtio_net_is_inorder(struct virtio_net *dev) { return dev->features & (1ULL << VIRTIO_F_IN_ORDER); } static bool is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring) { return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring; } static inline void do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) { rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vhost_log_cache_write_iova(dev, vq, elem[i].log_addr, elem[i].len); PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0); } vq->batch_copy_nb_elems = 0; } static inline void do_data_copy_dequeue(struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vq->batch_copy_nb_elems = 0; } static __rte_always_inline void do_flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t to, uint16_t from, uint16_t size) { rte_memcpy(&vq->used->ring[to], &vq->shadow_used_split[from], size * sizeof(struct vring_used_elem)); vhost_log_cache_used_vring(dev, vq, offsetof(struct vring_used, ring[to]), size * sizeof(struct vring_used_elem)); } static __rte_always_inline void flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq) { uint16_t used_idx = vq->last_used_idx & (vq->size - 1); if (used_idx + vq->shadow_used_idx <= vq->size) { do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, vq->shadow_used_idx); } else { uint16_t size; /* update used ring interval [used_idx, vq->size] */ size = vq->size - used_idx; do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size); /* update the left half used ring interval [0, left_size] */ do_flush_shadow_used_ring_split(dev, vq, 0, size, vq->shadow_used_idx - size); } vq->last_used_idx += vq->shadow_used_idx; vhost_log_cache_sync(dev, vq); __atomic_add_fetch(&vq->used->idx, vq->shadow_used_idx, __ATOMIC_RELEASE); vq->shadow_used_idx = 0; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); } static __rte_always_inline void update_shadow_used_ring_split(struct vhost_virtqueue *vq, uint16_t desc_idx, uint32_t len) { uint16_t i = vq->shadow_used_idx++; vq->shadow_used_split[i].id = desc_idx; vq->shadow_used_split[i].len = len; } static __rte_always_inline void vhost_flush_enqueue_shadow_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { int i; uint16_t used_idx = vq->last_used_idx; uint16_t head_idx = vq->last_used_idx; uint16_t head_flags = 0; /* Split loop in two to save memory barriers */ for (i = 0; i < vq->shadow_used_idx; i++) { vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id; vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len; used_idx += vq->shadow_used_packed[i].count; if (used_idx >= vq->size) used_idx -= vq->size; } /* The ordering for storing desc flags needs to be enforced. */ rte_atomic_thread_fence(__ATOMIC_RELEASE); for (i = 0; i < vq->shadow_used_idx; i++) { uint16_t flags; if (vq->shadow_used_packed[i].len) flags = VRING_DESC_F_WRITE; else flags = 0; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (i > 0) { vq->desc_packed[vq->last_used_idx].flags = flags; vhost_log_cache_used_vring(dev, vq, vq->last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); } else { head_idx = vq->last_used_idx; head_flags = flags; } vq_inc_last_used_packed(vq, vq->shadow_used_packed[i].count); } vq->desc_packed[head_idx].flags = head_flags; vhost_log_cache_used_vring(dev, vq, head_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); vq->shadow_used_idx = 0; vhost_log_cache_sync(dev, vq); } static __rte_always_inline void vhost_flush_dequeue_shadow_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { struct vring_used_elem_packed *used_elem = &vq->shadow_used_packed[0]; vq->desc_packed[vq->shadow_last_used_idx].id = used_elem->id; /* desc flags is the synchronization point for virtio packed vring */ __atomic_store_n(&vq->desc_packed[vq->shadow_last_used_idx].flags, used_elem->flags, __ATOMIC_RELEASE); vhost_log_cache_used_vring(dev, vq, vq->shadow_last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); vq->shadow_used_idx = 0; vhost_log_cache_sync(dev, vq); } static __rte_always_inline void vhost_flush_enqueue_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t *lens, uint16_t *ids) { uint16_t i; uint16_t flags; uint16_t last_used_idx; struct vring_packed_desc *desc_base; last_used_idx = vq->last_used_idx; desc_base = &vq->desc_packed[last_used_idx]; flags = PACKED_DESC_ENQUEUE_USED_FLAG(vq->used_wrap_counter); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_base[i].id = ids[i]; desc_base[i].len = lens[i]; } rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_base[i].flags = flags; } vhost_log_cache_used_vring(dev, vq, last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc) * PACKED_BATCH_SIZE); vhost_log_cache_sync(dev, vq); vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_batch_packed_inorder(struct vhost_virtqueue *vq, uint16_t id) { vq->shadow_used_packed[0].id = id; if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter); vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].count = 1; vq->shadow_used_idx++; } vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t *ids) { uint16_t flags; uint16_t i; uint16_t begin; flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter); if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].id = ids[0]; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].count = 1; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; begin = 1; } else begin = 0; vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) { vq->desc_packed[vq->last_used_idx + i].id = ids[i]; vq->desc_packed[vq->last_used_idx + i].len = 0; } rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) vq->desc_packed[vq->last_used_idx + i].flags = flags; vhost_log_cache_used_vring(dev, vq, vq->last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc) * PACKED_BATCH_SIZE); vhost_log_cache_sync(dev, vq); vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_single_packed(struct vhost_virtqueue *vq, uint16_t buf_id, uint16_t count) { uint16_t flags; flags = vq->desc_packed[vq->last_used_idx].flags; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].id = buf_id; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; } else { vq->desc_packed[vq->last_used_idx].id = buf_id; vq->desc_packed[vq->last_used_idx].len = 0; vq->desc_packed[vq->last_used_idx].flags = flags; } vq_inc_last_used_packed(vq, count); } static __rte_always_inline void vhost_shadow_dequeue_single_packed_inorder(struct vhost_virtqueue *vq, uint16_t buf_id, uint16_t count) { uint16_t flags; vq->shadow_used_packed[0].id = buf_id; flags = vq->desc_packed[vq->last_used_idx].flags; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; } vq_inc_last_used_packed(vq, count); } static __rte_always_inline void vhost_shadow_enqueue_packed(struct vhost_virtqueue *vq, uint32_t *len, uint16_t *id, uint16_t *count, uint16_t num_buffers) { uint16_t i; for (i = 0; i < num_buffers; i++) { /* enqueue shadow flush action aligned with batch num */ if (!vq->shadow_used_idx) vq->shadow_aligned_idx = vq->last_used_idx & PACKED_BATCH_MASK; vq->shadow_used_packed[vq->shadow_used_idx].id = id[i]; vq->shadow_used_packed[vq->shadow_used_idx].len = len[i]; vq->shadow_used_packed[vq->shadow_used_idx].count = count[i]; vq->shadow_aligned_idx += count[i]; vq->shadow_used_idx++; } } static __rte_always_inline void vhost_shadow_enqueue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t *len, uint16_t *id, uint16_t *count, uint16_t num_buffers) { vhost_shadow_enqueue_packed(vq, len, id, count, num_buffers); if (vq->shadow_aligned_idx >= PACKED_BATCH_SIZE) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } } /* avoid write operation when necessary, to lessen cache issues */ #define ASSIGN_UNLESS_EQUAL(var, val) do { \ if ((var) != (val)) \ (var) = (val); \ } while (0) static __rte_always_inline void virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr) { uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK; if (m_buf->ol_flags & PKT_TX_TCP_SEG) csum_l4 |= PKT_TX_TCP_CKSUM; if (csum_l4) { net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len; switch (csum_l4) { case PKT_TX_TCP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_tcp_hdr, cksum)); break; case PKT_TX_UDP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_udp_hdr, dgram_cksum)); break; case PKT_TX_SCTP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_sctp_hdr, cksum)); break; } } else { ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0); ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0); ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0); } /* IP cksum verification cannot be bypassed, then calculate here */ if (m_buf->ol_flags & PKT_TX_IP_CKSUM) { struct rte_ipv4_hdr *ipv4_hdr; ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct rte_ipv4_hdr *, m_buf->l2_len); ipv4_hdr->hdr_checksum = 0; ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } if (m_buf->ol_flags & PKT_TX_TCP_SEG) { if (m_buf->ol_flags & PKT_TX_IPV4) net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) { net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else { ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0); ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0); ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0); } } static __rte_always_inline int map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t *vec_idx, uint64_t desc_iova, uint64_t desc_len, uint8_t perm) { uint16_t vec_id = *vec_idx; while (desc_len) { uint64_t desc_addr; uint64_t desc_chunck_len = desc_len; if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; desc_addr = vhost_iova_to_vva(dev, vq, desc_iova, &desc_chunck_len, perm); if (unlikely(!desc_addr)) return -1; rte_prefetch0((void *)(uintptr_t)desc_addr); buf_vec[vec_id].buf_iova = desc_iova; buf_vec[vec_id].buf_addr = desc_addr; buf_vec[vec_id].buf_len = desc_chunck_len; desc_len -= desc_chunck_len; desc_iova += desc_chunck_len; vec_id++; } *vec_idx = vec_id; return 0; } static __rte_always_inline int fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t avail_idx, uint16_t *vec_idx, struct buf_vector *buf_vec, uint16_t *desc_chain_head, uint32_t *desc_chain_len, uint8_t perm) { uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)]; uint16_t vec_id = *vec_idx; uint32_t len = 0; uint64_t dlen; uint32_t nr_descs = vq->size; uint32_t cnt = 0; struct vring_desc *descs = vq->desc; struct vring_desc *idesc = NULL; if (unlikely(idx >= vq->size)) return -1; *desc_chain_head = idx; if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) { dlen = vq->desc[idx].len; nr_descs = dlen / sizeof(struct vring_desc); if (unlikely(nr_descs > vq->size)) return -1; descs = (struct vring_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->desc[idx].addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < vq->desc[idx].len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idesc = vhost_alloc_copy_ind_table(dev, vq, vq->desc[idx].addr, vq->desc[idx].len); if (unlikely(!idesc)) return -1; descs = idesc; } idx = 0; } while (1) { if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) { free_ind_table(idesc); return -1; } dlen = descs[idx].len; len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[idx].addr, dlen, perm))) { free_ind_table(idesc); return -1; } if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0) break; idx = descs[idx].next; } *desc_chain_len = len; *vec_idx = vec_id; if (unlikely(!!idesc)) free_ind_table(idesc); return 0; } /* * Returns -1 on fail, 0 on success */ static inline int reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t size, struct buf_vector *buf_vec, uint16_t *num_buffers, uint16_t avail_head, uint16_t *nr_vec) { uint16_t cur_idx; uint16_t vec_idx = 0; uint16_t max_tries, tries = 0; uint16_t head_idx = 0; uint32_t len = 0; *num_buffers = 0; cur_idx = vq->last_avail_idx; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { if (unlikely(cur_idx == avail_head)) return -1; /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_split(dev, vq, cur_idx, &vec_idx, buf_vec, &head_idx, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); update_shadow_used_ring_split(vq, head_idx, len); size -= len; cur_idx++; *num_buffers += 1; } *nr_vec = vec_idx; return 0; } static __rte_always_inline int fill_vec_buf_packed_indirect(struct virtio_net *dev, struct vhost_virtqueue *vq, struct vring_packed_desc *desc, uint16_t *vec_idx, struct buf_vector *buf_vec, uint32_t *len, uint8_t perm) { uint16_t i; uint32_t nr_descs; uint16_t vec_id = *vec_idx; uint64_t dlen; struct vring_packed_desc *descs, *idescs = NULL; dlen = desc->len; descs = (struct vring_packed_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < desc->len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idescs = vhost_alloc_copy_ind_table(dev, vq, desc->addr, desc->len); if (unlikely(!idescs)) return -1; descs = idescs; } nr_descs = desc->len / sizeof(struct vring_packed_desc); if (unlikely(nr_descs >= vq->size)) { free_ind_table(idescs); return -1; } for (i = 0; i < nr_descs; i++) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) { free_ind_table(idescs); return -1; } dlen = descs[i].len; *len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[i].addr, dlen, perm))) return -1; } *vec_idx = vec_id; if (unlikely(!!idescs)) free_ind_table(idescs); return 0; } static __rte_always_inline int fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t avail_idx, uint16_t *desc_count, struct buf_vector *buf_vec, uint16_t *vec_idx, uint16_t *buf_id, uint32_t *len, uint8_t perm) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t vec_id = *vec_idx; uint64_t dlen; if (avail_idx < vq->last_avail_idx) wrap_counter ^= 1; /* * Perform a load-acquire barrier in desc_is_avail to * enforce the ordering between desc flags and desc * content. */ if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter))) return -1; *desc_count = 0; *len = 0; while (1) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; if (unlikely(*desc_count >= vq->size)) return -1; *desc_count += 1; *buf_id = descs[avail_idx].id; if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) { if (unlikely(fill_vec_buf_packed_indirect(dev, vq, &descs[avail_idx], &vec_id, buf_vec, len, perm) < 0)) return -1; } else { dlen = descs[avail_idx].len; *len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[avail_idx].addr, dlen, perm))) return -1; } if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0) break; if (++avail_idx >= vq->size) { avail_idx -= vq->size; wrap_counter ^= 1; } } *vec_idx = vec_id; return 0; } static __rte_noinline void copy_vnet_hdr_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, struct virtio_net_hdr_mrg_rxbuf *hdr) { uint64_t len; uint64_t remain = dev->vhost_hlen; uint64_t src = (uint64_t)(uintptr_t)hdr, dst; uint64_t iova = buf_vec->buf_iova; while (remain) { len = RTE_MIN(remain, buf_vec->buf_len); dst = buf_vec->buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); PRINT_PACKET(dev, (uintptr_t)dst, (uint32_t)len, 0); vhost_log_cache_write_iova(dev, vq, iova, len); remain -= len; iova += len; src += len; buf_vec++; } } static __rte_always_inline int copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, struct buf_vector *buf_vec, uint16_t nr_vec, uint16_t num_buffers) { uint32_t vec_idx = 0; uint32_t mbuf_offset, mbuf_avail; uint32_t buf_offset, buf_avail; uint64_t buf_addr, buf_iova, buf_len; uint32_t cpy_len; uint64_t hdr_addr; struct rte_mbuf *hdr_mbuf; struct batch_copy_elem *batch_copy = vq->batch_copy_elems; struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL; int error = 0; if (unlikely(m == NULL)) { error = -1; goto out; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) { error = -1; goto out; } hdr_mbuf = m; hdr_addr = buf_addr; if (unlikely(buf_len < dev->vhost_hlen)) { memset(&tmp_hdr, 0, sizeof(struct virtio_net_hdr_mrg_rxbuf)); hdr = &tmp_hdr; } else hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr; VHOST_LOG_DATA(DEBUG, "(%d) RX: num merge buffers %d\n", dev->vid, num_buffers); if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_len - dev->vhost_hlen; } mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; while (mbuf_avail != 0 || m->next != NULL) { /* done with current buf, get the next one */ if (buf_avail == 0) { vec_idx++; if (unlikely(vec_idx >= nr_vec)) { error = -1; goto out; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; } /* done with current mbuf, get the next one */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } if (hdr_addr) { virtio_enqueue_offload(hdr_mbuf, &hdr->hdr); if (rxvq_is_mergeable(dev)) ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers); if (unlikely(hdr == &tmp_hdr)) { copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr); } else { PRINT_PACKET(dev, (uintptr_t)hdr_addr, dev->vhost_hlen, 0); vhost_log_cache_write_iova(dev, vq, buf_vec[0].buf_iova, dev->vhost_hlen); } hdr_addr = 0; } cpy_len = RTE_MIN(buf_avail, mbuf_avail); if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size)) { rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); vhost_log_cache_write_iova(dev, vq, buf_iova + buf_offset, cpy_len); PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), cpy_len, 0); } else { batch_copy[vq->batch_copy_nb_elems].dst = (void *)((uintptr_t)(buf_addr + buf_offset)); batch_copy[vq->batch_copy_nb_elems].src = rte_pktmbuf_mtod_offset(m, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].log_addr = buf_iova + buf_offset; batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; } out: return error; } static __rte_always_inline void async_fill_vec(struct iovec *v, void *base, size_t len) { v->iov_base = base; v->iov_len = len; } static __rte_always_inline void async_fill_iter(struct rte_vhost_iov_iter *it, size_t count, struct iovec *vec, unsigned long nr_seg) { it->offset = 0; it->count = count; if (count) { it->iov = vec; it->nr_segs = nr_seg; } else { it->iov = 0; it->nr_segs = 0; } } static __rte_always_inline void async_fill_desc(struct rte_vhost_async_desc *desc, struct rte_vhost_iov_iter *src, struct rte_vhost_iov_iter *dst) { desc->src = src; desc->dst = dst; } static __rte_always_inline int async_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, struct buf_vector *buf_vec, uint16_t nr_vec, uint16_t num_buffers, struct iovec *src_iovec, struct iovec *dst_iovec, struct rte_vhost_iov_iter *src_it, struct rte_vhost_iov_iter *dst_it) { uint32_t vec_idx = 0; uint32_t mbuf_offset, mbuf_avail; uint32_t buf_offset, buf_avail; uint64_t buf_addr, buf_iova, buf_len; uint32_t cpy_len, cpy_threshold; uint64_t hdr_addr; struct rte_mbuf *hdr_mbuf; struct batch_copy_elem *batch_copy = vq->batch_copy_elems; struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL; int error = 0; uint64_t mapped_len; uint32_t tlen = 0; int tvec_idx = 0; void *hpa; if (unlikely(m == NULL)) { error = -1; goto out; } cpy_threshold = vq->async_threshold; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) { error = -1; goto out; } hdr_mbuf = m; hdr_addr = buf_addr; if (unlikely(buf_len < dev->vhost_hlen)) { memset(&tmp_hdr, 0, sizeof(struct virtio_net_hdr_mrg_rxbuf)); hdr = &tmp_hdr; } else hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr; VHOST_LOG_DATA(DEBUG, "(%d) RX: num merge buffers %d\n", dev->vid, num_buffers); if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_len - dev->vhost_hlen; } mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; while (mbuf_avail != 0 || m->next != NULL) { /* done with current buf, get the next one */ if (buf_avail == 0) { vec_idx++; if (unlikely(vec_idx >= nr_vec)) { error = -1; goto out; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; } /* done with current mbuf, get the next one */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } if (hdr_addr) { virtio_enqueue_offload(hdr_mbuf, &hdr->hdr); if (rxvq_is_mergeable(dev)) ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers); if (unlikely(hdr == &tmp_hdr)) { copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr); } else { PRINT_PACKET(dev, (uintptr_t)hdr_addr, dev->vhost_hlen, 0); vhost_log_cache_write_iova(dev, vq, buf_vec[0].buf_iova, dev->vhost_hlen); } hdr_addr = 0; } cpy_len = RTE_MIN(buf_avail, mbuf_avail); while (unlikely(cpy_len && cpy_len >= cpy_threshold)) { hpa = (void *)(uintptr_t)gpa_to_first_hpa(dev, buf_iova + buf_offset, cpy_len, &mapped_len); if (unlikely(!hpa || mapped_len < cpy_threshold)) break; async_fill_vec(src_iovec + tvec_idx, (void *)(uintptr_t)rte_pktmbuf_iova_offset(m, mbuf_offset), (size_t)mapped_len); async_fill_vec(dst_iovec + tvec_idx, hpa, (size_t)mapped_len); tlen += (uint32_t)mapped_len; cpy_len -= (uint32_t)mapped_len; mbuf_avail -= (uint32_t)mapped_len; mbuf_offset += (uint32_t)mapped_len; buf_avail -= (uint32_t)mapped_len; buf_offset += (uint32_t)mapped_len; tvec_idx++; } if (likely(cpy_len)) { if (unlikely(vq->batch_copy_nb_elems >= vq->size)) { rte_memcpy( (void *)((uintptr_t)(buf_addr + buf_offset)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), cpy_len, 0); } else { batch_copy[vq->batch_copy_nb_elems].dst = (void *)((uintptr_t)(buf_addr + buf_offset)); batch_copy[vq->batch_copy_nb_elems].src = rte_pktmbuf_mtod_offset(m, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].log_addr = buf_iova + buf_offset; batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; } } out: if (tlen) { async_fill_iter(src_it, tlen, src_iovec, tvec_idx); async_fill_iter(dst_it, tlen, dst_iovec, tvec_idx); } else { src_it->count = 0; } return error; } static __rte_always_inline int vhost_enqueue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, struct buf_vector *buf_vec, uint16_t *nr_descs) { uint16_t nr_vec = 0; uint16_t avail_idx = vq->last_avail_idx; uint16_t max_tries, tries = 0; uint16_t buf_id = 0; uint32_t len = 0; uint16_t desc_count; uint32_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t num_buffers = 0; uint32_t buffer_len[vq->size]; uint16_t buffer_buf_id[vq->size]; uint16_t buffer_desc_count[vq->size]; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_packed(dev, vq, avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); size -= len; buffer_len[num_buffers] = len; buffer_buf_id[num_buffers] = buf_id; buffer_desc_count[num_buffers] = desc_count; num_buffers += 1; *nr_descs += desc_count; avail_idx += desc_count; if (avail_idx >= vq->size) avail_idx -= vq->size; } if (copy_mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, num_buffers) < 0) return -1; vhost_shadow_enqueue_single_packed(dev, vq, buffer_len, buffer_buf_id, buffer_desc_count, num_buffers); return 0; } static __rte_noinline uint32_t virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count) { uint32_t pkt_idx = 0; uint16_t num_buffers; struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t avail_head; /* * The ordering between avail index and * desc reads needs to be enforced. */ avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE); rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec, &num_buffers, avail_head, &nr_vec) < 0)) { VHOST_LOG_DATA(DEBUG, "(%d) failed to get enough desc from vring\n", dev->vid); vq->shadow_used_idx -= num_buffers; break; } VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers) < 0) { vq->shadow_used_idx -= num_buffers; break; } vq->last_avail_idx += num_buffers; } do_data_copy_enqueue(dev, vq); if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return pkt_idx; } static __rte_always_inline int virtio_dev_rx_sync_batch_check(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint64_t *desc_addrs, uint64_t *lens) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t avail_idx = vq->last_avail_idx; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t i; if (unlikely(avail_idx & PACKED_BATCH_MASK)) return -1; if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->next != NULL)) return -1; if (unlikely(!desc_is_avail(&descs[avail_idx + i], wrap_counter))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) lens[i] = descs[avail_idx + i].len; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->pkt_len > (lens[i] - buf_offset))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) desc_addrs[i] = vhost_iova_to_vva(dev, vq, descs[avail_idx + i].addr, &lens[i], VHOST_ACCESS_RW); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(!desc_addrs[i])) return -1; if (unlikely(lens[i] != descs[avail_idx + i].len)) return -1; } return 0; } static __rte_always_inline int virtio_dev_rx_async_batch_check(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint64_t *desc_addrs, uint64_t *lens) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t avail_idx = vq->last_avail_idx; uint16_t used_idx = vq->last_used_idx; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); uint32_t cpy_threshold = vq->async_threshold; uint16_t i; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->data_len >= cpy_threshold)) return -1; } if (unlikely(avail_idx & PACKED_BATCH_MASK)) return -1; if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; if (unlikely((used_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->next != NULL)) return -1; if (unlikely(!desc_is_avail(&descs[avail_idx + i], wrap_counter))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) lens[i] = descs[avail_idx + i].len; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->pkt_len > (lens[i] - buf_offset))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) desc_addrs[i] = vhost_iova_to_vva(dev, vq, descs[avail_idx + i].addr, &lens[i], VHOST_ACCESS_RW); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(!desc_addrs[i])) return -1; if (unlikely(lens[i] != descs[avail_idx + i].len)) return -1; } return 0; } static __rte_always_inline void virtio_dev_rx_batch_packed_copy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint64_t *desc_addrs, uint64_t *lens) { uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); struct virtio_net_hdr_mrg_rxbuf *hdrs[PACKED_BATCH_SIZE]; struct vring_packed_desc *descs = vq->desc_packed; uint16_t avail_idx = vq->last_avail_idx; uint16_t ids[PACKED_BATCH_SIZE]; uint16_t i; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { rte_prefetch0((void *)(uintptr_t)desc_addrs[i]); hdrs[i] = (struct virtio_net_hdr_mrg_rxbuf *) (uintptr_t)desc_addrs[i]; lens[i] = pkts[i]->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) virtio_enqueue_offload(pkts[i], &hdrs[i]->hdr); vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { rte_memcpy((void *)(uintptr_t)(desc_addrs[i] + buf_offset), rte_pktmbuf_mtod_offset(pkts[i], void *, 0), pkts[i]->pkt_len); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) vhost_log_cache_write_iova(dev, vq, descs[avail_idx + i].addr, lens[i]); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) ids[i] = descs[avail_idx + i].id; vhost_flush_enqueue_batch_packed(dev, vq, lens, ids); } static __rte_always_inline int virtio_dev_rx_sync_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts) { uint64_t desc_addrs[PACKED_BATCH_SIZE]; uint64_t lens[PACKED_BATCH_SIZE]; if (virtio_dev_rx_sync_batch_check(dev, vq, pkts, desc_addrs, lens) == -1) return -1; if (vq->shadow_used_idx) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } virtio_dev_rx_batch_packed_copy(dev, vq, pkts, desc_addrs, lens); return 0; } static __rte_always_inline int virtio_dev_rx_async_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, struct rte_mbuf **comp_pkts, uint32_t *pkt_done) { uint16_t i; uint64_t desc_addrs[PACKED_BATCH_SIZE]; uint64_t lens[PACKED_BATCH_SIZE]; if (virtio_dev_rx_async_batch_check(dev, vq, pkts, desc_addrs, lens) == -1) return -1; virtio_dev_rx_batch_packed_copy(dev, vq, pkts, desc_addrs, lens); if (vq->shadow_used_idx) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) comp_pkts[(*pkt_done)++] = pkts[i]; return 0; } static __rte_always_inline int16_t virtio_dev_rx_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t nr_descs = 0; if (unlikely(vhost_enqueue_single_packed(dev, vq, pkt, buf_vec, &nr_descs) < 0)) { VHOST_LOG_DATA(DEBUG, "(%d) failed to get enough desc from vring\n", dev->vid); return -1; } VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + nr_descs); vq_inc_last_avail_packed(vq, nr_descs); return 0; } static __rte_noinline uint32_t virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { uint32_t pkt_idx = 0; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (count - pkt_idx >= PACKED_BATCH_SIZE) { if (!virtio_dev_rx_sync_batch_packed(dev, vq, &pkts[pkt_idx])) { pkt_idx += PACKED_BATCH_SIZE; continue; } } if (virtio_dev_rx_single_packed(dev, vq, pkts[pkt_idx])) break; pkt_idx++; } while (pkt_idx < count); if (vq->shadow_used_idx) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } if (pkt_idx) vhost_vring_call_packed(dev, vq); return pkt_idx; } static __rte_always_inline uint32_t virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; uint32_t nb_tx = 0; VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled)) goto out_access_unlock; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) goto out; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) goto out; if (vq_is_packed(dev)) nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count); else nb_tx = virtio_dev_rx_split(dev, vq, pkts, count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return nb_tx; } uint16_t rte_vhost_enqueue_burst(int vid, uint16_t queue_id, struct rte_mbuf **__rte_restrict pkts, uint16_t count) { struct virtio_net *dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(ERR, "(%d) %s: built-in vhost net backend is disabled.\n", dev->vid, __func__); return 0; } return virtio_dev_rx(dev, queue_id, pkts, count); } static __rte_always_inline uint16_t virtio_dev_rx_async_get_info_idx(uint16_t pkts_idx, uint16_t vq_size, uint16_t n_inflight) { return pkts_idx > n_inflight ? (pkts_idx - n_inflight) : (vq_size - n_inflight + pkts_idx) % vq_size; } static __rte_always_inline void store_dma_desc_info_split(struct vring_used_elem *s_ring, struct vring_used_elem *d_ring, uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count) { size_t elem_size = sizeof(struct vring_used_elem); if (d_idx + count <= ring_size) { rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size); } else { uint16_t size = ring_size - d_idx; rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size); rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size); } } static __rte_always_inline void store_dma_desc_info_packed(struct vring_used_elem_packed *s_ring, struct vring_used_elem_packed *d_ring, uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count) { size_t elem_size = sizeof(struct vring_used_elem_packed); if (d_idx + count <= ring_size) { rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size); } else { uint16_t size = ring_size - d_idx; rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size); rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size); } } static __rte_noinline uint32_t virtio_dev_rx_async_submit_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count, struct rte_mbuf **comp_pkts, uint32_t *comp_count) { uint32_t pkt_idx = 0, pkt_burst_idx = 0; uint16_t num_buffers; struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t avail_head; struct rte_vhost_iov_iter *it_pool = vq->it_pool; struct iovec *vec_pool = vq->vec_pool; struct rte_vhost_async_desc tdes[MAX_PKT_BURST]; struct iovec *src_iovec = vec_pool; struct iovec *dst_iovec = vec_pool + (VHOST_MAX_ASYNC_VEC >> 1); uint16_t slot_idx = 0; uint16_t segs_await = 0; uint16_t iovec_idx = 0, it_idx = 0; struct async_inflight_info *pkts_info = vq->async_pkts_info; uint32_t n_pkts = 0, pkt_err = 0; uint32_t num_async_pkts = 0, num_done_pkts = 0; struct { uint16_t pkt_idx; uint16_t last_avail_idx; } async_pkts_log[MAX_PKT_BURST]; /* * The ordering between avail index and desc reads need to be enforced. */ avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE); rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec, &num_buffers, avail_head, &nr_vec) < 0)) { VHOST_LOG_DATA(DEBUG, "(%d) failed to get enough desc from vring\n", dev->vid); vq->shadow_used_idx -= num_buffers; break; } VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (async_mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers, &src_iovec[iovec_idx], &dst_iovec[iovec_idx], &it_pool[it_idx], &it_pool[it_idx + 1]) < 0) { vq->shadow_used_idx -= num_buffers; break; } slot_idx = (vq->async_pkts_idx + num_async_pkts) & (vq->size - 1); if (it_pool[it_idx].count) { uint16_t from, to; async_fill_desc(&tdes[pkt_burst_idx++], &it_pool[it_idx], &it_pool[it_idx + 1]); pkts_info[slot_idx].descs = num_buffers; pkts_info[slot_idx].mbuf = pkts[pkt_idx]; async_pkts_log[num_async_pkts].pkt_idx = pkt_idx; async_pkts_log[num_async_pkts++].last_avail_idx = vq->last_avail_idx; iovec_idx += it_pool[it_idx].nr_segs; it_idx += 2; segs_await += it_pool[it_idx].nr_segs; /** * recover shadow used ring and keep DMA-occupied * descriptors. */ from = vq->shadow_used_idx - num_buffers; to = vq->async_desc_idx_split & (vq->size - 1); store_dma_desc_info_split(vq->shadow_used_split, vq->async_descs_split, vq->size, from, to, num_buffers); vq->async_desc_idx_split += num_buffers; vq->shadow_used_idx -= num_buffers; } else comp_pkts[num_done_pkts++] = pkts[pkt_idx]; vq->last_avail_idx += num_buffers; /* * conditions to trigger async device transfer: * - buffered packet number reaches transfer threshold * - unused async iov number is less than max vhost vector */ if (unlikely(pkt_burst_idx >= VHOST_ASYNC_BATCH_THRESHOLD || ((VHOST_MAX_ASYNC_VEC >> 1) - segs_await < BUF_VECTOR_MAX))) { n_pkts = vq->async_ops.transfer_data(dev->vid, queue_id, tdes, 0, pkt_burst_idx); iovec_idx = 0; it_idx = 0; segs_await = 0; vq->async_pkts_inflight_n += n_pkts; if (unlikely(n_pkts < pkt_burst_idx)) { /* * log error packets number here and do actual * error processing when applications poll * completion */ pkt_err = pkt_burst_idx - n_pkts; pkt_burst_idx = 0; break; } pkt_burst_idx = 0; } } if (pkt_burst_idx) { n_pkts = vq->async_ops.transfer_data(dev->vid, queue_id, tdes, 0, pkt_burst_idx); vq->async_pkts_inflight_n += n_pkts; if (unlikely(n_pkts < pkt_burst_idx)) pkt_err = pkt_burst_idx - n_pkts; } do_data_copy_enqueue(dev, vq); if (unlikely(pkt_err)) { uint16_t num_descs = 0; num_async_pkts -= pkt_err; /* calculate the sum of descriptors of DMA-error packets. */ while (pkt_err-- > 0) { num_descs += pkts_info[slot_idx & (vq->size - 1)].descs; slot_idx--; } vq->async_desc_idx_split -= num_descs; /* recover shadow used ring and available ring */ vq->shadow_used_idx -= (vq->last_avail_idx - async_pkts_log[num_async_pkts].last_avail_idx - num_descs); vq->last_avail_idx = async_pkts_log[num_async_pkts].last_avail_idx; pkt_idx = async_pkts_log[num_async_pkts].pkt_idx; num_done_pkts = pkt_idx - num_async_pkts; } vq->async_pkts_idx += num_async_pkts; *comp_count = num_done_pkts; if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return pkt_idx; } static __rte_always_inline void vhost_update_used_packed(struct vhost_virtqueue *vq, struct vring_used_elem_packed *shadow_ring, uint16_t count) { int i; uint16_t used_idx = vq->last_used_idx; uint16_t head_idx = vq->last_used_idx; uint16_t head_flags = 0; if (count == 0) return; /* Split loop in two to save memory barriers */ for (i = 0; i < count; i++) { vq->desc_packed[used_idx].id = shadow_ring[i].id; vq->desc_packed[used_idx].len = shadow_ring[i].len; used_idx += shadow_ring[i].count; if (used_idx >= vq->size) used_idx -= vq->size; } /* The ordering for storing desc flags needs to be enforced. */ rte_atomic_thread_fence(__ATOMIC_RELEASE); for (i = 0; i < count; i++) { uint16_t flags; if (vq->shadow_used_packed[i].len) flags = VRING_DESC_F_WRITE; else flags = 0; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (i > 0) { vq->desc_packed[vq->last_used_idx].flags = flags; } else { head_idx = vq->last_used_idx; head_flags = flags; } vq_inc_last_used_packed(vq, shadow_ring[i].count); } vq->desc_packed[head_idx].flags = head_flags; } static __rte_always_inline int vhost_enqueue_async_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, struct buf_vector *buf_vec, uint16_t *nr_descs, uint16_t *nr_buffers, struct vring_packed_desc *async_descs, struct iovec *src_iovec, struct iovec *dst_iovec, struct rte_vhost_iov_iter *src_it, struct rte_vhost_iov_iter *dst_it) { uint16_t nr_vec = 0; uint16_t avail_idx = vq->last_avail_idx; uint16_t max_tries, tries = 0; uint16_t buf_id = 0; uint32_t len = 0; uint16_t desc_count = 0; uint32_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); uint32_t buffer_len[vq->size]; uint16_t buffer_buf_id[vq->size]; uint16_t buffer_desc_count[vq->size]; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_packed(dev, vq, avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); size -= len; buffer_len[*nr_buffers] = len; buffer_buf_id[*nr_buffers] = buf_id; buffer_desc_count[*nr_buffers] = desc_count; *nr_buffers += 1; *nr_descs += desc_count; avail_idx += desc_count; if (avail_idx >= vq->size) avail_idx -= vq->size; } if (async_mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, *nr_buffers, src_iovec, dst_iovec, src_it, dst_it) < 0) return -1; /* store descriptors for DMA */ if (avail_idx >= *nr_descs) { rte_memcpy(async_descs, &vq->desc_packed[vq->last_avail_idx], *nr_descs * sizeof(struct vring_packed_desc)); } else { uint16_t nr_copy = vq->size - vq->last_avail_idx; rte_memcpy(async_descs, &vq->desc_packed[vq->last_avail_idx], nr_copy * sizeof(struct vring_packed_desc)); rte_memcpy(async_descs + nr_copy, vq->desc_packed, (*nr_descs - nr_copy) * sizeof(struct vring_packed_desc)); } vhost_shadow_enqueue_packed(vq, buffer_len, buffer_buf_id, buffer_desc_count, *nr_buffers); return 0; } static __rte_always_inline int16_t virtio_dev_rx_async_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, uint16_t *nr_descs, uint16_t *nr_buffers, struct vring_packed_desc *async_descs, struct iovec *src_iovec, struct iovec *dst_iovec, struct rte_vhost_iov_iter *src_it, struct rte_vhost_iov_iter *dst_it) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; if (unlikely(vhost_enqueue_async_single_packed(dev, vq, pkt, buf_vec, nr_descs, nr_buffers, async_descs, src_iovec, dst_iovec, src_it, dst_it) < 0)) { VHOST_LOG_DATA(DEBUG, "(%d) failed to get enough desc from vring\n", dev->vid); return -1; } VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + *nr_descs); return 0; } static __rte_always_inline void dma_error_handler_packed(struct vhost_virtqueue *vq, struct vring_packed_desc *async_descs, uint16_t async_descs_idx, uint16_t slot_idx, uint32_t nr_err, uint32_t *pkt_idx, uint32_t *num_async_pkts, uint32_t *num_done_pkts) { uint16_t descs_err = 0; uint16_t buffers_err = 0; struct async_inflight_info *pkts_info = vq->async_pkts_info; *num_async_pkts -= nr_err; *pkt_idx -= nr_err; /* calculate the sum of buffers and descs of DMA-error packets. */ while (nr_err-- > 0) { descs_err += pkts_info[slot_idx % vq->size].descs; buffers_err += pkts_info[slot_idx % vq->size].nr_buffers; slot_idx--; } vq->async_buffer_idx_packed -= buffers_err; if (vq->last_avail_idx >= descs_err) { vq->last_avail_idx -= descs_err; rte_memcpy(&vq->desc_packed[vq->last_avail_idx], &async_descs[async_descs_idx - descs_err], descs_err * sizeof(struct vring_packed_desc)); } else { uint16_t nr_copy; vq->last_avail_idx = vq->last_avail_idx + vq->size - descs_err; nr_copy = vq->size - vq->last_avail_idx; rte_memcpy(&vq->desc_packed[vq->last_avail_idx], &async_descs[async_descs_idx - descs_err], nr_copy * sizeof(struct vring_packed_desc)); descs_err -= nr_copy; rte_memcpy(&vq->desc_packed[0], &async_descs[async_descs_idx - descs_err], descs_err * sizeof(struct vring_packed_desc)); vq->avail_wrap_counter ^= 1; } *num_done_pkts = *pkt_idx - *num_async_pkts; } static __rte_noinline uint32_t virtio_dev_rx_async_submit_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count, struct rte_mbuf **comp_pkts, uint32_t *comp_count) { uint32_t pkt_idx = 0, pkt_burst_idx = 0; uint32_t remained = count; uint16_t async_descs_idx = 0; uint16_t num_buffers; uint16_t num_descs; struct rte_vhost_iov_iter *it_pool = vq->it_pool; struct iovec *vec_pool = vq->vec_pool; struct rte_vhost_async_desc tdes[MAX_PKT_BURST]; struct iovec *src_iovec = vec_pool; struct iovec *dst_iovec = vec_pool + (VHOST_MAX_ASYNC_VEC >> 1); uint16_t slot_idx = 0; uint16_t segs_await = 0; uint16_t iovec_idx = 0, it_idx = 0; struct async_inflight_info *pkts_info = vq->async_pkts_info; uint32_t n_pkts = 0, pkt_err = 0; uint32_t num_async_pkts = 0, num_done_pkts = 0; struct vring_packed_desc async_descs[vq->size]; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (remained >= PACKED_BATCH_SIZE) { if (!virtio_dev_rx_async_batch_packed(dev, vq, &pkts[pkt_idx], comp_pkts, &num_done_pkts)) { pkt_idx += PACKED_BATCH_SIZE; remained -= PACKED_BATCH_SIZE; continue; } } num_buffers = 0; num_descs = 0; if (unlikely(virtio_dev_rx_async_single_packed(dev, vq, pkts[pkt_idx], &num_descs, &num_buffers, &async_descs[async_descs_idx], &src_iovec[iovec_idx], &dst_iovec[iovec_idx], &it_pool[it_idx], &it_pool[it_idx + 1]) < 0)) break; VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + num_descs); slot_idx = (vq->async_pkts_idx + num_async_pkts) % vq->size; if (it_pool[it_idx].count) { uint16_t from; async_descs_idx += num_descs; async_fill_desc(&tdes[pkt_burst_idx++], &it_pool[it_idx], &it_pool[it_idx + 1]); pkts_info[slot_idx].descs = num_descs; pkts_info[slot_idx].nr_buffers = num_buffers; pkts_info[slot_idx].mbuf = pkts[pkt_idx]; num_async_pkts++; iovec_idx += it_pool[it_idx].nr_segs; it_idx += 2; segs_await += it_pool[it_idx].nr_segs; /** * recover shadow used ring and keep DMA-occupied * descriptors. */ from = vq->shadow_used_idx - num_buffers; store_dma_desc_info_packed(vq->shadow_used_packed, vq->async_buffers_packed, vq->size, from, vq->async_buffer_idx_packed, num_buffers); vq->async_buffer_idx_packed += num_buffers; if (vq->async_buffer_idx_packed >= vq->size) vq->async_buffer_idx_packed -= vq->size; vq->shadow_used_idx -= num_buffers; } else { comp_pkts[num_done_pkts++] = pkts[pkt_idx]; } pkt_idx++; remained--; vq_inc_last_avail_packed(vq, num_descs); /* * conditions to trigger async device transfer: * - buffered packet number reaches transfer threshold * - unused async iov number is less than max vhost vector */ if (unlikely(pkt_burst_idx >= VHOST_ASYNC_BATCH_THRESHOLD || ((VHOST_MAX_ASYNC_VEC >> 1) - segs_await < BUF_VECTOR_MAX))) { n_pkts = vq->async_ops.transfer_data(dev->vid, queue_id, tdes, 0, pkt_burst_idx); iovec_idx = 0; it_idx = 0; segs_await = 0; vq->async_pkts_inflight_n += n_pkts; if (unlikely(n_pkts < pkt_burst_idx)) { /* * log error packets number here and do actual * error processing when applications poll * completion */ pkt_err = pkt_burst_idx - n_pkts; pkt_burst_idx = 0; break; } pkt_burst_idx = 0; } } while (pkt_idx < count); if (pkt_burst_idx) { n_pkts = vq->async_ops.transfer_data(dev->vid, queue_id, tdes, 0, pkt_burst_idx); vq->async_pkts_inflight_n += n_pkts; if (unlikely(n_pkts < pkt_burst_idx)) pkt_err = pkt_burst_idx - n_pkts; } do_data_copy_enqueue(dev, vq); if (unlikely(pkt_err)) dma_error_handler_packed(vq, async_descs, async_descs_idx, slot_idx, pkt_err, &pkt_idx, &num_async_pkts, &num_done_pkts); vq->async_pkts_idx += num_async_pkts; if (vq->async_pkts_idx >= vq->size) vq->async_pkts_idx -= vq->size; *comp_count = num_done_pkts; if (likely(vq->shadow_used_idx)) { vhost_flush_enqueue_shadow_packed(dev, vq); vhost_vring_call_packed(dev, vq); } return pkt_idx; } static __rte_always_inline void write_back_completed_descs_split(struct vhost_virtqueue *vq, uint16_t n_descs) { uint16_t nr_left = n_descs; uint16_t nr_copy; uint16_t to, from; do { from = vq->last_async_desc_idx_split & (vq->size - 1); nr_copy = nr_left + from <= vq->size ? nr_left : vq->size - from; to = vq->last_used_idx & (vq->size - 1); if (to + nr_copy <= vq->size) { rte_memcpy(&vq->used->ring[to], &vq->async_descs_split[from], nr_copy * sizeof(struct vring_used_elem)); } else { uint16_t size = vq->size - to; rte_memcpy(&vq->used->ring[to], &vq->async_descs_split[from], size * sizeof(struct vring_used_elem)); rte_memcpy(&vq->used->ring[0], &vq->async_descs_split[from + size], (nr_copy - size) * sizeof(struct vring_used_elem)); } vq->last_async_desc_idx_split += nr_copy; vq->last_used_idx += nr_copy; nr_left -= nr_copy; } while (nr_left > 0); } static __rte_always_inline void write_back_completed_descs_packed(struct vhost_virtqueue *vq, uint16_t n_buffers) { uint16_t nr_left = n_buffers; uint16_t from, to; do { from = vq->last_async_buffer_idx_packed; to = (from + nr_left) % vq->size; if (to > from) { vhost_update_used_packed(vq, vq->async_buffers_packed + from, to - from); vq->last_async_buffer_idx_packed += nr_left; nr_left = 0; } else { vhost_update_used_packed(vq, vq->async_buffers_packed + from, vq->size - from); vq->last_async_buffer_idx_packed = 0; nr_left -= vq->size - from; } } while (nr_left > 0); } uint16_t rte_vhost_poll_enqueue_completed(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count) { struct virtio_net *dev = get_device(vid); struct vhost_virtqueue *vq; uint16_t n_pkts_cpl = 0, n_pkts_put = 0, n_descs = 0, n_buffers = 0; uint16_t start_idx, pkts_idx, vq_size; struct async_inflight_info *pkts_info; uint16_t from, i; if (!dev) return 0; VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(!vq->async_registered)) { VHOST_LOG_DATA(ERR, "(%d) %s: async not registered for queue id %d.\n", dev->vid, __func__, queue_id); return 0; } rte_spinlock_lock(&vq->access_lock); pkts_idx = vq->async_pkts_idx % vq->size; pkts_info = vq->async_pkts_info; vq_size = vq->size; start_idx = virtio_dev_rx_async_get_info_idx(pkts_idx, vq_size, vq->async_pkts_inflight_n); if (count > vq->async_last_pkts_n) n_pkts_cpl = vq->async_ops.check_completed_copies(vid, queue_id, 0, count - vq->async_last_pkts_n); n_pkts_cpl += vq->async_last_pkts_n; n_pkts_put = RTE_MIN(count, n_pkts_cpl); if (unlikely(n_pkts_put == 0)) { vq->async_last_pkts_n = n_pkts_cpl; goto done; } if (vq_is_packed(dev)) { for (i = 0; i < n_pkts_put; i++) { from = (start_idx + i) % vq_size; n_buffers += pkts_info[from].nr_buffers; pkts[i] = pkts_info[from].mbuf; } } else { for (i = 0; i < n_pkts_put; i++) { from = (start_idx + i) & (vq_size - 1); n_descs += pkts_info[from].descs; pkts[i] = pkts_info[from].mbuf; } } vq->async_last_pkts_n = n_pkts_cpl - n_pkts_put; vq->async_pkts_inflight_n -= n_pkts_put; if (likely(vq->enabled && vq->access_ok)) { if (vq_is_packed(dev)) { write_back_completed_descs_packed(vq, n_buffers); vhost_vring_call_packed(dev, vq); } else { write_back_completed_descs_split(vq, n_descs); __atomic_add_fetch(&vq->used->idx, n_descs, __ATOMIC_RELEASE); vhost_vring_call_split(dev, vq); } } else { if (vq_is_packed(dev)) { vq->last_async_buffer_idx_packed += n_buffers; if (vq->last_async_buffer_idx_packed >= vq->size) vq->last_async_buffer_idx_packed -= vq->size; } else { vq->last_async_desc_idx_split += n_descs; } } done: rte_spinlock_unlock(&vq->access_lock); return n_pkts_put; } static __rte_always_inline uint32_t virtio_dev_rx_async_submit(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count, struct rte_mbuf **comp_pkts, uint32_t *comp_count) { struct vhost_virtqueue *vq; uint32_t nb_tx = 0; VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled || !vq->async_registered)) goto out_access_unlock; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) goto out; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) goto out; if (vq_is_packed(dev)) nb_tx = virtio_dev_rx_async_submit_packed(dev, vq, queue_id, pkts, count, comp_pkts, comp_count); else nb_tx = virtio_dev_rx_async_submit_split(dev, vq, queue_id, pkts, count, comp_pkts, comp_count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return nb_tx; } uint16_t rte_vhost_submit_enqueue_burst(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count, struct rte_mbuf **comp_pkts, uint32_t *comp_count) { struct virtio_net *dev = get_device(vid); *comp_count = 0; if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(ERR, "(%d) %s: built-in vhost net backend is disabled.\n", dev->vid, __func__); return 0; } return virtio_dev_rx_async_submit(dev, queue_id, pkts, count, comp_pkts, comp_count); } static inline bool virtio_net_with_host_offload(struct virtio_net *dev) { if (dev->features & ((1ULL << VIRTIO_NET_F_CSUM) | (1ULL << VIRTIO_NET_F_HOST_ECN) | (1ULL << VIRTIO_NET_F_HOST_TSO4) | (1ULL << VIRTIO_NET_F_HOST_TSO6) | (1ULL << VIRTIO_NET_F_HOST_UFO))) return true; return false; } static int parse_headers(struct rte_mbuf *m, uint8_t *l4_proto) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_ether_hdr *eth_hdr; uint16_t ethertype; uint16_t data_len = rte_pktmbuf_data_len(m); if (data_len < sizeof(struct rte_ether_hdr)) return -EINVAL; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); m->l2_len = sizeof(struct rte_ether_hdr); ethertype = rte_be_to_cpu_16(eth_hdr->ether_type); if (ethertype == RTE_ETHER_TYPE_VLAN) { if (data_len < sizeof(struct rte_ether_hdr) + sizeof(struct rte_vlan_hdr)) goto error; struct rte_vlan_hdr *vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1); m->l2_len += sizeof(struct rte_vlan_hdr); ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto); } switch (ethertype) { case RTE_ETHER_TYPE_IPV4: if (data_len < m->l2_len + sizeof(struct rte_ipv4_hdr)) goto error; ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, m->l2_len); m->l3_len = rte_ipv4_hdr_len(ipv4_hdr); if (data_len < m->l2_len + m->l3_len) goto error; m->ol_flags |= PKT_TX_IPV4; *l4_proto = ipv4_hdr->next_proto_id; break; case RTE_ETHER_TYPE_IPV6: if (data_len < m->l2_len + sizeof(struct rte_ipv6_hdr)) goto error; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, m->l2_len); m->l3_len = sizeof(struct rte_ipv6_hdr); m->ol_flags |= PKT_TX_IPV6; *l4_proto = ipv6_hdr->proto; break; default: /* a valid L3 header is needed for further L4 parsing */ goto error; } /* both CSUM and GSO need a valid L4 header */ switch (*l4_proto) { case IPPROTO_TCP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_tcp_hdr)) goto error; break; case IPPROTO_UDP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_udp_hdr)) goto error; break; case IPPROTO_SCTP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_sctp_hdr)) goto error; break; default: goto error; } return 0; error: m->l2_len = 0; m->l3_len = 0; m->ol_flags = 0; return -EINVAL; } static __rte_always_inline void vhost_dequeue_offload_legacy(struct virtio_net_hdr *hdr, struct rte_mbuf *m) { uint8_t l4_proto = 0; struct rte_tcp_hdr *tcp_hdr = NULL; uint16_t tcp_len; uint16_t data_len = rte_pktmbuf_data_len(m); if (parse_headers(m, &l4_proto) < 0) return; if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) { if (hdr->csum_start == (m->l2_len + m->l3_len)) { switch (hdr->csum_offset) { case (offsetof(struct rte_tcp_hdr, cksum)): if (l4_proto != IPPROTO_TCP) goto error; m->ol_flags |= PKT_TX_TCP_CKSUM; break; case (offsetof(struct rte_udp_hdr, dgram_cksum)): if (l4_proto != IPPROTO_UDP) goto error; m->ol_flags |= PKT_TX_UDP_CKSUM; break; case (offsetof(struct rte_sctp_hdr, cksum)): if (l4_proto != IPPROTO_SCTP) goto error; m->ol_flags |= PKT_TX_SCTP_CKSUM; break; default: goto error; } } else { goto error; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: if (l4_proto != IPPROTO_TCP) goto error; tcp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_tcp_hdr *, m->l2_len + m->l3_len); tcp_len = (tcp_hdr->data_off & 0xf0) >> 2; if (data_len < m->l2_len + m->l3_len + tcp_len) goto error; m->ol_flags |= PKT_TX_TCP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = tcp_len; break; case VIRTIO_NET_HDR_GSO_UDP: if (l4_proto != IPPROTO_UDP) goto error; m->ol_flags |= PKT_TX_UDP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = sizeof(struct rte_udp_hdr); break; default: VHOST_LOG_DATA(WARNING, "unsupported gso type %u.\n", hdr->gso_type); goto error; } } return; error: m->l2_len = 0; m->l3_len = 0; m->ol_flags = 0; } static __rte_always_inline void vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m, bool legacy_ol_flags) { struct rte_net_hdr_lens hdr_lens; int l4_supported = 0; uint32_t ptype; if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE) return; if (legacy_ol_flags) { vhost_dequeue_offload_legacy(hdr, m); return; } m->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN; ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK); m->packet_type = ptype; if ((ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP || (ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP || (ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_SCTP) l4_supported = 1; /* According to Virtio 1.1 spec, the device only needs to look at * VIRTIO_NET_HDR_F_NEEDS_CSUM in the packet transmission path. * This differs from the processing incoming packets path where the * driver could rely on VIRTIO_NET_HDR_F_DATA_VALID flag set by the * device. * * 5.1.6.2.1 Driver Requirements: Packet Transmission * The driver MUST NOT set the VIRTIO_NET_HDR_F_DATA_VALID and * VIRTIO_NET_HDR_F_RSC_INFO bits in flags. * * 5.1.6.2.2 Device Requirements: Packet Transmission * The device MUST ignore flag bits that it does not recognize. */ if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { uint32_t hdrlen; hdrlen = hdr_lens.l2_len + hdr_lens.l3_len + hdr_lens.l4_len; if (hdr->csum_start <= hdrlen && l4_supported != 0) { m->ol_flags |= PKT_RX_L4_CKSUM_NONE; } else { /* Unknown proto or tunnel, do sw cksum. We can assume * the cksum field is in the first segment since the * buffers we provided to the host are large enough. * In case of SCTP, this will be wrong since it's a CRC * but there's nothing we can do. */ uint16_t csum = 0, off; if (rte_raw_cksum_mbuf(m, hdr->csum_start, rte_pktmbuf_pkt_len(m) - hdr->csum_start, &csum) < 0) return; if (likely(csum != 0xffff)) csum = ~csum; off = hdr->csum_offset + hdr->csum_start; if (rte_pktmbuf_data_len(m) >= off + 1) *rte_pktmbuf_mtod_offset(m, uint16_t *, off) = csum; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { if (hdr->gso_size == 0) return; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_TCP) break; m->ol_flags |= PKT_RX_LRO | PKT_RX_L4_CKSUM_NONE; m->tso_segsz = hdr->gso_size; break; case VIRTIO_NET_HDR_GSO_UDP: if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_UDP) break; m->ol_flags |= PKT_RX_LRO | PKT_RX_L4_CKSUM_NONE; m->tso_segsz = hdr->gso_size; break; default: break; } } } static __rte_noinline void copy_vnet_hdr_from_desc(struct virtio_net_hdr *hdr, struct buf_vector *buf_vec) { uint64_t len; uint64_t remain = sizeof(struct virtio_net_hdr); uint64_t src; uint64_t dst = (uint64_t)(uintptr_t)hdr; while (remain) { len = RTE_MIN(remain, buf_vec->buf_len); src = buf_vec->buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); remain -= len; dst += len; buf_vec++; } } static __rte_always_inline int copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t nr_vec, struct rte_mbuf *m, struct rte_mempool *mbuf_pool, bool legacy_ol_flags) { uint32_t buf_avail, buf_offset; uint64_t buf_addr, buf_len; uint32_t mbuf_avail, mbuf_offset; uint32_t cpy_len; struct rte_mbuf *cur = m, *prev = m; struct virtio_net_hdr tmp_hdr; struct virtio_net_hdr *hdr = NULL; /* A counter to avoid desc dead loop chain */ uint16_t vec_idx = 0; struct batch_copy_elem *batch_copy = vq->batch_copy_elems; int error = 0; buf_addr = buf_vec[vec_idx].buf_addr; buf_len = buf_vec[vec_idx].buf_len; if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) { error = -1; goto out; } if (virtio_net_with_host_offload(dev)) { if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) { /* * No luck, the virtio-net header doesn't fit * in a contiguous virtual area. */ copy_vnet_hdr_from_desc(&tmp_hdr, buf_vec); hdr = &tmp_hdr; } else { hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr); } } /* * A virtio driver normally uses at least 2 desc buffers * for Tx: the first for storing the header, and others * for storing the data. */ if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else if (buf_len == dev->vhost_hlen) { if (unlikely(++vec_idx >= nr_vec)) goto out; buf_addr = buf_vec[vec_idx].buf_addr; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen; } PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), (uint32_t)buf_avail, 0); mbuf_offset = 0; mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM; while (1) { cpy_len = RTE_MIN(buf_avail, mbuf_avail); if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size || (hdr && cur == m))) { rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset), (void *)((uintptr_t)(buf_addr + buf_offset)), cpy_len); } else { batch_copy[vq->batch_copy_nb_elems].dst = rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].src = (void *)((uintptr_t)(buf_addr + buf_offset)); batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; /* This buf reaches to its end, get the next one */ if (buf_avail == 0) { if (++vec_idx >= nr_vec) break; buf_addr = buf_vec[vec_idx].buf_addr; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; PRINT_PACKET(dev, (uintptr_t)buf_addr, (uint32_t)buf_avail, 0); } /* * This mbuf reaches to its end, get a new one * to hold more data. */ if (mbuf_avail == 0) { cur = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(cur == NULL)) { VHOST_LOG_DATA(ERR, "Failed to " "allocate memory for mbuf.\n"); error = -1; goto out; } prev->next = cur; prev->data_len = mbuf_offset; m->nb_segs += 1; m->pkt_len += mbuf_offset; prev = cur; mbuf_offset = 0; mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM; } } prev->data_len = mbuf_offset; m->pkt_len += mbuf_offset; if (hdr) vhost_dequeue_offload(hdr, m, legacy_ol_flags); out: return error; } static void virtio_dev_extbuf_free(void *addr __rte_unused, void *opaque) { rte_free(opaque); } static int virtio_dev_extbuf_alloc(struct rte_mbuf *pkt, uint32_t size) { struct rte_mbuf_ext_shared_info *shinfo = NULL; uint32_t total_len = RTE_PKTMBUF_HEADROOM + size; uint16_t buf_len; rte_iova_t iova; void *buf; total_len += sizeof(*shinfo) + sizeof(uintptr_t); total_len = RTE_ALIGN_CEIL(total_len, sizeof(uintptr_t)); if (unlikely(total_len > UINT16_MAX)) return -ENOSPC; buf_len = total_len; buf = rte_malloc(NULL, buf_len, RTE_CACHE_LINE_SIZE); if (unlikely(buf == NULL)) return -ENOMEM; /* Initialize shinfo */ shinfo = rte_pktmbuf_ext_shinfo_init_helper(buf, &buf_len, virtio_dev_extbuf_free, buf); if (unlikely(shinfo == NULL)) { rte_free(buf); VHOST_LOG_DATA(ERR, "Failed to init shinfo\n"); return -1; } iova = rte_malloc_virt2iova(buf); rte_pktmbuf_attach_extbuf(pkt, buf, iova, buf_len, shinfo); rte_pktmbuf_reset_headroom(pkt); return 0; } /* * Prepare a host supported pktmbuf. */ static __rte_always_inline int virtio_dev_pktmbuf_prep(struct virtio_net *dev, struct rte_mbuf *pkt, uint32_t data_len) { if (rte_pktmbuf_tailroom(pkt) >= data_len) return 0; /* attach an external buffer if supported */ if (dev->extbuf && !virtio_dev_extbuf_alloc(pkt, data_len)) return 0; /* check if chained buffers are allowed */ if (!dev->linearbuf) return 0; return -1; } __rte_always_inline static uint16_t virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, bool legacy_ol_flags) { uint16_t i; uint16_t free_entries; uint16_t dropped = 0; static bool allocerr_warned; /* * The ordering between avail index and * desc reads needs to be enforced. */ free_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) - vq->last_avail_idx; if (free_entries == 0) return 0; rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__); count = RTE_MIN(count, MAX_PKT_BURST); count = RTE_MIN(count, free_entries); VHOST_LOG_DATA(DEBUG, "(%d) about to dequeue %u buffers\n", dev->vid, count); if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count)) return 0; for (i = 0; i < count; i++) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t head_idx; uint32_t buf_len; uint16_t nr_vec = 0; int err; if (unlikely(fill_vec_buf_split(dev, vq, vq->last_avail_idx + i, &nr_vec, buf_vec, &head_idx, &buf_len, VHOST_ACCESS_RO) < 0)) break; update_shadow_used_ring_split(vq, head_idx, 0); err = virtio_dev_pktmbuf_prep(dev, pkts[i], buf_len); if (unlikely(err)) { /* * mbuf allocation fails for jumbo packets when external * buffer allocation is not allowed and linear buffer * is required. Drop this packet. */ if (!allocerr_warned) { VHOST_LOG_DATA(ERR, "Failed mbuf alloc of size %d from %s on %s.\n", buf_len, mbuf_pool->name, dev->ifname); allocerr_warned = true; } dropped += 1; i++; break; } err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i], mbuf_pool, legacy_ol_flags); if (unlikely(err)) { if (!allocerr_warned) { VHOST_LOG_DATA(ERR, "Failed to copy desc to mbuf on %s.\n", dev->ifname); allocerr_warned = true; } dropped += 1; i++; break; } } if (dropped) rte_pktmbuf_free_bulk(&pkts[i - 1], count - i + 1); vq->last_avail_idx += i; do_data_copy_dequeue(vq); if (unlikely(i < count)) vq->shadow_used_idx = i; if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return (i - dropped); } __rte_noinline static uint16_t virtio_dev_tx_split_legacy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, true); } __rte_noinline static uint16_t virtio_dev_tx_split_compliant(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, false); } static __rte_always_inline int vhost_reserve_avail_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t avail_idx, uintptr_t *desc_addrs, uint16_t *ids) { bool wrap = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint64_t lens[PACKED_BATCH_SIZE]; uint64_t buf_lens[PACKED_BATCH_SIZE]; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t flags, i; if (unlikely(avail_idx & PACKED_BATCH_MASK)) return -1; if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { flags = descs[avail_idx + i].flags; if (unlikely((wrap != !!(flags & VRING_DESC_F_AVAIL)) || (wrap == !!(flags & VRING_DESC_F_USED)) || (flags & PACKED_DESC_SINGLE_DEQUEUE_FLAG))) return -1; } rte_atomic_thread_fence(__ATOMIC_ACQUIRE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) lens[i] = descs[avail_idx + i].len; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_addrs[i] = vhost_iova_to_vva(dev, vq, descs[avail_idx + i].addr, &lens[i], VHOST_ACCESS_RW); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(!desc_addrs[i])) return -1; if (unlikely((lens[i] != descs[avail_idx + i].len))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (virtio_dev_pktmbuf_prep(dev, pkts[i], lens[i])) goto err; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) buf_lens[i] = pkts[i]->buf_len - pkts[i]->data_off; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(buf_lens[i] < (lens[i] - buf_offset))) goto err; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { pkts[i]->pkt_len = lens[i] - buf_offset; pkts[i]->data_len = pkts[i]->pkt_len; ids[i] = descs[avail_idx + i].id; } return 0; err: return -1; } static __rte_always_inline int virtio_dev_tx_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, bool legacy_ol_flags) { uint16_t avail_idx = vq->last_avail_idx; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); struct virtio_net_hdr *hdr; uintptr_t desc_addrs[PACKED_BATCH_SIZE]; uint16_t ids[PACKED_BATCH_SIZE]; uint16_t i; if (vhost_reserve_avail_batch_packed(dev, vq, pkts, avail_idx, desc_addrs, ids)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) rte_prefetch0((void *)(uintptr_t)desc_addrs[i]); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) rte_memcpy(rte_pktmbuf_mtod_offset(pkts[i], void *, 0), (void *)(uintptr_t)(desc_addrs[i] + buf_offset), pkts[i]->pkt_len); if (virtio_net_with_host_offload(dev)) { vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { hdr = (struct virtio_net_hdr *)(desc_addrs[i]); vhost_dequeue_offload(hdr, pkts[i], legacy_ol_flags); } } if (virtio_net_is_inorder(dev)) vhost_shadow_dequeue_batch_packed_inorder(vq, ids[PACKED_BATCH_SIZE - 1]); else vhost_shadow_dequeue_batch_packed(dev, vq, ids); vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE); return 0; } static __rte_always_inline int vhost_dequeue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf *pkts, uint16_t *buf_id, uint16_t *desc_count, bool legacy_ol_flags) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint32_t buf_len; uint16_t nr_vec = 0; int err; static bool allocerr_warned; if (unlikely(fill_vec_buf_packed(dev, vq, vq->last_avail_idx, desc_count, buf_vec, &nr_vec, buf_id, &buf_len, VHOST_ACCESS_RO) < 0)) return -1; if (unlikely(virtio_dev_pktmbuf_prep(dev, pkts, buf_len))) { if (!allocerr_warned) { VHOST_LOG_DATA(ERR, "Failed mbuf alloc of size %d from %s on %s.\n", buf_len, mbuf_pool->name, dev->ifname); allocerr_warned = true; } return -1; } err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts, mbuf_pool, legacy_ol_flags); if (unlikely(err)) { if (!allocerr_warned) { VHOST_LOG_DATA(ERR, "Failed to copy desc to mbuf on %s.\n", dev->ifname); allocerr_warned = true; } return -1; } return 0; } static __rte_always_inline int virtio_dev_tx_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf *pkts, bool legacy_ol_flags) { uint16_t buf_id, desc_count = 0; int ret; ret = vhost_dequeue_single_packed(dev, vq, mbuf_pool, pkts, &buf_id, &desc_count, legacy_ol_flags); if (likely(desc_count > 0)) { if (virtio_net_is_inorder(dev)) vhost_shadow_dequeue_single_packed_inorder(vq, buf_id, desc_count); else vhost_shadow_dequeue_single_packed(vq, buf_id, desc_count); vq_inc_last_avail_packed(vq, desc_count); } return ret; } __rte_always_inline static uint16_t virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count, bool legacy_ol_flags) { uint32_t pkt_idx = 0; if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count)) return 0; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (count - pkt_idx >= PACKED_BATCH_SIZE) { if (!virtio_dev_tx_batch_packed(dev, vq, &pkts[pkt_idx], legacy_ol_flags)) { pkt_idx += PACKED_BATCH_SIZE; continue; } } if (virtio_dev_tx_single_packed(dev, vq, mbuf_pool, pkts[pkt_idx], legacy_ol_flags)) break; pkt_idx++; } while (pkt_idx < count); if (pkt_idx != count) rte_pktmbuf_free_bulk(&pkts[pkt_idx], count - pkt_idx); if (vq->shadow_used_idx) { do_data_copy_dequeue(vq); vhost_flush_dequeue_shadow_packed(dev, vq); vhost_vring_call_packed(dev, vq); } return pkt_idx; } __rte_noinline static uint16_t virtio_dev_tx_packed_legacy(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, true); } __rte_noinline static uint16_t virtio_dev_tx_packed_compliant(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, false); } uint16_t rte_vhost_dequeue_burst(int vid, uint16_t queue_id, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { struct virtio_net *dev; struct rte_mbuf *rarp_mbuf = NULL; struct vhost_virtqueue *vq; int16_t success = 1; dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(ERR, "(%d) %s: built-in vhost net backend is disabled.\n", dev->vid, __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) { VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0)) return 0; if (unlikely(!vq->enabled)) { count = 0; goto out_access_unlock; } if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) { count = 0; goto out; } /* * Construct a RARP broadcast packet, and inject it to the "pkts" * array, to looks like that guest actually send such packet. * * Check user_send_rarp() for more information. * * broadcast_rarp shares a cacheline in the virtio_net structure * with some fields that are accessed during enqueue and * __atomic_compare_exchange_n causes a write if performed compare * and exchange. This could result in false sharing between enqueue * and dequeue. * * Prevent unnecessary false sharing by reading broadcast_rarp first * and only performing compare and exchange if the read indicates it * is likely to be set. */ if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) && __atomic_compare_exchange_n(&dev->broadcast_rarp, &success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) { rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac); if (rarp_mbuf == NULL) { VHOST_LOG_DATA(ERR, "Failed to make RARP packet.\n"); count = 0; goto out; } count -= 1; } if (vq_is_packed(dev)) { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_packed_legacy(dev, vq, mbuf_pool, pkts, count); else count = virtio_dev_tx_packed_compliant(dev, vq, mbuf_pool, pkts, count); } else { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_split_legacy(dev, vq, mbuf_pool, pkts, count); else count = virtio_dev_tx_split_compliant(dev, vq, mbuf_pool, pkts, count); } out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); if (unlikely(rarp_mbuf != NULL)) { /* * Inject it to the head of "pkts" array, so that switch's mac * learning table will get updated first. */ memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *)); pkts[0] = rarp_mbuf; count += 1; } return count; }