/*- * BSD LICENSE * * Copyright 2012-2015 6WIND S.A. * Copyright 2012 Mellanox. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of 6WIND S.A. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Known limitations: * - RSS hash key and options cannot be modified. * - Hardware counters aren't implemented. */ /* System headers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Verbs header. */ /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-pedantic" #endif #include #ifdef PEDANTIC #pragma GCC diagnostic error "-pedantic" #endif /* DPDK headers don't like -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-pedantic" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PEDANTIC #pragma GCC diagnostic error "-pedantic" #endif /* Generated configuration header. */ #include "mlx4_autoconf.h" /* PMD header. */ #include "mlx4.h" /* Runtime logging through RTE_LOG() is enabled when not in debugging mode. * Intermediate LOG_*() macros add the required end-of-line characters. */ #ifndef NDEBUG #define INFO(...) DEBUG(__VA_ARGS__) #define WARN(...) DEBUG(__VA_ARGS__) #define ERROR(...) DEBUG(__VA_ARGS__) #else #define LOG__(level, m, ...) \ RTE_LOG(level, PMD, MLX4_DRIVER_NAME ": " m "%c", __VA_ARGS__) #define LOG_(level, ...) LOG__(level, __VA_ARGS__, '\n') #define INFO(...) LOG_(INFO, __VA_ARGS__) #define WARN(...) LOG_(WARNING, __VA_ARGS__) #define ERROR(...) LOG_(ERR, __VA_ARGS__) #endif /* Convenience macros for accessing mbuf fields. */ #define NEXT(m) ((m)->next) #define DATA_LEN(m) ((m)->data_len) #define PKT_LEN(m) ((m)->pkt_len) #define DATA_OFF(m) ((m)->data_off) #define SET_DATA_OFF(m, o) ((m)->data_off = (o)) #define NB_SEGS(m) ((m)->nb_segs) #define PORT(m) ((m)->port) /* Work Request ID data type (64 bit). */ typedef union { struct { uint32_t id; uint16_t offset; } data; uint64_t raw; } wr_id_t; #define WR_ID(o) (((wr_id_t *)&(o))->data) /* Transpose flags. Useful to convert IBV to DPDK flags. */ #define TRANSPOSE(val, from, to) \ (((from) >= (to)) ? \ (((val) & (from)) / ((from) / (to))) : \ (((val) & (from)) * ((to) / (from)))) struct mlx4_rxq_stats { unsigned int idx; /**< Mapping index. */ #ifdef MLX4_PMD_SOFT_COUNTERS uint64_t ipackets; /**< Total of successfully received packets. */ uint64_t ibytes; /**< Total of successfully received bytes. */ #endif uint64_t idropped; /**< Total of packets dropped when RX ring full. */ uint64_t rx_nombuf; /**< Total of RX mbuf allocation failures. */ }; struct mlx4_txq_stats { unsigned int idx; /**< Mapping index. */ #ifdef MLX4_PMD_SOFT_COUNTERS uint64_t opackets; /**< Total of successfully sent packets. */ uint64_t obytes; /**< Total of successfully sent bytes. */ #endif uint64_t odropped; /**< Total of packets not sent when TX ring full. */ }; /* RX element (scattered packets). */ struct rxq_elt_sp { struct ibv_recv_wr wr; /* Work Request. */ struct ibv_sge sges[MLX4_PMD_SGE_WR_N]; /* Scatter/Gather Elements. */ struct rte_mbuf *bufs[MLX4_PMD_SGE_WR_N]; /* SGEs buffers. */ }; /* RX element. */ struct rxq_elt { struct ibv_recv_wr wr; /* Work Request. */ struct ibv_sge sge; /* Scatter/Gather Element. */ /* mbuf pointer is derived from WR_ID(wr.wr_id).offset. */ }; /* RX queue descriptor. */ struct rxq { struct priv *priv; /* Back pointer to private data. */ struct rte_mempool *mp; /* Memory Pool for allocations. */ struct ibv_mr *mr; /* Memory Region (for mp). */ struct ibv_cq *cq; /* Completion Queue. */ struct ibv_qp *qp; /* Queue Pair. */ struct ibv_exp_qp_burst_family *if_qp; /* QP burst interface. */ struct ibv_exp_cq_family *if_cq; /* CQ interface. */ /* * Each VLAN ID requires a separate flow steering rule. */ BITFIELD_DECLARE(mac_configured, uint32_t, MLX4_MAX_MAC_ADDRESSES); struct ibv_flow *mac_flow[MLX4_MAX_MAC_ADDRESSES][MLX4_MAX_VLAN_IDS]; struct ibv_flow *promisc_flow; /* Promiscuous flow. */ struct ibv_flow *allmulti_flow; /* Multicast flow. */ unsigned int port_id; /* Port ID for incoming packets. */ unsigned int elts_n; /* (*elts)[] length. */ unsigned int elts_head; /* Current index in (*elts)[]. */ union { struct rxq_elt_sp (*sp)[]; /* Scattered RX elements. */ struct rxq_elt (*no_sp)[]; /* RX elements. */ } elts; unsigned int sp:1; /* Use scattered RX elements. */ unsigned int csum:1; /* Enable checksum offloading. */ unsigned int csum_l2tun:1; /* Same for L2 tunnels. */ uint32_t mb_len; /* Length of a mp-issued mbuf. */ struct mlx4_rxq_stats stats; /* RX queue counters. */ unsigned int socket; /* CPU socket ID for allocations. */ struct ibv_exp_res_domain *rd; /* Resource Domain. */ }; /* TX element. */ struct txq_elt { struct rte_mbuf *buf; }; /* Linear buffer type. It is used when transmitting buffers with too many * segments that do not fit the hardware queue (see max_send_sge). * Extra segments are copied (linearized) in such buffers, replacing the * last SGE during TX. * The size is arbitrary but large enough to hold a jumbo frame with * 8 segments considering mbuf.buf_len is about 2048 bytes. */ typedef uint8_t linear_t[16384]; /* TX queue descriptor. */ struct txq { struct priv *priv; /* Back pointer to private data. */ struct { const struct rte_mempool *mp; /* Cached Memory Pool. */ struct ibv_mr *mr; /* Memory Region (for mp). */ uint32_t lkey; /* mr->lkey */ } mp2mr[MLX4_PMD_TX_MP_CACHE]; /* MP to MR translation table. */ struct ibv_cq *cq; /* Completion Queue. */ struct ibv_qp *qp; /* Queue Pair. */ struct ibv_exp_qp_burst_family *if_qp; /* QP burst interface. */ struct ibv_exp_cq_family *if_cq; /* CQ interface. */ #if MLX4_PMD_MAX_INLINE > 0 uint32_t max_inline; /* Max inline send size <= MLX4_PMD_MAX_INLINE. */ #endif unsigned int elts_n; /* (*elts)[] length. */ struct txq_elt (*elts)[]; /* TX elements. */ unsigned int elts_head; /* Current index in (*elts)[]. */ unsigned int elts_tail; /* First element awaiting completion. */ unsigned int elts_comp; /* Number of completion requests. */ unsigned int elts_comp_cd; /* Countdown for next completion request. */ unsigned int elts_comp_cd_init; /* Initial value for countdown. */ struct mlx4_txq_stats stats; /* TX queue counters. */ linear_t (*elts_linear)[]; /* Linearized buffers. */ struct ibv_mr *mr_linear; /* Memory Region for linearized buffers. */ unsigned int socket; /* CPU socket ID for allocations. */ struct ibv_exp_res_domain *rd; /* Resource Domain. */ }; struct priv { struct rte_eth_dev *dev; /* Ethernet device. */ struct ibv_context *ctx; /* Verbs context. */ struct ibv_device_attr device_attr; /* Device properties. */ struct ibv_pd *pd; /* Protection Domain. */ /* * MAC addresses array and configuration bit-field. * An extra entry that cannot be modified by the DPDK is reserved * for broadcast frames (destination MAC address ff:ff:ff:ff:ff:ff). */ struct ether_addr mac[MLX4_MAX_MAC_ADDRESSES]; BITFIELD_DECLARE(mac_configured, uint32_t, MLX4_MAX_MAC_ADDRESSES); /* VLAN filters. */ struct { unsigned int enabled:1; /* If enabled. */ unsigned int id:12; /* VLAN ID (0-4095). */ } vlan_filter[MLX4_MAX_VLAN_IDS]; /* VLAN filters table. */ /* Device properties. */ uint16_t mtu; /* Configured MTU. */ uint8_t port; /* Physical port number. */ unsigned int started:1; /* Device started, flows enabled. */ unsigned int promisc:1; /* Device in promiscuous mode. */ unsigned int allmulti:1; /* Device receives all multicast packets. */ unsigned int hw_qpg:1; /* QP groups are supported. */ unsigned int hw_tss:1; /* TSS is supported. */ unsigned int hw_rss:1; /* RSS is supported. */ unsigned int hw_csum:1; /* Checksum offload is supported. */ unsigned int hw_csum_l2tun:1; /* Same for L2 tunnels. */ unsigned int rss:1; /* RSS is enabled. */ unsigned int vf:1; /* This is a VF device. */ unsigned int pending_alarm:1; /* An alarm is pending. */ #ifdef INLINE_RECV unsigned int inl_recv_size; /* Inline recv size */ #endif unsigned int max_rss_tbl_sz; /* Maximum number of RSS queues. */ /* RX/TX queues. */ struct rxq rxq_parent; /* Parent queue when RSS is enabled. */ unsigned int rxqs_n; /* RX queues array size. */ unsigned int txqs_n; /* TX queues array size. */ struct rxq *(*rxqs)[]; /* RX queues. */ struct txq *(*txqs)[]; /* TX queues. */ struct rte_intr_handle intr_handle; /* Interrupt handler. */ rte_spinlock_t lock; /* Lock for control functions. */ }; /* Local storage for secondary process data. */ struct mlx4_secondary_data { struct rte_eth_dev_data data; /* Local device data. */ struct priv *primary_priv; /* Private structure from primary. */ struct rte_eth_dev_data *shared_dev_data; /* Shared device data. */ rte_spinlock_t lock; /* Port configuration lock. */ } mlx4_secondary_data[RTE_MAX_ETHPORTS]; /** * Check if running as a secondary process. * * @return * Nonzero if running as a secondary process. */ static inline int mlx4_is_secondary(void) { return rte_eal_process_type() != RTE_PROC_PRIMARY; } /** * Return private structure associated with an Ethernet device. * * @param dev * Pointer to Ethernet device structure. * * @return * Pointer to private structure. */ static struct priv * mlx4_get_priv(struct rte_eth_dev *dev) { struct mlx4_secondary_data *sd; if (!mlx4_is_secondary()) return dev->data->dev_private; sd = &mlx4_secondary_data[dev->data->port_id]; return sd->data.dev_private; } /** * Lock private structure to protect it from concurrent access in the * control path. * * @param priv * Pointer to private structure. */ static void priv_lock(struct priv *priv) { rte_spinlock_lock(&priv->lock); } /** * Unlock private structure. * * @param priv * Pointer to private structure. */ static void priv_unlock(struct priv *priv) { rte_spinlock_unlock(&priv->lock); } /* Allocate a buffer on the stack and fill it with a printf format string. */ #define MKSTR(name, ...) \ char name[snprintf(NULL, 0, __VA_ARGS__) + 1]; \ \ snprintf(name, sizeof(name), __VA_ARGS__) /** * Get interface name from private structure. * * @param[in] priv * Pointer to private structure. * @param[out] ifname * Interface name output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_get_ifname(const struct priv *priv, char (*ifname)[IF_NAMESIZE]) { DIR *dir; struct dirent *dent; unsigned int dev_type = 0; unsigned int dev_port_prev = ~0u; char match[IF_NAMESIZE] = ""; { MKSTR(path, "%s/device/net", priv->ctx->device->ibdev_path); dir = opendir(path); if (dir == NULL) return -1; } while ((dent = readdir(dir)) != NULL) { char *name = dent->d_name; FILE *file; unsigned int dev_port; int r; if ((name[0] == '.') && ((name[1] == '\0') || ((name[1] == '.') && (name[2] == '\0')))) continue; MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path, name, (dev_type ? "dev_id" : "dev_port")); file = fopen(path, "rb"); if (file == NULL) { if (errno != ENOENT) continue; /* * Switch to dev_id when dev_port does not exist as * is the case with Linux kernel versions < 3.15. */ try_dev_id: match[0] = '\0'; if (dev_type) break; dev_type = 1; dev_port_prev = ~0u; rewinddir(dir); continue; } r = fscanf(file, (dev_type ? "%x" : "%u"), &dev_port); fclose(file); if (r != 1) continue; /* * Switch to dev_id when dev_port returns the same value for * all ports. May happen when using a MOFED release older than * 3.0 with a Linux kernel >= 3.15. */ if (dev_port == dev_port_prev) goto try_dev_id; dev_port_prev = dev_port; if (dev_port == (priv->port - 1u)) snprintf(match, sizeof(match), "%s", name); } closedir(dir); if (match[0] == '\0') return -1; strncpy(*ifname, match, sizeof(*ifname)); return 0; } /** * Read from sysfs entry. * * @param[in] priv * Pointer to private structure. * @param[in] entry * Entry name relative to sysfs path. * @param[out] buf * Data output buffer. * @param size * Buffer size. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_sysfs_read(const struct priv *priv, const char *entry, char *buf, size_t size) { char ifname[IF_NAMESIZE]; FILE *file; int ret; int err; if (priv_get_ifname(priv, &ifname)) return -1; MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path, ifname, entry); file = fopen(path, "rb"); if (file == NULL) return -1; ret = fread(buf, 1, size, file); err = errno; if (((size_t)ret < size) && (ferror(file))) ret = -1; else ret = size; fclose(file); errno = err; return ret; } /** * Write to sysfs entry. * * @param[in] priv * Pointer to private structure. * @param[in] entry * Entry name relative to sysfs path. * @param[in] buf * Data buffer. * @param size * Buffer size. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_sysfs_write(const struct priv *priv, const char *entry, char *buf, size_t size) { char ifname[IF_NAMESIZE]; FILE *file; int ret; int err; if (priv_get_ifname(priv, &ifname)) return -1; MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path, ifname, entry); file = fopen(path, "wb"); if (file == NULL) return -1; ret = fwrite(buf, 1, size, file); err = errno; if (((size_t)ret < size) || (ferror(file))) ret = -1; else ret = size; fclose(file); errno = err; return ret; } /** * Get unsigned long sysfs property. * * @param priv * Pointer to private structure. * @param[in] name * Entry name relative to sysfs path. * @param[out] value * Value output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_get_sysfs_ulong(struct priv *priv, const char *name, unsigned long *value) { int ret; unsigned long value_ret; char value_str[32]; ret = priv_sysfs_read(priv, name, value_str, (sizeof(value_str) - 1)); if (ret == -1) { DEBUG("cannot read %s value from sysfs: %s", name, strerror(errno)); return -1; } value_str[ret] = '\0'; errno = 0; value_ret = strtoul(value_str, NULL, 0); if (errno) { DEBUG("invalid %s value `%s': %s", name, value_str, strerror(errno)); return -1; } *value = value_ret; return 0; } /** * Set unsigned long sysfs property. * * @param priv * Pointer to private structure. * @param[in] name * Entry name relative to sysfs path. * @param value * Value to set. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_set_sysfs_ulong(struct priv *priv, const char *name, unsigned long value) { int ret; MKSTR(value_str, "%lu", value); ret = priv_sysfs_write(priv, name, value_str, (sizeof(value_str) - 1)); if (ret == -1) { DEBUG("cannot write %s `%s' (%lu) to sysfs: %s", name, value_str, value, strerror(errno)); return -1; } return 0; } /** * Perform ifreq ioctl() on associated Ethernet device. * * @param[in] priv * Pointer to private structure. * @param req * Request number to pass to ioctl(). * @param[out] ifr * Interface request structure output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_ifreq(const struct priv *priv, int req, struct ifreq *ifr) { int sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); int ret = -1; if (sock == -1) return ret; if (priv_get_ifname(priv, &ifr->ifr_name) == 0) ret = ioctl(sock, req, ifr); close(sock); return ret; } /** * Get device MTU. * * @param priv * Pointer to private structure. * @param[out] mtu * MTU value output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_get_mtu(struct priv *priv, uint16_t *mtu) { unsigned long ulong_mtu; if (priv_get_sysfs_ulong(priv, "mtu", &ulong_mtu) == -1) return -1; *mtu = ulong_mtu; return 0; } /** * Set device MTU. * * @param priv * Pointer to private structure. * @param mtu * MTU value to set. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_set_mtu(struct priv *priv, uint16_t mtu) { return priv_set_sysfs_ulong(priv, "mtu", mtu); } /** * Set device flags. * * @param priv * Pointer to private structure. * @param keep * Bitmask for flags that must remain untouched. * @param flags * Bitmask for flags to modify. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_set_flags(struct priv *priv, unsigned int keep, unsigned int flags) { unsigned long tmp; if (priv_get_sysfs_ulong(priv, "flags", &tmp) == -1) return -1; tmp &= keep; tmp |= flags; return priv_set_sysfs_ulong(priv, "flags", tmp); } /* Device configuration. */ static int txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf); static void txq_cleanup(struct txq *txq); static int rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp); static void rxq_cleanup(struct rxq *rxq); /** * Ethernet device configuration. * * Prepare the driver for a given number of TX and RX queues. * Allocate parent RSS queue when several RX queues are requested. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success, errno value on failure. */ static int dev_configure(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int rxqs_n = dev->data->nb_rx_queues; unsigned int txqs_n = dev->data->nb_tx_queues; unsigned int tmp; int ret; priv->rxqs = (void *)dev->data->rx_queues; priv->txqs = (void *)dev->data->tx_queues; if (txqs_n != priv->txqs_n) { INFO("%p: TX queues number update: %u -> %u", (void *)dev, priv->txqs_n, txqs_n); priv->txqs_n = txqs_n; } if (rxqs_n == priv->rxqs_n) return 0; if ((rxqs_n & (rxqs_n - 1)) != 0) { ERROR("%p: invalid number of RX queues (%u)," " must be a power of 2", (void *)dev, rxqs_n); return EINVAL; } INFO("%p: RX queues number update: %u -> %u", (void *)dev, priv->rxqs_n, rxqs_n); /* If RSS is enabled, disable it first. */ if (priv->rss) { unsigned int i; /* Only if there are no remaining child RX queues. */ for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] != NULL) return EINVAL; rxq_cleanup(&priv->rxq_parent); priv->rss = 0; priv->rxqs_n = 0; } if (rxqs_n <= 1) { /* Nothing else to do. */ priv->rxqs_n = rxqs_n; return 0; } /* Allocate a new RSS parent queue if supported by hardware. */ if (!priv->hw_rss) { ERROR("%p: only a single RX queue can be configured when" " hardware doesn't support RSS", (void *)dev); return EINVAL; } /* Fail if hardware doesn't support that many RSS queues. */ if (rxqs_n >= priv->max_rss_tbl_sz) { ERROR("%p: only %u RX queues can be configured for RSS", (void *)dev, priv->max_rss_tbl_sz); return EINVAL; } priv->rss = 1; tmp = priv->rxqs_n; priv->rxqs_n = rxqs_n; ret = rxq_setup(dev, &priv->rxq_parent, 0, 0, NULL, NULL); if (!ret) return 0; /* Failure, rollback. */ priv->rss = 0; priv->rxqs_n = tmp; assert(ret > 0); return ret; } /** * DPDK callback for Ethernet device configuration. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_dev_configure(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); ret = dev_configure(dev); assert(ret >= 0); priv_unlock(priv); return -ret; } static uint16_t mlx4_tx_burst(void *, struct rte_mbuf **, uint16_t); static uint16_t removed_rx_burst(void *, struct rte_mbuf **, uint16_t); /** * Configure secondary process queues from a private data pointer (primary * or secondary) and update burst callbacks. Can take place only once. * * All queues must have been previously created by the primary process to * avoid undefined behavior. * * @param priv * Private data pointer from either primary or secondary process. * * @return * Private data pointer from secondary process, NULL in case of error. */ static struct priv * mlx4_secondary_data_setup(struct priv *priv) { unsigned int port_id = 0; struct mlx4_secondary_data *sd; void **tx_queues; void **rx_queues; unsigned int nb_tx_queues; unsigned int nb_rx_queues; unsigned int i; /* priv must be valid at this point. */ assert(priv != NULL); /* priv->dev must also be valid but may point to local memory from * another process, possibly with the same address and must not * be dereferenced yet. */ assert(priv->dev != NULL); /* Determine port ID by finding out where priv comes from. */ while (1) { sd = &mlx4_secondary_data[port_id]; rte_spinlock_lock(&sd->lock); /* Primary process? */ if (sd->primary_priv == priv) break; /* Secondary process? */ if (sd->data.dev_private == priv) break; rte_spinlock_unlock(&sd->lock); if (++port_id == RTE_DIM(mlx4_secondary_data)) port_id = 0; } /* Switch to secondary private structure. If private data has already * been updated by another thread, there is nothing else to do. */ priv = sd->data.dev_private; if (priv->dev->data == &sd->data) goto end; /* Sanity checks. Secondary private structure is supposed to point * to local eth_dev, itself still pointing to the shared device data * structure allocated by the primary process. */ assert(sd->shared_dev_data != &sd->data); assert(sd->data.nb_tx_queues == 0); assert(sd->data.tx_queues == NULL); assert(sd->data.nb_rx_queues == 0); assert(sd->data.rx_queues == NULL); assert(priv != sd->primary_priv); assert(priv->dev->data == sd->shared_dev_data); assert(priv->txqs_n == 0); assert(priv->txqs == NULL); assert(priv->rxqs_n == 0); assert(priv->rxqs == NULL); nb_tx_queues = sd->shared_dev_data->nb_tx_queues; nb_rx_queues = sd->shared_dev_data->nb_rx_queues; /* Allocate local storage for queues. */ tx_queues = rte_zmalloc("secondary ethdev->tx_queues", sizeof(sd->data.tx_queues[0]) * nb_tx_queues, RTE_CACHE_LINE_SIZE); rx_queues = rte_zmalloc("secondary ethdev->rx_queues", sizeof(sd->data.rx_queues[0]) * nb_rx_queues, RTE_CACHE_LINE_SIZE); if (tx_queues == NULL || rx_queues == NULL) goto error; /* Lock to prevent control operations during setup. */ priv_lock(priv); /* TX queues. */ for (i = 0; i != nb_tx_queues; ++i) { struct txq *primary_txq = (*sd->primary_priv->txqs)[i]; struct txq *txq; if (primary_txq == NULL) continue; txq = rte_calloc_socket("TXQ", 1, sizeof(*txq), 0, primary_txq->socket); if (txq != NULL) { if (txq_setup(priv->dev, txq, primary_txq->elts_n * MLX4_PMD_SGE_WR_N, primary_txq->socket, NULL) == 0) { txq->stats.idx = primary_txq->stats.idx; tx_queues[i] = txq; continue; } rte_free(txq); } while (i) { txq = tx_queues[--i]; txq_cleanup(txq); rte_free(txq); } goto error; } /* RX queues. */ for (i = 0; i != nb_rx_queues; ++i) { struct rxq *primary_rxq = (*sd->primary_priv->rxqs)[i]; if (primary_rxq == NULL) continue; /* Not supported yet. */ rx_queues[i] = NULL; } /* Update everything. */ priv->txqs = (void *)tx_queues; priv->txqs_n = nb_tx_queues; priv->rxqs = (void *)rx_queues; priv->rxqs_n = nb_rx_queues; sd->data.rx_queues = rx_queues; sd->data.tx_queues = tx_queues; sd->data.nb_rx_queues = nb_rx_queues; sd->data.nb_tx_queues = nb_tx_queues; sd->data.dev_link = sd->shared_dev_data->dev_link; sd->data.mtu = sd->shared_dev_data->mtu; memcpy(sd->data.rx_queue_state, sd->shared_dev_data->rx_queue_state, sizeof(sd->data.rx_queue_state)); memcpy(sd->data.tx_queue_state, sd->shared_dev_data->tx_queue_state, sizeof(sd->data.tx_queue_state)); sd->data.dev_flags = sd->shared_dev_data->dev_flags; /* Use local data from now on. */ rte_mb(); priv->dev->data = &sd->data; rte_mb(); priv->dev->tx_pkt_burst = mlx4_tx_burst; priv->dev->rx_pkt_burst = removed_rx_burst; priv_unlock(priv); end: /* More sanity checks. */ assert(priv->dev->tx_pkt_burst == mlx4_tx_burst); assert(priv->dev->rx_pkt_burst == removed_rx_burst); assert(priv->dev->data == &sd->data); rte_spinlock_unlock(&sd->lock); return priv; error: priv_unlock(priv); rte_free(tx_queues); rte_free(rx_queues); rte_spinlock_unlock(&sd->lock); return NULL; } /* TX queues handling. */ /** * Allocate TX queue elements. * * @param txq * Pointer to TX queue structure. * @param elts_n * Number of elements to allocate. * * @return * 0 on success, errno value on failure. */ static int txq_alloc_elts(struct txq *txq, unsigned int elts_n) { unsigned int i; struct txq_elt (*elts)[elts_n] = rte_calloc_socket("TXQ", 1, sizeof(*elts), 0, txq->socket); linear_t (*elts_linear)[elts_n] = rte_calloc_socket("TXQ", 1, sizeof(*elts_linear), 0, txq->socket); struct ibv_mr *mr_linear = NULL; int ret = 0; if ((elts == NULL) || (elts_linear == NULL)) { ERROR("%p: can't allocate packets array", (void *)txq); ret = ENOMEM; goto error; } mr_linear = ibv_reg_mr(txq->priv->pd, elts_linear, sizeof(*elts_linear), (IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE)); if (mr_linear == NULL) { ERROR("%p: unable to configure MR, ibv_reg_mr() failed", (void *)txq); ret = EINVAL; goto error; } for (i = 0; (i != elts_n); ++i) { struct txq_elt *elt = &(*elts)[i]; elt->buf = NULL; } DEBUG("%p: allocated and configured %u WRs", (void *)txq, elts_n); txq->elts_n = elts_n; txq->elts = elts; txq->elts_head = 0; txq->elts_tail = 0; txq->elts_comp = 0; /* Request send completion every MLX4_PMD_TX_PER_COMP_REQ packets or * at least 4 times per ring. */ txq->elts_comp_cd_init = ((MLX4_PMD_TX_PER_COMP_REQ < (elts_n / 4)) ? MLX4_PMD_TX_PER_COMP_REQ : (elts_n / 4)); txq->elts_comp_cd = txq->elts_comp_cd_init; txq->elts_linear = elts_linear; txq->mr_linear = mr_linear; assert(ret == 0); return 0; error: if (mr_linear != NULL) claim_zero(ibv_dereg_mr(mr_linear)); rte_free(elts_linear); rte_free(elts); DEBUG("%p: failed, freed everything", (void *)txq); assert(ret > 0); return ret; } /** * Free TX queue elements. * * @param txq * Pointer to TX queue structure. */ static void txq_free_elts(struct txq *txq) { unsigned int i; unsigned int elts_n = txq->elts_n; struct txq_elt (*elts)[elts_n] = txq->elts; linear_t (*elts_linear)[elts_n] = txq->elts_linear; struct ibv_mr *mr_linear = txq->mr_linear; DEBUG("%p: freeing WRs", (void *)txq); txq->elts_n = 0; txq->elts = NULL; txq->elts_linear = NULL; txq->mr_linear = NULL; if (mr_linear != NULL) claim_zero(ibv_dereg_mr(mr_linear)); rte_free(elts_linear); if (elts == NULL) return; for (i = 0; (i != elemof(*elts)); ++i) { struct txq_elt *elt = &(*elts)[i]; if (elt->buf == NULL) continue; rte_pktmbuf_free(elt->buf); } rte_free(elts); } /** * Clean up a TX queue. * * Destroy objects, free allocated memory and reset the structure for reuse. * * @param txq * Pointer to TX queue structure. */ static void txq_cleanup(struct txq *txq) { struct ibv_exp_release_intf_params params; size_t i; DEBUG("cleaning up %p", (void *)txq); txq_free_elts(txq); if (txq->if_qp != NULL) { assert(txq->priv != NULL); assert(txq->priv->ctx != NULL); assert(txq->qp != NULL); params = (struct ibv_exp_release_intf_params){ .comp_mask = 0, }; claim_zero(ibv_exp_release_intf(txq->priv->ctx, txq->if_qp, ¶ms)); } if (txq->if_cq != NULL) { assert(txq->priv != NULL); assert(txq->priv->ctx != NULL); assert(txq->cq != NULL); params = (struct ibv_exp_release_intf_params){ .comp_mask = 0, }; claim_zero(ibv_exp_release_intf(txq->priv->ctx, txq->if_cq, ¶ms)); } if (txq->qp != NULL) claim_zero(ibv_destroy_qp(txq->qp)); if (txq->cq != NULL) claim_zero(ibv_destroy_cq(txq->cq)); if (txq->rd != NULL) { struct ibv_exp_destroy_res_domain_attr attr = { .comp_mask = 0, }; assert(txq->priv != NULL); assert(txq->priv->ctx != NULL); claim_zero(ibv_exp_destroy_res_domain(txq->priv->ctx, txq->rd, &attr)); } for (i = 0; (i != elemof(txq->mp2mr)); ++i) { if (txq->mp2mr[i].mp == NULL) break; assert(txq->mp2mr[i].mr != NULL); claim_zero(ibv_dereg_mr(txq->mp2mr[i].mr)); } memset(txq, 0, sizeof(*txq)); } /** * Manage TX completions. * * When sending a burst, mlx4_tx_burst() posts several WRs. * To improve performance, a completion event is only required once every * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information * for other WRs, but this information would not be used anyway. * * @param txq * Pointer to TX queue structure. * * @return * 0 on success, -1 on failure. */ static int txq_complete(struct txq *txq) { unsigned int elts_comp = txq->elts_comp; unsigned int elts_tail = txq->elts_tail; const unsigned int elts_n = txq->elts_n; int wcs_n; if (unlikely(elts_comp == 0)) return 0; #ifdef DEBUG_SEND DEBUG("%p: processing %u work requests completions", (void *)txq, elts_comp); #endif wcs_n = txq->if_cq->poll_cnt(txq->cq, elts_comp); if (unlikely(wcs_n == 0)) return 0; if (unlikely(wcs_n < 0)) { DEBUG("%p: ibv_poll_cq() failed (wcs_n=%d)", (void *)txq, wcs_n); return -1; } elts_comp -= wcs_n; assert(elts_comp <= txq->elts_comp); /* * Assume WC status is successful as nothing can be done about it * anyway. */ elts_tail += wcs_n * txq->elts_comp_cd_init; if (elts_tail >= elts_n) elts_tail -= elts_n; txq->elts_tail = elts_tail; txq->elts_comp = elts_comp; return 0; } /** * Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which * the cloned mbuf is allocated is returned instead. * * @param buf * Pointer to mbuf. * * @return * Memory pool where data is located for given mbuf. */ static struct rte_mempool * txq_mb2mp(struct rte_mbuf *buf) { if (unlikely(RTE_MBUF_INDIRECT(buf))) return rte_mbuf_from_indirect(buf)->pool; return buf->pool; } /** * Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[]. * Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full, * remove an entry first. * * @param txq * Pointer to TX queue structure. * @param[in] mp * Memory Pool for which a Memory Region lkey must be returned. * * @return * mr->lkey on success, (uint32_t)-1 on failure. */ static uint32_t txq_mp2mr(struct txq *txq, const struct rte_mempool *mp) { unsigned int i; struct ibv_mr *mr; for (i = 0; (i != elemof(txq->mp2mr)); ++i) { if (unlikely(txq->mp2mr[i].mp == NULL)) { /* Unknown MP, add a new MR for it. */ break; } if (txq->mp2mr[i].mp == mp) { assert(txq->mp2mr[i].lkey != (uint32_t)-1); assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey); return txq->mp2mr[i].lkey; } } /* Add a new entry, register MR first. */ DEBUG("%p: discovered new memory pool \"%s\" (%p)", (void *)txq, mp->name, (const void *)mp); mr = ibv_reg_mr(txq->priv->pd, (void *)mp->elt_va_start, (mp->elt_va_end - mp->elt_va_start), (IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE)); if (unlikely(mr == NULL)) { DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.", (void *)txq); return (uint32_t)-1; } if (unlikely(i == elemof(txq->mp2mr))) { /* Table is full, remove oldest entry. */ DEBUG("%p: MR <-> MP table full, dropping oldest entry.", (void *)txq); --i; claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr)); memmove(&txq->mp2mr[0], &txq->mp2mr[1], (sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0]))); } /* Store the new entry. */ txq->mp2mr[i].mp = mp; txq->mp2mr[i].mr = mr; txq->mp2mr[i].lkey = mr->lkey; DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32, (void *)txq, mp->name, (const void *)mp, txq->mp2mr[i].lkey); return txq->mp2mr[i].lkey; } struct txq_mp2mr_mbuf_check_data { const struct rte_mempool *mp; int ret; }; /** * Callback function for rte_mempool_obj_iter() to check whether a given * mempool object looks like a mbuf. * * @param[in, out] arg * Context data (struct txq_mp2mr_mbuf_check_data). Contains mempool pointer * and return value. * @param[in] start * Object start address. * @param[in] end * Object end address. * @param index * Unused. * * @return * Nonzero value when object is not a mbuf. */ static void txq_mp2mr_mbuf_check(void *arg, void *start, void *end, uint32_t index __rte_unused) { struct txq_mp2mr_mbuf_check_data *data = arg; struct rte_mbuf *buf = (void *)((uintptr_t)start + data->mp->header_size); (void)index; /* Check whether mbuf structure fits element size and whether mempool * pointer is valid. */ if (((uintptr_t)end >= (uintptr_t)(buf + 1)) && (buf->pool == data->mp)) data->ret = 0; else data->ret = -1; } /** * Iterator function for rte_mempool_walk() to register existing mempools and * fill the MP to MR cache of a TX queue. * * @param[in] mp * Memory Pool to register. * @param *arg * Pointer to TX queue structure. */ static void txq_mp2mr_iter(const struct rte_mempool *mp, void *arg) { struct txq *txq = arg; struct txq_mp2mr_mbuf_check_data data = { .mp = mp, .ret = -1, }; /* Discard empty mempools. */ if (mp->size == 0) return; /* Register mempool only if the first element looks like a mbuf. */ rte_mempool_obj_iter((void *)mp->elt_va_start, 1, mp->header_size + mp->elt_size + mp->trailer_size, 1, mp->elt_pa, mp->pg_num, mp->pg_shift, txq_mp2mr_mbuf_check, &data); if (data.ret) return; txq_mp2mr(txq, mp); } #if MLX4_PMD_SGE_WR_N > 1 /** * Copy scattered mbuf contents to a single linear buffer. * * @param[out] linear * Linear output buffer. * @param[in] buf * Scattered input buffer. * * @return * Number of bytes copied to the output buffer or 0 if not large enough. */ static unsigned int linearize_mbuf(linear_t *linear, struct rte_mbuf *buf) { unsigned int size = 0; unsigned int offset; do { unsigned int len = DATA_LEN(buf); offset = size; size += len; if (unlikely(size > sizeof(*linear))) return 0; memcpy(&(*linear)[offset], rte_pktmbuf_mtod(buf, uint8_t *), len); buf = NEXT(buf); } while (buf != NULL); return size; } /** * Handle scattered buffers for mlx4_tx_burst(). * * @param txq * TX queue structure. * @param segs * Number of segments in buf. * @param elt * TX queue element to fill. * @param[in] buf * Buffer to process. * @param elts_head * Index of the linear buffer to use if necessary (normally txq->elts_head). * @param[out] sges * Array filled with SGEs on success. * * @return * A structure containing the processed packet size in bytes and the * number of SGEs. Both fields are set to (unsigned int)-1 in case of * failure. */ static struct tx_burst_sg_ret { unsigned int length; unsigned int num; } tx_burst_sg(struct txq *txq, unsigned int segs, struct txq_elt *elt, struct rte_mbuf *buf, unsigned int elts_head, struct ibv_sge (*sges)[MLX4_PMD_SGE_WR_N]) { unsigned int sent_size = 0; unsigned int j; int linearize = 0; /* When there are too many segments, extra segments are * linearized in the last SGE. */ if (unlikely(segs > elemof(*sges))) { segs = (elemof(*sges) - 1); linearize = 1; } /* Update element. */ elt->buf = buf; /* Register segments as SGEs. */ for (j = 0; (j != segs); ++j) { struct ibv_sge *sge = &(*sges)[j]; uint32_t lkey; /* Retrieve Memory Region key for this memory pool. */ lkey = txq_mp2mr(txq, txq_mb2mp(buf)); if (unlikely(lkey == (uint32_t)-1)) { /* MR does not exist. */ DEBUG("%p: unable to get MP <-> MR association", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } /* Update SGE. */ sge->addr = rte_pktmbuf_mtod(buf, uintptr_t); if (txq->priv->vf) rte_prefetch0((volatile void *) (uintptr_t)sge->addr); sge->length = DATA_LEN(buf); sge->lkey = lkey; sent_size += sge->length; buf = NEXT(buf); } /* If buf is not NULL here and is not going to be linearized, * nb_segs is not valid. */ assert(j == segs); assert((buf == NULL) || (linearize)); /* Linearize extra segments. */ if (linearize) { struct ibv_sge *sge = &(*sges)[segs]; linear_t *linear = &(*txq->elts_linear)[elts_head]; unsigned int size = linearize_mbuf(linear, buf); assert(segs == (elemof(*sges) - 1)); if (size == 0) { /* Invalid packet. */ DEBUG("%p: packet too large to be linearized.", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } /* If MLX4_PMD_SGE_WR_N is 1, free mbuf immediately. */ if (elemof(*sges) == 1) { do { struct rte_mbuf *next = NEXT(buf); rte_pktmbuf_free_seg(buf); buf = next; } while (buf != NULL); elt->buf = NULL; } /* Update SGE. */ sge->addr = (uintptr_t)&(*linear)[0]; sge->length = size; sge->lkey = txq->mr_linear->lkey; sent_size += size; /* Include last segment. */ segs++; } return (struct tx_burst_sg_ret){ .length = sent_size, .num = segs, }; stop: return (struct tx_burst_sg_ret){ .length = -1, .num = -1, }; } #endif /* MLX4_PMD_SGE_WR_N > 1 */ /** * DPDK callback for TX. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ static uint16_t mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct txq *txq = (struct txq *)dpdk_txq; unsigned int elts_head = txq->elts_head; const unsigned int elts_n = txq->elts_n; unsigned int elts_comp_cd = txq->elts_comp_cd; unsigned int elts_comp = 0; unsigned int i; unsigned int max; int err; assert(elts_comp_cd != 0); txq_complete(txq); max = (elts_n - (elts_head - txq->elts_tail)); if (max > elts_n) max -= elts_n; assert(max >= 1); assert(max <= elts_n); /* Always leave one free entry in the ring. */ --max; if (max == 0) return 0; if (max > pkts_n) max = pkts_n; for (i = 0; (i != max); ++i) { struct rte_mbuf *buf = pkts[i]; unsigned int elts_head_next = (((elts_head + 1) == elts_n) ? 0 : elts_head + 1); struct txq_elt *elt_next = &(*txq->elts)[elts_head_next]; struct txq_elt *elt = &(*txq->elts)[elts_head]; unsigned int segs = NB_SEGS(buf); #ifdef MLX4_PMD_SOFT_COUNTERS unsigned int sent_size = 0; #endif uint32_t send_flags = 0; /* Clean up old buffer. */ if (likely(elt->buf != NULL)) { struct rte_mbuf *tmp = elt->buf; /* Faster than rte_pktmbuf_free(). */ do { struct rte_mbuf *next = NEXT(tmp); rte_pktmbuf_free_seg(tmp); tmp = next; } while (tmp != NULL); } /* Request TX completion. */ if (unlikely(--elts_comp_cd == 0)) { elts_comp_cd = txq->elts_comp_cd_init; ++elts_comp; send_flags |= IBV_EXP_QP_BURST_SIGNALED; } /* Should we enable HW CKSUM offload */ if (buf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) { send_flags |= IBV_EXP_QP_BURST_IP_CSUM; /* HW does not support checksum offloads at arbitrary * offsets but automatically recognizes the packet * type. For inner L3/L4 checksums, only VXLAN (UDP) * tunnels are currently supported. */ if (RTE_ETH_IS_TUNNEL_PKT(buf->packet_type)) send_flags |= IBV_EXP_QP_BURST_TUNNEL; } if (likely(segs == 1)) { uintptr_t addr; uint32_t length; uint32_t lkey; /* Retrieve buffer information. */ addr = rte_pktmbuf_mtod(buf, uintptr_t); length = DATA_LEN(buf); /* Retrieve Memory Region key for this memory pool. */ lkey = txq_mp2mr(txq, txq_mb2mp(buf)); if (unlikely(lkey == (uint32_t)-1)) { /* MR does not exist. */ DEBUG("%p: unable to get MP <-> MR" " association", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } /* Update element. */ elt->buf = buf; if (txq->priv->vf) rte_prefetch0((volatile void *) (uintptr_t)addr); RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf); /* Put packet into send queue. */ #if MLX4_PMD_MAX_INLINE > 0 if (length <= txq->max_inline) err = txq->if_qp->send_pending_inline (txq->qp, (void *)addr, length, send_flags); else #endif err = txq->if_qp->send_pending (txq->qp, addr, length, lkey, send_flags); if (unlikely(err)) goto stop; #ifdef MLX4_PMD_SOFT_COUNTERS sent_size += length; #endif } else { #if MLX4_PMD_SGE_WR_N > 1 struct ibv_sge sges[MLX4_PMD_SGE_WR_N]; struct tx_burst_sg_ret ret; ret = tx_burst_sg(txq, segs, elt, buf, elts_head, &sges); if (ret.length == (unsigned int)-1) goto stop; RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf); /* Put SG list into send queue. */ err = txq->if_qp->send_pending_sg_list (txq->qp, sges, ret.num, send_flags); if (unlikely(err)) goto stop; #ifdef MLX4_PMD_SOFT_COUNTERS sent_size += ret.length; #endif #else /* MLX4_PMD_SGE_WR_N > 1 */ DEBUG("%p: TX scattered buffers support not" " compiled in", (void *)txq); goto stop; #endif /* MLX4_PMD_SGE_WR_N > 1 */ } elts_head = elts_head_next; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increment sent bytes counter. */ txq->stats.obytes += sent_size; #endif } stop: /* Take a shortcut if nothing must be sent. */ if (unlikely(i == 0)) return 0; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increment sent packets counter. */ txq->stats.opackets += i; #endif /* Ring QP doorbell. */ err = txq->if_qp->send_flush(txq->qp); if (unlikely(err)) { /* A nonzero value is not supposed to be returned. * Nothing can be done about it. */ DEBUG("%p: send_flush() failed with error %d", (void *)txq, err); } txq->elts_head = elts_head; txq->elts_comp += elts_comp; txq->elts_comp_cd = elts_comp_cd; return i; } /** * DPDK callback for TX in secondary processes. * * This function configures all queues from primary process information * if necessary before reverting to the normal TX burst callback. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ static uint16_t mlx4_tx_burst_secondary_setup(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct txq *txq = dpdk_txq; struct priv *priv = mlx4_secondary_data_setup(txq->priv); struct priv *primary_priv; unsigned int index; if (priv == NULL) return 0; primary_priv = mlx4_secondary_data[priv->dev->data->port_id].primary_priv; /* Look for queue index in both private structures. */ for (index = 0; index != priv->txqs_n; ++index) if (((*primary_priv->txqs)[index] == txq) || ((*priv->txqs)[index] == txq)) break; if (index == priv->txqs_n) return 0; txq = (*priv->txqs)[index]; return priv->dev->tx_pkt_burst(txq, pkts, pkts_n); } /** * Configure a TX queue. * * @param dev * Pointer to Ethernet device structure. * @param txq * Pointer to TX queue structure. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * * @return * 0 on success, errno value on failure. */ static int txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf) { struct priv *priv = mlx4_get_priv(dev); struct txq tmpl = { .priv = priv, .socket = socket }; union { struct ibv_exp_query_intf_params params; struct ibv_exp_qp_init_attr init; struct ibv_exp_res_domain_init_attr rd; struct ibv_exp_cq_init_attr cq; struct ibv_exp_qp_attr mod; } attr; enum ibv_exp_query_intf_status status; int ret = 0; (void)conf; /* Thresholds configuration (ignored). */ if (priv == NULL) return EINVAL; if ((desc == 0) || (desc % MLX4_PMD_SGE_WR_N)) { ERROR("%p: invalid number of TX descriptors (must be a" " multiple of %d)", (void *)dev, MLX4_PMD_SGE_WR_N); return EINVAL; } desc /= MLX4_PMD_SGE_WR_N; /* MRs will be registered in mp2mr[] later. */ attr.rd = (struct ibv_exp_res_domain_init_attr){ .comp_mask = (IBV_EXP_RES_DOMAIN_THREAD_MODEL | IBV_EXP_RES_DOMAIN_MSG_MODEL), .thread_model = IBV_EXP_THREAD_SINGLE, .msg_model = IBV_EXP_MSG_HIGH_BW, }; tmpl.rd = ibv_exp_create_res_domain(priv->ctx, &attr.rd); if (tmpl.rd == NULL) { ret = ENOMEM; ERROR("%p: RD creation failure: %s", (void *)dev, strerror(ret)); goto error; } attr.cq = (struct ibv_exp_cq_init_attr){ .comp_mask = IBV_EXP_CQ_INIT_ATTR_RES_DOMAIN, .res_domain = tmpl.rd, }; tmpl.cq = ibv_exp_create_cq(priv->ctx, desc, NULL, NULL, 0, &attr.cq); if (tmpl.cq == NULL) { ret = ENOMEM; ERROR("%p: CQ creation failure: %s", (void *)dev, strerror(ret)); goto error; } DEBUG("priv->device_attr.max_qp_wr is %d", priv->device_attr.max_qp_wr); DEBUG("priv->device_attr.max_sge is %d", priv->device_attr.max_sge); attr.init = (struct ibv_exp_qp_init_attr){ /* CQ to be associated with the send queue. */ .send_cq = tmpl.cq, /* CQ to be associated with the receive queue. */ .recv_cq = tmpl.cq, .cap = { /* Max number of outstanding WRs. */ .max_send_wr = ((priv->device_attr.max_qp_wr < desc) ? priv->device_attr.max_qp_wr : desc), /* Max number of scatter/gather elements in a WR. */ .max_send_sge = ((priv->device_attr.max_sge < MLX4_PMD_SGE_WR_N) ? priv->device_attr.max_sge : MLX4_PMD_SGE_WR_N), #if MLX4_PMD_MAX_INLINE > 0 .max_inline_data = MLX4_PMD_MAX_INLINE, #endif }, .qp_type = IBV_QPT_RAW_PACKET, /* Do *NOT* enable this, completions events are managed per * TX burst. */ .sq_sig_all = 0, .pd = priv->pd, .res_domain = tmpl.rd, .comp_mask = (IBV_EXP_QP_INIT_ATTR_PD | IBV_EXP_QP_INIT_ATTR_RES_DOMAIN), }; tmpl.qp = ibv_exp_create_qp(priv->ctx, &attr.init); if (tmpl.qp == NULL) { ret = (errno ? errno : EINVAL); ERROR("%p: QP creation failure: %s", (void *)dev, strerror(ret)); goto error; } #if MLX4_PMD_MAX_INLINE > 0 /* ibv_create_qp() updates this value. */ tmpl.max_inline = attr.init.cap.max_inline_data; #endif attr.mod = (struct ibv_exp_qp_attr){ /* Move the QP to this state. */ .qp_state = IBV_QPS_INIT, /* Primary port number. */ .port_num = priv->port }; ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod, (IBV_EXP_QP_STATE | IBV_EXP_QP_PORT)); if (ret) { ERROR("%p: QP state to IBV_QPS_INIT failed: %s", (void *)dev, strerror(ret)); goto error; } ret = txq_alloc_elts(&tmpl, desc); if (ret) { ERROR("%p: TXQ allocation failed: %s", (void *)dev, strerror(ret)); goto error; } attr.mod = (struct ibv_exp_qp_attr){ .qp_state = IBV_QPS_RTR }; ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod, IBV_EXP_QP_STATE); if (ret) { ERROR("%p: QP state to IBV_QPS_RTR failed: %s", (void *)dev, strerror(ret)); goto error; } attr.mod.qp_state = IBV_QPS_RTS; ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod, IBV_EXP_QP_STATE); if (ret) { ERROR("%p: QP state to IBV_QPS_RTS failed: %s", (void *)dev, strerror(ret)); goto error; } attr.params = (struct ibv_exp_query_intf_params){ .intf_scope = IBV_EXP_INTF_GLOBAL, .intf = IBV_EXP_INTF_CQ, .obj = tmpl.cq, }; tmpl.if_cq = ibv_exp_query_intf(priv->ctx, &attr.params, &status); if (tmpl.if_cq == NULL) { ERROR("%p: CQ interface family query failed with status %d", (void *)dev, status); goto error; } attr.params = (struct ibv_exp_query_intf_params){ .intf_scope = IBV_EXP_INTF_GLOBAL, .intf = IBV_EXP_INTF_QP_BURST, .obj = tmpl.qp, #ifdef HAVE_EXP_QP_BURST_CREATE_DISABLE_ETH_LOOPBACK /* MC loopback must be disabled when not using a VF. */ .family_flags = (!priv->vf ? IBV_EXP_QP_BURST_CREATE_DISABLE_ETH_LOOPBACK : 0), #endif }; tmpl.if_qp = ibv_exp_query_intf(priv->ctx, &attr.params, &status); if (tmpl.if_qp == NULL) { ERROR("%p: QP interface family query failed with status %d", (void *)dev, status); goto error; } /* Clean up txq in case we're reinitializing it. */ DEBUG("%p: cleaning-up old txq just in case", (void *)txq); txq_cleanup(txq); *txq = tmpl; DEBUG("%p: txq updated with %p", (void *)txq, (void *)&tmpl); /* Pre-register known mempools. */ rte_mempool_walk(txq_mp2mr_iter, txq); assert(ret == 0); return 0; error: txq_cleanup(&tmpl); assert(ret > 0); return ret; } /** * DPDK callback to configure a TX queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * TX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf) { struct priv *priv = dev->data->dev_private; struct txq *txq = (*priv->txqs)[idx]; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); DEBUG("%p: configuring queue %u for %u descriptors", (void *)dev, idx, desc); if (idx >= priv->txqs_n) { ERROR("%p: queue index out of range (%u >= %u)", (void *)dev, idx, priv->txqs_n); priv_unlock(priv); return -EOVERFLOW; } if (txq != NULL) { DEBUG("%p: reusing already allocated queue index %u (%p)", (void *)dev, idx, (void *)txq); if (priv->started) { priv_unlock(priv); return -EEXIST; } (*priv->txqs)[idx] = NULL; txq_cleanup(txq); } else { txq = rte_calloc_socket("TXQ", 1, sizeof(*txq), 0, socket); if (txq == NULL) { ERROR("%p: unable to allocate queue index %u", (void *)dev, idx); priv_unlock(priv); return -ENOMEM; } } ret = txq_setup(dev, txq, desc, socket, conf); if (ret) rte_free(txq); else { txq->stats.idx = idx; DEBUG("%p: adding TX queue %p to list", (void *)dev, (void *)txq); (*priv->txqs)[idx] = txq; /* Update send callback. */ dev->tx_pkt_burst = mlx4_tx_burst; } priv_unlock(priv); return -ret; } /** * DPDK callback to release a TX queue. * * @param dpdk_txq * Generic TX queue pointer. */ static void mlx4_tx_queue_release(void *dpdk_txq) { struct txq *txq = (struct txq *)dpdk_txq; struct priv *priv; unsigned int i; if (mlx4_is_secondary()) return; if (txq == NULL) return; priv = txq->priv; priv_lock(priv); for (i = 0; (i != priv->txqs_n); ++i) if ((*priv->txqs)[i] == txq) { DEBUG("%p: removing TX queue %p from list", (void *)priv->dev, (void *)txq); (*priv->txqs)[i] = NULL; break; } txq_cleanup(txq); rte_free(txq); priv_unlock(priv); } /* RX queues handling. */ /** * Allocate RX queue elements with scattered packets support. * * @param rxq * Pointer to RX queue structure. * @param elts_n * Number of elements to allocate. * @param[in] pool * If not NULL, fetch buffers from this array instead of allocating them * with rte_pktmbuf_alloc(). * * @return * 0 on success, errno value on failure. */ static int rxq_alloc_elts_sp(struct rxq *rxq, unsigned int elts_n, struct rte_mbuf **pool) { unsigned int i; struct rxq_elt_sp (*elts)[elts_n] = rte_calloc_socket("RXQ elements", 1, sizeof(*elts), 0, rxq->socket); int ret = 0; if (elts == NULL) { ERROR("%p: can't allocate packets array", (void *)rxq); ret = ENOMEM; goto error; } /* For each WR (packet). */ for (i = 0; (i != elts_n); ++i) { unsigned int j; struct rxq_elt_sp *elt = &(*elts)[i]; struct ibv_recv_wr *wr = &elt->wr; struct ibv_sge (*sges)[(elemof(elt->sges))] = &elt->sges; /* These two arrays must have the same size. */ assert(elemof(elt->sges) == elemof(elt->bufs)); /* Configure WR. */ wr->wr_id = i; wr->next = &(*elts)[(i + 1)].wr; wr->sg_list = &(*sges)[0]; wr->num_sge = elemof(*sges); /* For each SGE (segment). */ for (j = 0; (j != elemof(elt->bufs)); ++j) { struct ibv_sge *sge = &(*sges)[j]; struct rte_mbuf *buf; if (pool != NULL) { buf = *(pool++); assert(buf != NULL); rte_pktmbuf_reset(buf); } else buf = rte_pktmbuf_alloc(rxq->mp); if (buf == NULL) { assert(pool == NULL); ERROR("%p: empty mbuf pool", (void *)rxq); ret = ENOMEM; goto error; } elt->bufs[j] = buf; /* Headroom is reserved by rte_pktmbuf_alloc(). */ assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM); /* Buffer is supposed to be empty. */ assert(rte_pktmbuf_data_len(buf) == 0); assert(rte_pktmbuf_pkt_len(buf) == 0); /* sge->addr must be able to store a pointer. */ assert(sizeof(sge->addr) >= sizeof(uintptr_t)); if (j == 0) { /* The first SGE keeps its headroom. */ sge->addr = rte_pktmbuf_mtod(buf, uintptr_t); sge->length = (buf->buf_len - RTE_PKTMBUF_HEADROOM); } else { /* Subsequent SGEs lose theirs. */ assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM); SET_DATA_OFF(buf, 0); sge->addr = (uintptr_t)buf->buf_addr; sge->length = buf->buf_len; } sge->lkey = rxq->mr->lkey; /* Redundant check for tailroom. */ assert(sge->length == rte_pktmbuf_tailroom(buf)); } } /* The last WR pointer must be NULL. */ (*elts)[(i - 1)].wr.next = NULL; DEBUG("%p: allocated and configured %u WRs (%zu segments)", (void *)rxq, elts_n, (elts_n * elemof((*elts)[0].sges))); rxq->elts_n = elts_n; rxq->elts_head = 0; rxq->elts.sp = elts; assert(ret == 0); return 0; error: if (elts != NULL) { assert(pool == NULL); for (i = 0; (i != elemof(*elts)); ++i) { unsigned int j; struct rxq_elt_sp *elt = &(*elts)[i]; for (j = 0; (j != elemof(elt->bufs)); ++j) { struct rte_mbuf *buf = elt->bufs[j]; if (buf != NULL) rte_pktmbuf_free_seg(buf); } } rte_free(elts); } DEBUG("%p: failed, freed everything", (void *)rxq); assert(ret > 0); return ret; } /** * Free RX queue elements with scattered packets support. * * @param rxq * Pointer to RX queue structure. */ static void rxq_free_elts_sp(struct rxq *rxq) { unsigned int i; unsigned int elts_n = rxq->elts_n; struct rxq_elt_sp (*elts)[elts_n] = rxq->elts.sp; DEBUG("%p: freeing WRs", (void *)rxq); rxq->elts_n = 0; rxq->elts.sp = NULL; if (elts == NULL) return; for (i = 0; (i != elemof(*elts)); ++i) { unsigned int j; struct rxq_elt_sp *elt = &(*elts)[i]; for (j = 0; (j != elemof(elt->bufs)); ++j) { struct rte_mbuf *buf = elt->bufs[j]; if (buf != NULL) rte_pktmbuf_free_seg(buf); } } rte_free(elts); } /** * Allocate RX queue elements. * * @param rxq * Pointer to RX queue structure. * @param elts_n * Number of elements to allocate. * @param[in] pool * If not NULL, fetch buffers from this array instead of allocating them * with rte_pktmbuf_alloc(). * * @return * 0 on success, errno value on failure. */ static int rxq_alloc_elts(struct rxq *rxq, unsigned int elts_n, struct rte_mbuf **pool) { unsigned int i; struct rxq_elt (*elts)[elts_n] = rte_calloc_socket("RXQ elements", 1, sizeof(*elts), 0, rxq->socket); int ret = 0; if (elts == NULL) { ERROR("%p: can't allocate packets array", (void *)rxq); ret = ENOMEM; goto error; } /* For each WR (packet). */ for (i = 0; (i != elts_n); ++i) { struct rxq_elt *elt = &(*elts)[i]; struct ibv_recv_wr *wr = &elt->wr; struct ibv_sge *sge = &(*elts)[i].sge; struct rte_mbuf *buf; if (pool != NULL) { buf = *(pool++); assert(buf != NULL); rte_pktmbuf_reset(buf); } else buf = rte_pktmbuf_alloc(rxq->mp); if (buf == NULL) { assert(pool == NULL); ERROR("%p: empty mbuf pool", (void *)rxq); ret = ENOMEM; goto error; } /* Configure WR. Work request ID contains its own index in * the elts array and the offset between SGE buffer header and * its data. */ WR_ID(wr->wr_id).id = i; WR_ID(wr->wr_id).offset = (((uintptr_t)buf->buf_addr + RTE_PKTMBUF_HEADROOM) - (uintptr_t)buf); wr->next = &(*elts)[(i + 1)].wr; wr->sg_list = sge; wr->num_sge = 1; /* Headroom is reserved by rte_pktmbuf_alloc(). */ assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM); /* Buffer is supposed to be empty. */ assert(rte_pktmbuf_data_len(buf) == 0); assert(rte_pktmbuf_pkt_len(buf) == 0); /* sge->addr must be able to store a pointer. */ assert(sizeof(sge->addr) >= sizeof(uintptr_t)); /* SGE keeps its headroom. */ sge->addr = (uintptr_t) ((uint8_t *)buf->buf_addr + RTE_PKTMBUF_HEADROOM); sge->length = (buf->buf_len - RTE_PKTMBUF_HEADROOM); sge->lkey = rxq->mr->lkey; /* Redundant check for tailroom. */ assert(sge->length == rte_pktmbuf_tailroom(buf)); /* Make sure elts index and SGE mbuf pointer can be deduced * from WR ID. */ if ((WR_ID(wr->wr_id).id != i) || ((void *)((uintptr_t)sge->addr - WR_ID(wr->wr_id).offset) != buf)) { ERROR("%p: cannot store index and offset in WR ID", (void *)rxq); sge->addr = 0; rte_pktmbuf_free(buf); ret = EOVERFLOW; goto error; } } /* The last WR pointer must be NULL. */ (*elts)[(i - 1)].wr.next = NULL; DEBUG("%p: allocated and configured %u single-segment WRs", (void *)rxq, elts_n); rxq->elts_n = elts_n; rxq->elts_head = 0; rxq->elts.no_sp = elts; assert(ret == 0); return 0; error: if (elts != NULL) { assert(pool == NULL); for (i = 0; (i != elemof(*elts)); ++i) { struct rxq_elt *elt = &(*elts)[i]; struct rte_mbuf *buf; if (elt->sge.addr == 0) continue; assert(WR_ID(elt->wr.wr_id).id == i); buf = (void *)((uintptr_t)elt->sge.addr - WR_ID(elt->wr.wr_id).offset); rte_pktmbuf_free_seg(buf); } rte_free(elts); } DEBUG("%p: failed, freed everything", (void *)rxq); assert(ret > 0); return ret; } /** * Free RX queue elements. * * @param rxq * Pointer to RX queue structure. */ static void rxq_free_elts(struct rxq *rxq) { unsigned int i; unsigned int elts_n = rxq->elts_n; struct rxq_elt (*elts)[elts_n] = rxq->elts.no_sp; DEBUG("%p: freeing WRs", (void *)rxq); rxq->elts_n = 0; rxq->elts.no_sp = NULL; if (elts == NULL) return; for (i = 0; (i != elemof(*elts)); ++i) { struct rxq_elt *elt = &(*elts)[i]; struct rte_mbuf *buf; if (elt->sge.addr == 0) continue; assert(WR_ID(elt->wr.wr_id).id == i); buf = (void *)((uintptr_t)elt->sge.addr - WR_ID(elt->wr.wr_id).offset); rte_pktmbuf_free_seg(buf); } rte_free(elts); } /** * Delete flow steering rule. * * @param rxq * Pointer to RX queue structure. * @param mac_index * MAC address index. * @param vlan_index * VLAN index. */ static void rxq_del_flow(struct rxq *rxq, unsigned int mac_index, unsigned int vlan_index) { #ifndef NDEBUG struct priv *priv = rxq->priv; const uint8_t (*mac)[ETHER_ADDR_LEN] = (const uint8_t (*)[ETHER_ADDR_LEN]) priv->mac[mac_index].addr_bytes; #endif assert(rxq->mac_flow[mac_index][vlan_index] != NULL); DEBUG("%p: removing MAC address %02x:%02x:%02x:%02x:%02x:%02x index %u" " (VLAN ID %" PRIu16 ")", (void *)rxq, (*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5], mac_index, priv->vlan_filter[vlan_index].id); claim_zero(ibv_destroy_flow(rxq->mac_flow[mac_index][vlan_index])); rxq->mac_flow[mac_index][vlan_index] = NULL; } /** * Unregister a MAC address from a RX queue. * * @param rxq * Pointer to RX queue structure. * @param mac_index * MAC address index. */ static void rxq_mac_addr_del(struct rxq *rxq, unsigned int mac_index) { struct priv *priv = rxq->priv; unsigned int i; unsigned int vlans = 0; assert(mac_index < elemof(priv->mac)); if (!BITFIELD_ISSET(rxq->mac_configured, mac_index)) return; for (i = 0; (i != elemof(priv->vlan_filter)); ++i) { if (!priv->vlan_filter[i].enabled) continue; rxq_del_flow(rxq, mac_index, i); vlans++; } if (!vlans) { rxq_del_flow(rxq, mac_index, 0); } BITFIELD_RESET(rxq->mac_configured, mac_index); } /** * Unregister all MAC addresses from a RX queue. * * @param rxq * Pointer to RX queue structure. */ static void rxq_mac_addrs_del(struct rxq *rxq) { struct priv *priv = rxq->priv; unsigned int i; for (i = 0; (i != elemof(priv->mac)); ++i) rxq_mac_addr_del(rxq, i); } static int rxq_promiscuous_enable(struct rxq *); static void rxq_promiscuous_disable(struct rxq *); /** * Add single flow steering rule. * * @param rxq * Pointer to RX queue structure. * @param mac_index * MAC address index to register. * @param vlan_index * VLAN index. Use -1 for a flow without VLAN. * * @return * 0 on success, errno value on failure. */ static int rxq_add_flow(struct rxq *rxq, unsigned int mac_index, unsigned int vlan_index) { struct ibv_flow *flow; struct priv *priv = rxq->priv; const uint8_t (*mac)[ETHER_ADDR_LEN] = (const uint8_t (*)[ETHER_ADDR_LEN]) priv->mac[mac_index].addr_bytes; /* Allocate flow specification on the stack. */ struct __attribute__((packed)) { struct ibv_flow_attr attr; struct ibv_flow_spec_eth spec; } data; struct ibv_flow_attr *attr = &data.attr; struct ibv_flow_spec_eth *spec = &data.spec; assert(mac_index < elemof(priv->mac)); assert((vlan_index < elemof(priv->vlan_filter)) || (vlan_index == -1u)); /* * No padding must be inserted by the compiler between attr and spec. * This layout is expected by libibverbs. */ assert(((uint8_t *)attr + sizeof(*attr)) == (uint8_t *)spec); *attr = (struct ibv_flow_attr){ .type = IBV_FLOW_ATTR_NORMAL, .num_of_specs = 1, .port = priv->port, .flags = 0 }; *spec = (struct ibv_flow_spec_eth){ .type = IBV_FLOW_SPEC_ETH, .size = sizeof(*spec), .val = { .dst_mac = { (*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5] }, .vlan_tag = ((vlan_index != -1u) ? htons(priv->vlan_filter[vlan_index].id) : 0), }, .mask = { .dst_mac = "\xff\xff\xff\xff\xff\xff", .vlan_tag = ((vlan_index != -1u) ? htons(0xfff) : 0), } }; DEBUG("%p: adding MAC address %02x:%02x:%02x:%02x:%02x:%02x index %u" " (VLAN %s %" PRIu16 ")", (void *)rxq, (*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5], mac_index, ((vlan_index != -1u) ? "ID" : "index"), ((vlan_index != -1u) ? priv->vlan_filter[vlan_index].id : -1u)); /* Create related flow. */ errno = 0; flow = ibv_create_flow(rxq->qp, attr); if (flow == NULL) { /* It's not clear whether errno is always set in this case. */ ERROR("%p: flow configuration failed, errno=%d: %s", (void *)rxq, errno, (errno ? strerror(errno) : "Unknown error")); if (errno) return errno; return EINVAL; } if (vlan_index == -1u) vlan_index = 0; assert(rxq->mac_flow[mac_index][vlan_index] == NULL); rxq->mac_flow[mac_index][vlan_index] = flow; return 0; } /** * Register a MAC address in a RX queue. * * @param rxq * Pointer to RX queue structure. * @param mac_index * MAC address index to register. * * @return * 0 on success, errno value on failure. */ static int rxq_mac_addr_add(struct rxq *rxq, unsigned int mac_index) { struct priv *priv = rxq->priv; unsigned int i; unsigned int vlans = 0; int ret; assert(mac_index < elemof(priv->mac)); if (BITFIELD_ISSET(rxq->mac_configured, mac_index)) rxq_mac_addr_del(rxq, mac_index); /* Fill VLAN specifications. */ for (i = 0; (i != elemof(priv->vlan_filter)); ++i) { if (!priv->vlan_filter[i].enabled) continue; /* Create related flow. */ ret = rxq_add_flow(rxq, mac_index, i); if (!ret) { vlans++; continue; } /* Failure, rollback. */ while (i != 0) if (priv->vlan_filter[--i].enabled) rxq_del_flow(rxq, mac_index, i); assert(ret > 0); return ret; } /* In case there is no VLAN filter. */ if (!vlans) { ret = rxq_add_flow(rxq, mac_index, -1); if (ret) return ret; } BITFIELD_SET(rxq->mac_configured, mac_index); return 0; } /** * Register all MAC addresses in a RX queue. * * @param rxq * Pointer to RX queue structure. * * @return * 0 on success, errno value on failure. */ static int rxq_mac_addrs_add(struct rxq *rxq) { struct priv *priv = rxq->priv; unsigned int i; int ret; for (i = 0; (i != elemof(priv->mac)); ++i) { if (!BITFIELD_ISSET(priv->mac_configured, i)) continue; ret = rxq_mac_addr_add(rxq, i); if (!ret) continue; /* Failure, rollback. */ while (i != 0) rxq_mac_addr_del(rxq, --i); assert(ret > 0); return ret; } return 0; } /** * Unregister a MAC address. * * In RSS mode, the MAC address is unregistered from the parent queue, * otherwise it is unregistered from each queue directly. * * @param priv * Pointer to private structure. * @param mac_index * MAC address index. */ static void priv_mac_addr_del(struct priv *priv, unsigned int mac_index) { unsigned int i; assert(mac_index < elemof(priv->mac)); if (!BITFIELD_ISSET(priv->mac_configured, mac_index)) return; if (priv->rss) { rxq_mac_addr_del(&priv->rxq_parent, mac_index); goto end; } for (i = 0; (i != priv->dev->data->nb_rx_queues); ++i) rxq_mac_addr_del((*priv->rxqs)[i], mac_index); end: BITFIELD_RESET(priv->mac_configured, mac_index); } /** * Register a MAC address. * * In RSS mode, the MAC address is registered in the parent queue, * otherwise it is registered in each queue directly. * * @param priv * Pointer to private structure. * @param mac_index * MAC address index to use. * @param mac * MAC address to register. * * @return * 0 on success, errno value on failure. */ static int priv_mac_addr_add(struct priv *priv, unsigned int mac_index, const uint8_t (*mac)[ETHER_ADDR_LEN]) { unsigned int i; int ret; assert(mac_index < elemof(priv->mac)); /* First, make sure this address isn't already configured. */ for (i = 0; (i != elemof(priv->mac)); ++i) { /* Skip this index, it's going to be reconfigured. */ if (i == mac_index) continue; if (!BITFIELD_ISSET(priv->mac_configured, i)) continue; if (memcmp(priv->mac[i].addr_bytes, *mac, sizeof(*mac))) continue; /* Address already configured elsewhere, return with error. */ return EADDRINUSE; } if (BITFIELD_ISSET(priv->mac_configured, mac_index)) priv_mac_addr_del(priv, mac_index); priv->mac[mac_index] = (struct ether_addr){ { (*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5] } }; /* If device isn't started, this is all we need to do. */ if (!priv->started) { #ifndef NDEBUG /* Verify that all queues have this index disabled. */ for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; assert(!BITFIELD_ISSET ((*priv->rxqs)[i]->mac_configured, mac_index)); } #endif goto end; } if (priv->rss) { ret = rxq_mac_addr_add(&priv->rxq_parent, mac_index); if (ret) return ret; goto end; } for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; ret = rxq_mac_addr_add((*priv->rxqs)[i], mac_index); if (!ret) continue; /* Failure, rollback. */ while (i != 0) if ((*priv->rxqs)[(--i)] != NULL) rxq_mac_addr_del((*priv->rxqs)[i], mac_index); return ret; } end: BITFIELD_SET(priv->mac_configured, mac_index); return 0; } /** * Enable allmulti mode in a RX queue. * * @param rxq * Pointer to RX queue structure. * * @return * 0 on success, errno value on failure. */ static int rxq_allmulticast_enable(struct rxq *rxq) { struct ibv_flow *flow; struct ibv_flow_attr attr = { .type = IBV_FLOW_ATTR_MC_DEFAULT, .num_of_specs = 0, .port = rxq->priv->port, .flags = 0 }; DEBUG("%p: enabling allmulticast mode", (void *)rxq); if (rxq->allmulti_flow != NULL) return EBUSY; errno = 0; flow = ibv_create_flow(rxq->qp, &attr); if (flow == NULL) { /* It's not clear whether errno is always set in this case. */ ERROR("%p: flow configuration failed, errno=%d: %s", (void *)rxq, errno, (errno ? strerror(errno) : "Unknown error")); if (errno) return errno; return EINVAL; } rxq->allmulti_flow = flow; DEBUG("%p: allmulticast mode enabled", (void *)rxq); return 0; } /** * Disable allmulti mode in a RX queue. * * @param rxq * Pointer to RX queue structure. */ static void rxq_allmulticast_disable(struct rxq *rxq) { DEBUG("%p: disabling allmulticast mode", (void *)rxq); if (rxq->allmulti_flow == NULL) return; claim_zero(ibv_destroy_flow(rxq->allmulti_flow)); rxq->allmulti_flow = NULL; DEBUG("%p: allmulticast mode disabled", (void *)rxq); } /** * Enable promiscuous mode in a RX queue. * * @param rxq * Pointer to RX queue structure. * * @return * 0 on success, errno value on failure. */ static int rxq_promiscuous_enable(struct rxq *rxq) { struct ibv_flow *flow; struct ibv_flow_attr attr = { .type = IBV_FLOW_ATTR_ALL_DEFAULT, .num_of_specs = 0, .port = rxq->priv->port, .flags = 0 }; if (rxq->priv->vf) return 0; DEBUG("%p: enabling promiscuous mode", (void *)rxq); if (rxq->promisc_flow != NULL) return EBUSY; errno = 0; flow = ibv_create_flow(rxq->qp, &attr); if (flow == NULL) { /* It's not clear whether errno is always set in this case. */ ERROR("%p: flow configuration failed, errno=%d: %s", (void *)rxq, errno, (errno ? strerror(errno) : "Unknown error")); if (errno) return errno; return EINVAL; } rxq->promisc_flow = flow; DEBUG("%p: promiscuous mode enabled", (void *)rxq); return 0; } /** * Disable promiscuous mode in a RX queue. * * @param rxq * Pointer to RX queue structure. */ static void rxq_promiscuous_disable(struct rxq *rxq) { if (rxq->priv->vf) return; DEBUG("%p: disabling promiscuous mode", (void *)rxq); if (rxq->promisc_flow == NULL) return; claim_zero(ibv_destroy_flow(rxq->promisc_flow)); rxq->promisc_flow = NULL; DEBUG("%p: promiscuous mode disabled", (void *)rxq); } /** * Clean up a RX queue. * * Destroy objects, free allocated memory and reset the structure for reuse. * * @param rxq * Pointer to RX queue structure. */ static void rxq_cleanup(struct rxq *rxq) { struct ibv_exp_release_intf_params params; DEBUG("cleaning up %p", (void *)rxq); if (rxq->sp) rxq_free_elts_sp(rxq); else rxq_free_elts(rxq); if (rxq->if_qp != NULL) { assert(rxq->priv != NULL); assert(rxq->priv->ctx != NULL); assert(rxq->qp != NULL); params = (struct ibv_exp_release_intf_params){ .comp_mask = 0, }; claim_zero(ibv_exp_release_intf(rxq->priv->ctx, rxq->if_qp, ¶ms)); } if (rxq->if_cq != NULL) { assert(rxq->priv != NULL); assert(rxq->priv->ctx != NULL); assert(rxq->cq != NULL); params = (struct ibv_exp_release_intf_params){ .comp_mask = 0, }; claim_zero(ibv_exp_release_intf(rxq->priv->ctx, rxq->if_cq, ¶ms)); } if (rxq->qp != NULL) { rxq_promiscuous_disable(rxq); rxq_allmulticast_disable(rxq); rxq_mac_addrs_del(rxq); claim_zero(ibv_destroy_qp(rxq->qp)); } if (rxq->cq != NULL) claim_zero(ibv_destroy_cq(rxq->cq)); if (rxq->rd != NULL) { struct ibv_exp_destroy_res_domain_attr attr = { .comp_mask = 0, }; assert(rxq->priv != NULL); assert(rxq->priv->ctx != NULL); claim_zero(ibv_exp_destroy_res_domain(rxq->priv->ctx, rxq->rd, &attr)); } if (rxq->mr != NULL) claim_zero(ibv_dereg_mr(rxq->mr)); memset(rxq, 0, sizeof(*rxq)); } /** * Translate RX completion flags to packet type. * * @param flags * RX completion flags returned by poll_length_flags(). * * @return * Packet type for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_pkt_type(uint32_t flags) { uint32_t pkt_type; if (flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) pkt_type = TRANSPOSE(flags, IBV_EXP_CQ_RX_OUTER_IPV4_PACKET, RTE_PTYPE_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_OUTER_IPV6_PACKET, RTE_PTYPE_L3_IPV6) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV4_PACKET, RTE_PTYPE_INNER_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV6_PACKET, RTE_PTYPE_INNER_L3_IPV6); else pkt_type = TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV4_PACKET, RTE_PTYPE_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV6_PACKET, RTE_PTYPE_L3_IPV6); return pkt_type; } /** * Translate RX completion flags to offload flags. * * @param[in] rxq * Pointer to RX queue structure. * @param flags * RX completion flags returned by poll_length_flags(). * * @return * Offload flags (ol_flags) for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_ol_flags(const struct rxq *rxq, uint32_t flags) { uint32_t ol_flags = 0; if (rxq->csum) ol_flags |= TRANSPOSE(~flags, IBV_EXP_CQ_RX_IP_CSUM_OK, PKT_RX_IP_CKSUM_BAD) | TRANSPOSE(~flags, IBV_EXP_CQ_RX_TCP_UDP_CSUM_OK, PKT_RX_L4_CKSUM_BAD); /* * PKT_RX_IP_CKSUM_BAD and PKT_RX_L4_CKSUM_BAD are used in place * of PKT_RX_EIP_CKSUM_BAD because the latter is not functional * (its value is 0). */ if ((flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) && (rxq->csum_l2tun)) ol_flags |= TRANSPOSE(~flags, IBV_EXP_CQ_RX_OUTER_IP_CSUM_OK, PKT_RX_IP_CKSUM_BAD) | TRANSPOSE(~flags, IBV_EXP_CQ_RX_OUTER_TCP_UDP_CSUM_OK, PKT_RX_L4_CKSUM_BAD); return ol_flags; } static uint16_t mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n); /** * DPDK callback for RX with scattered packets support. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ static uint16_t mlx4_rx_burst_sp(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = (struct rxq *)dpdk_rxq; struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp; const unsigned int elts_n = rxq->elts_n; unsigned int elts_head = rxq->elts_head; struct ibv_recv_wr head; struct ibv_recv_wr **next = &head.next; struct ibv_recv_wr *bad_wr; unsigned int i; unsigned int pkts_ret = 0; int ret; if (unlikely(!rxq->sp)) return mlx4_rx_burst(dpdk_rxq, pkts, pkts_n); if (unlikely(elts == NULL)) /* See RTE_DEV_CMD_SET_MTU. */ return 0; for (i = 0; (i != pkts_n); ++i) { struct rxq_elt_sp *elt = &(*elts)[elts_head]; struct ibv_recv_wr *wr = &elt->wr; uint64_t wr_id = wr->wr_id; unsigned int len; unsigned int pkt_buf_len; struct rte_mbuf *pkt_buf = NULL; /* Buffer returned in pkts. */ struct rte_mbuf **pkt_buf_next = &pkt_buf; unsigned int seg_headroom = RTE_PKTMBUF_HEADROOM; unsigned int j = 0; uint32_t flags; /* Sanity checks. */ #ifdef NDEBUG (void)wr_id; #endif assert(wr_id < rxq->elts_n); assert(wr->sg_list == elt->sges); assert(wr->num_sge == elemof(elt->sges)); assert(elts_head < rxq->elts_n); assert(rxq->elts_head < rxq->elts_n); ret = rxq->if_cq->poll_length_flags(rxq->cq, NULL, NULL, &flags); if (unlikely(ret < 0)) { struct ibv_wc wc; int wcs_n; DEBUG("rxq=%p, poll_length() failed (ret=%d)", (void *)rxq, ret); /* ibv_poll_cq() must be used in case of failure. */ wcs_n = ibv_poll_cq(rxq->cq, 1, &wc); if (unlikely(wcs_n == 0)) break; if (unlikely(wcs_n < 0)) { DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)", (void *)rxq, wcs_n); break; } assert(wcs_n == 1); if (unlikely(wc.status != IBV_WC_SUCCESS)) { /* Whatever, just repost the offending WR. */ DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work" " completion status (%d): %s", (void *)rxq, wc.wr_id, wc.status, ibv_wc_status_str(wc.status)); #ifdef MLX4_PMD_SOFT_COUNTERS /* Increment dropped packets counter. */ ++rxq->stats.idropped; #endif /* Link completed WRs together for repost. */ *next = wr; next = &wr->next; goto repost; } ret = wc.byte_len; } if (ret == 0) break; len = ret; pkt_buf_len = len; /* Link completed WRs together for repost. */ *next = wr; next = &wr->next; /* * Replace spent segments with new ones, concatenate and * return them as pkt_buf. */ while (1) { struct ibv_sge *sge = &elt->sges[j]; struct rte_mbuf *seg = elt->bufs[j]; struct rte_mbuf *rep; unsigned int seg_tailroom; /* * Fetch initial bytes of packet descriptor into a * cacheline while allocating rep. */ rte_prefetch0(seg); rep = __rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { /* * Unable to allocate a replacement mbuf, * repost WR. */ DEBUG("rxq=%p, wr_id=%" PRIu64 ":" " can't allocate a new mbuf", (void *)rxq, wr_id); if (pkt_buf != NULL) { *pkt_buf_next = NULL; rte_pktmbuf_free(pkt_buf); } /* Increase out of memory counters. */ ++rxq->stats.rx_nombuf; ++rxq->priv->dev->data->rx_mbuf_alloc_failed; goto repost; } #ifndef NDEBUG /* Poison user-modifiable fields in rep. */ NEXT(rep) = (void *)((uintptr_t)-1); SET_DATA_OFF(rep, 0xdead); DATA_LEN(rep) = 0xd00d; PKT_LEN(rep) = 0xdeadd00d; NB_SEGS(rep) = 0x2a; PORT(rep) = 0x2a; rep->ol_flags = -1; #endif assert(rep->buf_len == seg->buf_len); assert(rep->buf_len == rxq->mb_len); /* Reconfigure sge to use rep instead of seg. */ assert(sge->lkey == rxq->mr->lkey); sge->addr = ((uintptr_t)rep->buf_addr + seg_headroom); elt->bufs[j] = rep; ++j; /* Update pkt_buf if it's the first segment, or link * seg to the previous one and update pkt_buf_next. */ *pkt_buf_next = seg; pkt_buf_next = &NEXT(seg); /* Update seg information. */ seg_tailroom = (seg->buf_len - seg_headroom); assert(sge->length == seg_tailroom); SET_DATA_OFF(seg, seg_headroom); if (likely(len <= seg_tailroom)) { /* Last segment. */ DATA_LEN(seg) = len; PKT_LEN(seg) = len; /* Sanity check. */ assert(rte_pktmbuf_headroom(seg) == seg_headroom); assert(rte_pktmbuf_tailroom(seg) == (seg_tailroom - len)); break; } DATA_LEN(seg) = seg_tailroom; PKT_LEN(seg) = seg_tailroom; /* Sanity check. */ assert(rte_pktmbuf_headroom(seg) == seg_headroom); assert(rte_pktmbuf_tailroom(seg) == 0); /* Fix len and clear headroom for next segments. */ len -= seg_tailroom; seg_headroom = 0; } /* Update head and tail segments. */ *pkt_buf_next = NULL; assert(pkt_buf != NULL); assert(j != 0); NB_SEGS(pkt_buf) = j; PORT(pkt_buf) = rxq->port_id; PKT_LEN(pkt_buf) = pkt_buf_len; pkt_buf->packet_type = rxq_cq_to_pkt_type(flags); pkt_buf->ol_flags = rxq_cq_to_ol_flags(rxq, flags); /* Return packet. */ *(pkts++) = pkt_buf; ++pkts_ret; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increase bytes counter. */ rxq->stats.ibytes += pkt_buf_len; #endif repost: if (++elts_head >= elts_n) elts_head = 0; continue; } if (unlikely(i == 0)) return 0; *next = NULL; /* Repost WRs. */ #ifdef DEBUG_RECV DEBUG("%p: reposting %d WRs", (void *)rxq, i); #endif ret = ibv_post_recv(rxq->qp, head.next, &bad_wr); if (unlikely(ret)) { /* Inability to repost WRs is fatal. */ DEBUG("%p: ibv_post_recv(): failed for WR %p: %s", (void *)rxq->priv, (void *)bad_wr, strerror(ret)); abort(); } rxq->elts_head = elts_head; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increase packets counter. */ rxq->stats.ipackets += pkts_ret; #endif return pkts_ret; } /** * DPDK callback for RX. * * The following function is the same as mlx4_rx_burst_sp(), except it doesn't * manage scattered packets. Improves performance when MRU is lower than the * size of the first segment. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ static uint16_t mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = (struct rxq *)dpdk_rxq; struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp; const unsigned int elts_n = rxq->elts_n; unsigned int elts_head = rxq->elts_head; struct ibv_sge sges[pkts_n]; unsigned int i; unsigned int pkts_ret = 0; int ret; if (unlikely(rxq->sp)) return mlx4_rx_burst_sp(dpdk_rxq, pkts, pkts_n); for (i = 0; (i != pkts_n); ++i) { struct rxq_elt *elt = &(*elts)[elts_head]; struct ibv_recv_wr *wr = &elt->wr; uint64_t wr_id = wr->wr_id; unsigned int len; struct rte_mbuf *seg = (void *)((uintptr_t)elt->sge.addr - WR_ID(wr_id).offset); struct rte_mbuf *rep; uint32_t flags; /* Sanity checks. */ assert(WR_ID(wr_id).id < rxq->elts_n); assert(wr->sg_list == &elt->sge); assert(wr->num_sge == 1); assert(elts_head < rxq->elts_n); assert(rxq->elts_head < rxq->elts_n); /* * Fetch initial bytes of packet descriptor into a * cacheline while allocating rep. */ rte_prefetch0(seg); rte_prefetch0(&seg->cacheline1); ret = rxq->if_cq->poll_length_flags(rxq->cq, NULL, NULL, &flags); if (unlikely(ret < 0)) { struct ibv_wc wc; int wcs_n; DEBUG("rxq=%p, poll_length() failed (ret=%d)", (void *)rxq, ret); /* ibv_poll_cq() must be used in case of failure. */ wcs_n = ibv_poll_cq(rxq->cq, 1, &wc); if (unlikely(wcs_n == 0)) break; if (unlikely(wcs_n < 0)) { DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)", (void *)rxq, wcs_n); break; } assert(wcs_n == 1); if (unlikely(wc.status != IBV_WC_SUCCESS)) { /* Whatever, just repost the offending WR. */ DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work" " completion status (%d): %s", (void *)rxq, wc.wr_id, wc.status, ibv_wc_status_str(wc.status)); #ifdef MLX4_PMD_SOFT_COUNTERS /* Increment dropped packets counter. */ ++rxq->stats.idropped; #endif /* Add SGE to array for repost. */ sges[i] = elt->sge; goto repost; } ret = wc.byte_len; } if (ret == 0) break; len = ret; rep = __rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { /* * Unable to allocate a replacement mbuf, * repost WR. */ DEBUG("rxq=%p, wr_id=%" PRIu32 ":" " can't allocate a new mbuf", (void *)rxq, WR_ID(wr_id).id); /* Increase out of memory counters. */ ++rxq->stats.rx_nombuf; ++rxq->priv->dev->data->rx_mbuf_alloc_failed; goto repost; } /* Reconfigure sge to use rep instead of seg. */ elt->sge.addr = (uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM; assert(elt->sge.lkey == rxq->mr->lkey); WR_ID(wr->wr_id).offset = (((uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM) - (uintptr_t)rep); assert(WR_ID(wr->wr_id).id == WR_ID(wr_id).id); /* Add SGE to array for repost. */ sges[i] = elt->sge; /* Update seg information. */ SET_DATA_OFF(seg, RTE_PKTMBUF_HEADROOM); NB_SEGS(seg) = 1; PORT(seg) = rxq->port_id; NEXT(seg) = NULL; PKT_LEN(seg) = len; DATA_LEN(seg) = len; seg->packet_type = rxq_cq_to_pkt_type(flags); seg->ol_flags = rxq_cq_to_ol_flags(rxq, flags); /* Return packet. */ *(pkts++) = seg; ++pkts_ret; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increase bytes counter. */ rxq->stats.ibytes += len; #endif repost: if (++elts_head >= elts_n) elts_head = 0; continue; } if (unlikely(i == 0)) return 0; /* Repost WRs. */ #ifdef DEBUG_RECV DEBUG("%p: reposting %u WRs", (void *)rxq, i); #endif ret = rxq->if_qp->recv_burst(rxq->qp, sges, i); if (unlikely(ret)) { /* Inability to repost WRs is fatal. */ DEBUG("%p: recv_burst(): failed (ret=%d)", (void *)rxq->priv, ret); abort(); } rxq->elts_head = elts_head; #ifdef MLX4_PMD_SOFT_COUNTERS /* Increase packets counter. */ rxq->stats.ipackets += pkts_ret; #endif return pkts_ret; } /** * DPDK callback for RX in secondary processes. * * This function configures all queues from primary process information * if necessary before reverting to the normal RX burst callback. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ static uint16_t mlx4_rx_burst_secondary_setup(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = dpdk_rxq; struct priv *priv = mlx4_secondary_data_setup(rxq->priv); struct priv *primary_priv; unsigned int index; if (priv == NULL) return 0; primary_priv = mlx4_secondary_data[priv->dev->data->port_id].primary_priv; /* Look for queue index in both private structures. */ for (index = 0; index != priv->rxqs_n; ++index) if (((*primary_priv->rxqs)[index] == rxq) || ((*priv->rxqs)[index] == rxq)) break; if (index == priv->rxqs_n) return 0; rxq = (*priv->rxqs)[index]; return priv->dev->rx_pkt_burst(rxq, pkts, pkts_n); } /** * Allocate a Queue Pair. * Optionally setup inline receive if supported. * * @param priv * Pointer to private structure. * @param cq * Completion queue to associate with QP. * @param desc * Number of descriptors in QP (hint only). * * @return * QP pointer or NULL in case of error. */ static struct ibv_qp * rxq_setup_qp(struct priv *priv, struct ibv_cq *cq, uint16_t desc, struct ibv_exp_res_domain *rd) { struct ibv_exp_qp_init_attr attr = { /* CQ to be associated with the send queue. */ .send_cq = cq, /* CQ to be associated with the receive queue. */ .recv_cq = cq, .cap = { /* Max number of outstanding WRs. */ .max_recv_wr = ((priv->device_attr.max_qp_wr < desc) ? priv->device_attr.max_qp_wr : desc), /* Max number of scatter/gather elements in a WR. */ .max_recv_sge = ((priv->device_attr.max_sge < MLX4_PMD_SGE_WR_N) ? priv->device_attr.max_sge : MLX4_PMD_SGE_WR_N), }, .qp_type = IBV_QPT_RAW_PACKET, .comp_mask = (IBV_EXP_QP_INIT_ATTR_PD | IBV_EXP_QP_INIT_ATTR_RES_DOMAIN), .pd = priv->pd, .res_domain = rd, }; #ifdef INLINE_RECV attr.max_inl_recv = priv->inl_recv_size; attr.comp_mask |= IBV_EXP_QP_INIT_ATTR_INL_RECV; #endif return ibv_exp_create_qp(priv->ctx, &attr); } #ifdef RSS_SUPPORT /** * Allocate a RSS Queue Pair. * Optionally setup inline receive if supported. * * @param priv * Pointer to private structure. * @param cq * Completion queue to associate with QP. * @param desc * Number of descriptors in QP (hint only). * @param parent * If nonzero, create a parent QP, otherwise a child. * * @return * QP pointer or NULL in case of error. */ static struct ibv_qp * rxq_setup_qp_rss(struct priv *priv, struct ibv_cq *cq, uint16_t desc, int parent, struct ibv_exp_res_domain *rd) { struct ibv_exp_qp_init_attr attr = { /* CQ to be associated with the send queue. */ .send_cq = cq, /* CQ to be associated with the receive queue. */ .recv_cq = cq, .cap = { /* Max number of outstanding WRs. */ .max_recv_wr = ((priv->device_attr.max_qp_wr < desc) ? priv->device_attr.max_qp_wr : desc), /* Max number of scatter/gather elements in a WR. */ .max_recv_sge = ((priv->device_attr.max_sge < MLX4_PMD_SGE_WR_N) ? priv->device_attr.max_sge : MLX4_PMD_SGE_WR_N), }, .qp_type = IBV_QPT_RAW_PACKET, .comp_mask = (IBV_EXP_QP_INIT_ATTR_PD | IBV_EXP_QP_INIT_ATTR_RES_DOMAIN | IBV_EXP_QP_INIT_ATTR_QPG), .pd = priv->pd, .res_domain = rd, }; #ifdef INLINE_RECV attr.max_inl_recv = priv->inl_recv_size, attr.comp_mask |= IBV_EXP_QP_INIT_ATTR_INL_RECV; #endif if (parent) { attr.qpg.qpg_type = IBV_EXP_QPG_PARENT; /* TSS isn't necessary. */ attr.qpg.parent_attrib.tss_child_count = 0; attr.qpg.parent_attrib.rss_child_count = priv->rxqs_n; DEBUG("initializing parent RSS queue"); } else { attr.qpg.qpg_type = IBV_EXP_QPG_CHILD_RX; attr.qpg.qpg_parent = priv->rxq_parent.qp; DEBUG("initializing child RSS queue"); } return ibv_exp_create_qp(priv->ctx, &attr); } #endif /* RSS_SUPPORT */ /** * Reconfigure a RX queue with new parameters. * * rxq_rehash() does not allocate mbufs, which, if not done from the right * thread (such as a control thread), may corrupt the pool. * In case of failure, the queue is left untouched. * * @param dev * Pointer to Ethernet device structure. * @param rxq * RX queue pointer. * * @return * 0 on success, errno value on failure. */ static int rxq_rehash(struct rte_eth_dev *dev, struct rxq *rxq) { struct priv *priv = rxq->priv; struct rxq tmpl = *rxq; unsigned int mbuf_n; unsigned int desc_n; struct rte_mbuf **pool; unsigned int i, k; struct ibv_exp_qp_attr mod; struct ibv_recv_wr *bad_wr; int err; int parent = (rxq == &priv->rxq_parent); if (parent) { ERROR("%p: cannot rehash parent queue %p", (void *)dev, (void *)rxq); return EINVAL; } DEBUG("%p: rehashing queue %p", (void *)dev, (void *)rxq); /* Number of descriptors and mbufs currently allocated. */ desc_n = (tmpl.elts_n * (tmpl.sp ? MLX4_PMD_SGE_WR_N : 1)); mbuf_n = desc_n; /* Toggle RX checksum offload if hardware supports it. */ if (priv->hw_csum) { tmpl.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum; rxq->csum = tmpl.csum; } if (priv->hw_csum_l2tun) { tmpl.csum_l2tun = !!dev->data->dev_conf.rxmode.hw_ip_checksum; rxq->csum_l2tun = tmpl.csum_l2tun; } /* Enable scattered packets support for this queue if necessary. */ if ((dev->data->dev_conf.rxmode.jumbo_frame) && (dev->data->dev_conf.rxmode.max_rx_pkt_len > (tmpl.mb_len - RTE_PKTMBUF_HEADROOM))) { tmpl.sp = 1; desc_n /= MLX4_PMD_SGE_WR_N; } else tmpl.sp = 0; DEBUG("%p: %s scattered packets support (%u WRs)", (void *)dev, (tmpl.sp ? "enabling" : "disabling"), desc_n); /* If scatter mode is the same as before, nothing to do. */ if (tmpl.sp == rxq->sp) { DEBUG("%p: nothing to do", (void *)dev); return 0; } /* Remove attached flows if RSS is disabled (no parent queue). */ if (!priv->rss) { rxq_allmulticast_disable(&tmpl); rxq_promiscuous_disable(&tmpl); rxq_mac_addrs_del(&tmpl); /* Update original queue in case of failure. */ rxq->allmulti_flow = tmpl.allmulti_flow; rxq->promisc_flow = tmpl.promisc_flow; memcpy(rxq->mac_configured, tmpl.mac_configured, sizeof(rxq->mac_configured)); memcpy(rxq->mac_flow, tmpl.mac_flow, sizeof(rxq->mac_flow)); } /* From now on, any failure will render the queue unusable. * Reinitialize QP. */ mod = (struct ibv_exp_qp_attr){ .qp_state = IBV_QPS_RESET }; err = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE); if (err) { ERROR("%p: cannot reset QP: %s", (void *)dev, strerror(err)); assert(err > 0); return err; } err = ibv_resize_cq(tmpl.cq, desc_n); if (err) { ERROR("%p: cannot resize CQ: %s", (void *)dev, strerror(err)); assert(err > 0); return err; } mod = (struct ibv_exp_qp_attr){ /* Move the QP to this state. */ .qp_state = IBV_QPS_INIT, /* Primary port number. */ .port_num = priv->port }; err = ibv_exp_modify_qp(tmpl.qp, &mod, (IBV_EXP_QP_STATE | #ifdef RSS_SUPPORT (parent ? IBV_EXP_QP_GROUP_RSS : 0) | #endif /* RSS_SUPPORT */ IBV_EXP_QP_PORT)); if (err) { ERROR("%p: QP state to IBV_QPS_INIT failed: %s", (void *)dev, strerror(err)); assert(err > 0); return err; }; /* Reconfigure flows. Do not care for errors. */ if (!priv->rss) { rxq_mac_addrs_add(&tmpl); if (priv->promisc) rxq_promiscuous_enable(&tmpl); if (priv->allmulti) rxq_allmulticast_enable(&tmpl); /* Update original queue in case of failure. */ rxq->allmulti_flow = tmpl.allmulti_flow; rxq->promisc_flow = tmpl.promisc_flow; memcpy(rxq->mac_configured, tmpl.mac_configured, sizeof(rxq->mac_configured)); memcpy(rxq->mac_flow, tmpl.mac_flow, sizeof(rxq->mac_flow)); } /* Allocate pool. */ pool = rte_malloc(__func__, (mbuf_n * sizeof(*pool)), 0); if (pool == NULL) { ERROR("%p: cannot allocate memory", (void *)dev); return ENOBUFS; } /* Snatch mbufs from original queue. */ k = 0; if (rxq->sp) { struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp; for (i = 0; (i != elemof(*elts)); ++i) { struct rxq_elt_sp *elt = &(*elts)[i]; unsigned int j; for (j = 0; (j != elemof(elt->bufs)); ++j) { assert(elt->bufs[j] != NULL); pool[k++] = elt->bufs[j]; } } } else { struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp; for (i = 0; (i != elemof(*elts)); ++i) { struct rxq_elt *elt = &(*elts)[i]; struct rte_mbuf *buf = (void *) ((uintptr_t)elt->sge.addr - WR_ID(elt->wr.wr_id).offset); assert(WR_ID(elt->wr.wr_id).id == i); pool[k++] = buf; } } assert(k == mbuf_n); tmpl.elts_n = 0; tmpl.elts.sp = NULL; assert((void *)&tmpl.elts.sp == (void *)&tmpl.elts.no_sp); err = ((tmpl.sp) ? rxq_alloc_elts_sp(&tmpl, desc_n, pool) : rxq_alloc_elts(&tmpl, desc_n, pool)); if (err) { ERROR("%p: cannot reallocate WRs, aborting", (void *)dev); rte_free(pool); assert(err > 0); return err; } assert(tmpl.elts_n == desc_n); assert(tmpl.elts.sp != NULL); rte_free(pool); /* Clean up original data. */ rxq->elts_n = 0; rte_free(rxq->elts.sp); rxq->elts.sp = NULL; /* Post WRs. */ err = ibv_post_recv(tmpl.qp, (tmpl.sp ? &(*tmpl.elts.sp)[0].wr : &(*tmpl.elts.no_sp)[0].wr), &bad_wr); if (err) { ERROR("%p: ibv_post_recv() failed for WR %p: %s", (void *)dev, (void *)bad_wr, strerror(err)); goto skip_rtr; } mod = (struct ibv_exp_qp_attr){ .qp_state = IBV_QPS_RTR }; err = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE); if (err) ERROR("%p: QP state to IBV_QPS_RTR failed: %s", (void *)dev, strerror(err)); skip_rtr: *rxq = tmpl; assert(err >= 0); return err; } /** * Configure a RX queue. * * @param dev * Pointer to Ethernet device structure. * @param rxq * Pointer to RX queue structure. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * @param mp * Memory pool for buffer allocations. * * @return * 0 on success, errno value on failure. */ static int rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp) { struct priv *priv = dev->data->dev_private; struct rxq tmpl = { .priv = priv, .mp = mp, .socket = socket }; struct ibv_exp_qp_attr mod; union { struct ibv_exp_query_intf_params params; struct ibv_exp_cq_init_attr cq; struct ibv_exp_res_domain_init_attr rd; } attr; enum ibv_exp_query_intf_status status; struct ibv_recv_wr *bad_wr; struct rte_mbuf *buf; int ret = 0; int parent = (rxq == &priv->rxq_parent); (void)conf; /* Thresholds configuration (ignored). */ /* * If this is a parent queue, hardware must support RSS and * RSS must be enabled. */ assert((!parent) || ((priv->hw_rss) && (priv->rss))); if (parent) { /* Even if unused, ibv_create_cq() requires at least one * descriptor. */ desc = 1; goto skip_mr; } if ((desc == 0) || (desc % MLX4_PMD_SGE_WR_N)) { ERROR("%p: invalid number of RX descriptors (must be a" " multiple of %d)", (void *)dev, MLX4_PMD_SGE_WR_N); return EINVAL; } /* Get mbuf length. */ buf = rte_pktmbuf_alloc(mp); if (buf == NULL) { ERROR("%p: unable to allocate mbuf", (void *)dev); return ENOMEM; } tmpl.mb_len = buf->buf_len; assert((rte_pktmbuf_headroom(buf) + rte_pktmbuf_tailroom(buf)) == tmpl.mb_len); assert(rte_pktmbuf_headroom(buf) == RTE_PKTMBUF_HEADROOM); rte_pktmbuf_free(buf); /* Toggle RX checksum offload if hardware supports it. */ if (priv->hw_csum) tmpl.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum; if (priv->hw_csum_l2tun) tmpl.csum_l2tun = !!dev->data->dev_conf.rxmode.hw_ip_checksum; /* Enable scattered packets support for this queue if necessary. */ if ((dev->data->dev_conf.rxmode.jumbo_frame) && (dev->data->dev_conf.rxmode.max_rx_pkt_len > (tmpl.mb_len - RTE_PKTMBUF_HEADROOM))) { tmpl.sp = 1; desc /= MLX4_PMD_SGE_WR_N; } DEBUG("%p: %s scattered packets support (%u WRs)", (void *)dev, (tmpl.sp ? "enabling" : "disabling"), desc); /* Use the entire RX mempool as the memory region. */ tmpl.mr = ibv_reg_mr(priv->pd, (void *)mp->elt_va_start, (mp->elt_va_end - mp->elt_va_start), (IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE)); if (tmpl.mr == NULL) { ret = EINVAL; ERROR("%p: MR creation failure: %s", (void *)dev, strerror(ret)); goto error; } skip_mr: attr.rd = (struct ibv_exp_res_domain_init_attr){ .comp_mask = (IBV_EXP_RES_DOMAIN_THREAD_MODEL | IBV_EXP_RES_DOMAIN_MSG_MODEL), .thread_model = IBV_EXP_THREAD_SINGLE, .msg_model = IBV_EXP_MSG_HIGH_BW, }; tmpl.rd = ibv_exp_create_res_domain(priv->ctx, &attr.rd); if (tmpl.rd == NULL) { ret = ENOMEM; ERROR("%p: RD creation failure: %s", (void *)dev, strerror(ret)); goto error; } attr.cq = (struct ibv_exp_cq_init_attr){ .comp_mask = IBV_EXP_CQ_INIT_ATTR_RES_DOMAIN, .res_domain = tmpl.rd, }; tmpl.cq = ibv_exp_create_cq(priv->ctx, desc, NULL, NULL, 0, &attr.cq); if (tmpl.cq == NULL) { ret = ENOMEM; ERROR("%p: CQ creation failure: %s", (void *)dev, strerror(ret)); goto error; } DEBUG("priv->device_attr.max_qp_wr is %d", priv->device_attr.max_qp_wr); DEBUG("priv->device_attr.max_sge is %d", priv->device_attr.max_sge); #ifdef RSS_SUPPORT if (priv->rss) tmpl.qp = rxq_setup_qp_rss(priv, tmpl.cq, desc, parent, tmpl.rd); else #endif /* RSS_SUPPORT */ tmpl.qp = rxq_setup_qp(priv, tmpl.cq, desc, tmpl.rd); if (tmpl.qp == NULL) { ret = (errno ? errno : EINVAL); ERROR("%p: QP creation failure: %s", (void *)dev, strerror(ret)); goto error; } mod = (struct ibv_exp_qp_attr){ /* Move the QP to this state. */ .qp_state = IBV_QPS_INIT, /* Primary port number. */ .port_num = priv->port }; ret = ibv_exp_modify_qp(tmpl.qp, &mod, (IBV_EXP_QP_STATE | #ifdef RSS_SUPPORT (parent ? IBV_EXP_QP_GROUP_RSS : 0) | #endif /* RSS_SUPPORT */ IBV_EXP_QP_PORT)); if (ret) { ERROR("%p: QP state to IBV_QPS_INIT failed: %s", (void *)dev, strerror(ret)); goto error; } if ((parent) || (!priv->rss)) { /* Configure MAC and broadcast addresses. */ ret = rxq_mac_addrs_add(&tmpl); if (ret) { ERROR("%p: QP flow attachment failed: %s", (void *)dev, strerror(ret)); goto error; } } /* Allocate descriptors for RX queues, except for the RSS parent. */ if (parent) goto skip_alloc; if (tmpl.sp) ret = rxq_alloc_elts_sp(&tmpl, desc, NULL); else ret = rxq_alloc_elts(&tmpl, desc, NULL); if (ret) { ERROR("%p: RXQ allocation failed: %s", (void *)dev, strerror(ret)); goto error; } ret = ibv_post_recv(tmpl.qp, (tmpl.sp ? &(*tmpl.elts.sp)[0].wr : &(*tmpl.elts.no_sp)[0].wr), &bad_wr); if (ret) { ERROR("%p: ibv_post_recv() failed for WR %p: %s", (void *)dev, (void *)bad_wr, strerror(ret)); goto error; } skip_alloc: mod = (struct ibv_exp_qp_attr){ .qp_state = IBV_QPS_RTR }; ret = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE); if (ret) { ERROR("%p: QP state to IBV_QPS_RTR failed: %s", (void *)dev, strerror(ret)); goto error; } /* Save port ID. */ tmpl.port_id = dev->data->port_id; DEBUG("%p: RTE port ID: %u", (void *)rxq, tmpl.port_id); attr.params = (struct ibv_exp_query_intf_params){ .intf_scope = IBV_EXP_INTF_GLOBAL, .intf = IBV_EXP_INTF_CQ, .obj = tmpl.cq, }; tmpl.if_cq = ibv_exp_query_intf(priv->ctx, &attr.params, &status); if (tmpl.if_cq == NULL) { ERROR("%p: CQ interface family query failed with status %d", (void *)dev, status); goto error; } attr.params = (struct ibv_exp_query_intf_params){ .intf_scope = IBV_EXP_INTF_GLOBAL, .intf = IBV_EXP_INTF_QP_BURST, .obj = tmpl.qp, }; tmpl.if_qp = ibv_exp_query_intf(priv->ctx, &attr.params, &status); if (tmpl.if_qp == NULL) { ERROR("%p: QP interface family query failed with status %d", (void *)dev, status); goto error; } /* Clean up rxq in case we're reinitializing it. */ DEBUG("%p: cleaning-up old rxq just in case", (void *)rxq); rxq_cleanup(rxq); *rxq = tmpl; DEBUG("%p: rxq updated with %p", (void *)rxq, (void *)&tmpl); assert(ret == 0); return 0; error: rxq_cleanup(&tmpl); assert(ret > 0); return ret; } /** * DPDK callback to configure a RX queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * @param mp * Memory pool for buffer allocations. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp) { struct priv *priv = dev->data->dev_private; struct rxq *rxq = (*priv->rxqs)[idx]; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); DEBUG("%p: configuring queue %u for %u descriptors", (void *)dev, idx, desc); if (idx >= priv->rxqs_n) { ERROR("%p: queue index out of range (%u >= %u)", (void *)dev, idx, priv->rxqs_n); priv_unlock(priv); return -EOVERFLOW; } if (rxq != NULL) { DEBUG("%p: reusing already allocated queue index %u (%p)", (void *)dev, idx, (void *)rxq); if (priv->started) { priv_unlock(priv); return -EEXIST; } (*priv->rxqs)[idx] = NULL; rxq_cleanup(rxq); } else { rxq = rte_calloc_socket("RXQ", 1, sizeof(*rxq), 0, socket); if (rxq == NULL) { ERROR("%p: unable to allocate queue index %u", (void *)dev, idx); priv_unlock(priv); return -ENOMEM; } } ret = rxq_setup(dev, rxq, desc, socket, conf, mp); if (ret) rte_free(rxq); else { rxq->stats.idx = idx; DEBUG("%p: adding RX queue %p to list", (void *)dev, (void *)rxq); (*priv->rxqs)[idx] = rxq; /* Update receive callback. */ if (rxq->sp) dev->rx_pkt_burst = mlx4_rx_burst_sp; else dev->rx_pkt_burst = mlx4_rx_burst; } priv_unlock(priv); return -ret; } /** * DPDK callback to release a RX queue. * * @param dpdk_rxq * Generic RX queue pointer. */ static void mlx4_rx_queue_release(void *dpdk_rxq) { struct rxq *rxq = (struct rxq *)dpdk_rxq; struct priv *priv; unsigned int i; if (mlx4_is_secondary()) return; if (rxq == NULL) return; priv = rxq->priv; priv_lock(priv); assert(rxq != &priv->rxq_parent); for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] == rxq) { DEBUG("%p: removing RX queue %p from list", (void *)priv->dev, (void *)rxq); (*priv->rxqs)[i] = NULL; break; } rxq_cleanup(rxq); rte_free(rxq); priv_unlock(priv); } static void priv_dev_interrupt_handler_install(struct priv *, struct rte_eth_dev *); /** * DPDK callback to start the device. * * Simulate device start by attaching all configured flows. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_dev_start(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i = 0; unsigned int r; struct rxq *rxq; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); if (priv->started) { priv_unlock(priv); return 0; } DEBUG("%p: attaching configured flows to all RX queues", (void *)dev); priv->started = 1; if (priv->rss) { rxq = &priv->rxq_parent; r = 1; } else { rxq = (*priv->rxqs)[0]; r = priv->rxqs_n; } /* Iterate only once when RSS is enabled. */ do { int ret; /* Ignore nonexistent RX queues. */ if (rxq == NULL) continue; ret = rxq_mac_addrs_add(rxq); if (!ret && priv->promisc) ret = rxq_promiscuous_enable(rxq); if (!ret && priv->allmulti) ret = rxq_allmulticast_enable(rxq); if (!ret) continue; WARN("%p: QP flow attachment failed: %s", (void *)dev, strerror(ret)); /* Rollback. */ while (i != 0) { rxq = (*priv->rxqs)[--i]; if (rxq != NULL) { rxq_allmulticast_disable(rxq); rxq_promiscuous_disable(rxq); rxq_mac_addrs_del(rxq); } } priv->started = 0; priv_unlock(priv); return -ret; } while ((--r) && ((rxq = (*priv->rxqs)[++i]), i)); priv_dev_interrupt_handler_install(priv, dev); priv_unlock(priv); return 0; } /** * DPDK callback to stop the device. * * Simulate device stop by detaching all configured flows. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_dev_stop(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i = 0; unsigned int r; struct rxq *rxq; if (mlx4_is_secondary()) return; priv_lock(priv); if (!priv->started) { priv_unlock(priv); return; } DEBUG("%p: detaching flows from all RX queues", (void *)dev); priv->started = 0; if (priv->rss) { rxq = &priv->rxq_parent; r = 1; } else { rxq = (*priv->rxqs)[0]; r = priv->rxqs_n; } /* Iterate only once when RSS is enabled. */ do { /* Ignore nonexistent RX queues. */ if (rxq == NULL) continue; rxq_allmulticast_disable(rxq); rxq_promiscuous_disable(rxq); rxq_mac_addrs_del(rxq); } while ((--r) && ((rxq = (*priv->rxqs)[++i]), i)); priv_unlock(priv); } /** * Dummy DPDK callback for TX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ static uint16_t removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_txq; (void)pkts; (void)pkts_n; return 0; } /** * Dummy DPDK callback for RX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ static uint16_t removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_rxq; (void)pkts; (void)pkts_n; return 0; } static void priv_dev_interrupt_handler_uninstall(struct priv *, struct rte_eth_dev *); /** * DPDK callback to close the device. * * Destroy all queues and objects, free memory. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_dev_close(struct rte_eth_dev *dev) { struct priv *priv = mlx4_get_priv(dev); void *tmp; unsigned int i; if (priv == NULL) return; priv_lock(priv); DEBUG("%p: closing device \"%s\"", (void *)dev, ((priv->ctx != NULL) ? priv->ctx->device->name : "")); /* Prevent crashes when queues are still in use. This is unfortunately * still required for DPDK 1.3 because some programs (such as testpmd) * never release them before closing the device. */ dev->rx_pkt_burst = removed_rx_burst; dev->tx_pkt_burst = removed_tx_burst; if (priv->rxqs != NULL) { /* XXX race condition if mlx4_rx_burst() is still running. */ usleep(1000); for (i = 0; (i != priv->rxqs_n); ++i) { tmp = (*priv->rxqs)[i]; if (tmp == NULL) continue; (*priv->rxqs)[i] = NULL; rxq_cleanup(tmp); rte_free(tmp); } priv->rxqs_n = 0; priv->rxqs = NULL; } if (priv->txqs != NULL) { /* XXX race condition if mlx4_tx_burst() is still running. */ usleep(1000); for (i = 0; (i != priv->txqs_n); ++i) { tmp = (*priv->txqs)[i]; if (tmp == NULL) continue; (*priv->txqs)[i] = NULL; txq_cleanup(tmp); rte_free(tmp); } priv->txqs_n = 0; priv->txqs = NULL; } if (priv->rss) rxq_cleanup(&priv->rxq_parent); if (priv->pd != NULL) { assert(priv->ctx != NULL); claim_zero(ibv_dealloc_pd(priv->pd)); claim_zero(ibv_close_device(priv->ctx)); } else assert(priv->ctx == NULL); priv_dev_interrupt_handler_uninstall(priv, dev); priv_unlock(priv); memset(priv, 0, sizeof(*priv)); } /** * DPDK callback to get information about the device. * * @param dev * Pointer to Ethernet device structure. * @param[out] info * Info structure output buffer. */ static void mlx4_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *info) { struct priv *priv = mlx4_get_priv(dev); unsigned int max; char ifname[IF_NAMESIZE]; if (priv == NULL) return; priv_lock(priv); /* FIXME: we should ask the device for these values. */ info->min_rx_bufsize = 32; info->max_rx_pktlen = 65536; /* * Since we need one CQ per QP, the limit is the minimum number * between the two values. */ max = ((priv->device_attr.max_cq > priv->device_attr.max_qp) ? priv->device_attr.max_qp : priv->device_attr.max_cq); /* If max >= 65535 then max = 0, max_rx_queues is uint16_t. */ if (max >= 65535) max = 65535; info->max_rx_queues = max; info->max_tx_queues = max; /* Last array entry is reserved for broadcast. */ info->max_mac_addrs = (elemof(priv->mac) - 1); info->rx_offload_capa = (priv->hw_csum ? (DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM) : 0); info->tx_offload_capa = (priv->hw_csum ? (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM) : 0); if (priv_get_ifname(priv, &ifname) == 0) info->if_index = if_nametoindex(ifname); priv_unlock(priv); } /** * DPDK callback to get device statistics. * * @param dev * Pointer to Ethernet device structure. * @param[out] stats * Stats structure output buffer. */ static void mlx4_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct priv *priv = mlx4_get_priv(dev); struct rte_eth_stats tmp = {0}; unsigned int i; unsigned int idx; if (priv == NULL) return; priv_lock(priv); /* Add software counters. */ for (i = 0; (i != priv->rxqs_n); ++i) { struct rxq *rxq = (*priv->rxqs)[i]; if (rxq == NULL) continue; idx = rxq->stats.idx; if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) { #ifdef MLX4_PMD_SOFT_COUNTERS tmp.q_ipackets[idx] += rxq->stats.ipackets; tmp.q_ibytes[idx] += rxq->stats.ibytes; #endif tmp.q_errors[idx] += (rxq->stats.idropped + rxq->stats.rx_nombuf); } #ifdef MLX4_PMD_SOFT_COUNTERS tmp.ipackets += rxq->stats.ipackets; tmp.ibytes += rxq->stats.ibytes; #endif tmp.ierrors += rxq->stats.idropped; tmp.rx_nombuf += rxq->stats.rx_nombuf; } for (i = 0; (i != priv->txqs_n); ++i) { struct txq *txq = (*priv->txqs)[i]; if (txq == NULL) continue; idx = txq->stats.idx; if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) { #ifdef MLX4_PMD_SOFT_COUNTERS tmp.q_opackets[idx] += txq->stats.opackets; tmp.q_obytes[idx] += txq->stats.obytes; #endif tmp.q_errors[idx] += txq->stats.odropped; } #ifdef MLX4_PMD_SOFT_COUNTERS tmp.opackets += txq->stats.opackets; tmp.obytes += txq->stats.obytes; #endif tmp.oerrors += txq->stats.odropped; } #ifndef MLX4_PMD_SOFT_COUNTERS /* FIXME: retrieve and add hardware counters. */ #endif *stats = tmp; priv_unlock(priv); } /** * DPDK callback to clear device statistics. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_stats_reset(struct rte_eth_dev *dev) { struct priv *priv = mlx4_get_priv(dev); unsigned int i; unsigned int idx; if (priv == NULL) return; priv_lock(priv); for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; idx = (*priv->rxqs)[i]->stats.idx; (*priv->rxqs)[i]->stats = (struct mlx4_rxq_stats){ .idx = idx }; } for (i = 0; (i != priv->txqs_n); ++i) { if ((*priv->txqs)[i] == NULL) continue; idx = (*priv->txqs)[i]->stats.idx; (*priv->txqs)[i]->stats = (struct mlx4_txq_stats){ .idx = idx }; } #ifndef MLX4_PMD_SOFT_COUNTERS /* FIXME: reset hardware counters. */ #endif priv_unlock(priv); } /** * DPDK callback to remove a MAC address. * * @param dev * Pointer to Ethernet device structure. * @param index * MAC address index. */ static void mlx4_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index) { struct priv *priv = dev->data->dev_private; if (mlx4_is_secondary()) return; priv_lock(priv); DEBUG("%p: removing MAC address from index %" PRIu32, (void *)dev, index); /* Last array entry is reserved for broadcast. */ if (index >= (elemof(priv->mac) - 1)) goto end; priv_mac_addr_del(priv, index); end: priv_unlock(priv); } /** * DPDK callback to add a MAC address. * * @param dev * Pointer to Ethernet device structure. * @param mac_addr * MAC address to register. * @param index * MAC address index. * @param vmdq * VMDq pool index to associate address with (ignored). */ static void mlx4_mac_addr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, uint32_t vmdq) { struct priv *priv = dev->data->dev_private; if (mlx4_is_secondary()) return; (void)vmdq; priv_lock(priv); DEBUG("%p: adding MAC address at index %" PRIu32, (void *)dev, index); /* Last array entry is reserved for broadcast. */ if (index >= (elemof(priv->mac) - 1)) goto end; priv_mac_addr_add(priv, index, (const uint8_t (*)[ETHER_ADDR_LEN]) mac_addr->addr_bytes); end: priv_unlock(priv); } /** * DPDK callback to set the primary MAC address. * * @param dev * Pointer to Ethernet device structure. * @param mac_addr * MAC address to register. */ static void mlx4_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { DEBUG("%p: setting primary MAC address", (void *)dev); mlx4_mac_addr_remove(dev, 0); mlx4_mac_addr_add(dev, mac_addr, 0, 0); } /** * DPDK callback to enable promiscuous mode. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_promiscuous_enable(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i; int ret; if (mlx4_is_secondary()) return; priv_lock(priv); if (priv->promisc) { priv_unlock(priv); return; } /* If device isn't started, this is all we need to do. */ if (!priv->started) goto end; if (priv->rss) { ret = rxq_promiscuous_enable(&priv->rxq_parent); if (ret) { priv_unlock(priv); return; } goto end; } for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; ret = rxq_promiscuous_enable((*priv->rxqs)[i]); if (!ret) continue; /* Failure, rollback. */ while (i != 0) if ((*priv->rxqs)[--i] != NULL) rxq_promiscuous_disable((*priv->rxqs)[i]); priv_unlock(priv); return; } end: priv->promisc = 1; priv_unlock(priv); } /** * DPDK callback to disable promiscuous mode. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_promiscuous_disable(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i; if (mlx4_is_secondary()) return; priv_lock(priv); if (!priv->promisc) { priv_unlock(priv); return; } if (priv->rss) { rxq_promiscuous_disable(&priv->rxq_parent); goto end; } for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] != NULL) rxq_promiscuous_disable((*priv->rxqs)[i]); end: priv->promisc = 0; priv_unlock(priv); } /** * DPDK callback to enable allmulti mode. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_allmulticast_enable(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i; int ret; if (mlx4_is_secondary()) return; priv_lock(priv); if (priv->allmulti) { priv_unlock(priv); return; } /* If device isn't started, this is all we need to do. */ if (!priv->started) goto end; if (priv->rss) { ret = rxq_allmulticast_enable(&priv->rxq_parent); if (ret) { priv_unlock(priv); return; } goto end; } for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; ret = rxq_allmulticast_enable((*priv->rxqs)[i]); if (!ret) continue; /* Failure, rollback. */ while (i != 0) if ((*priv->rxqs)[--i] != NULL) rxq_allmulticast_disable((*priv->rxqs)[i]); priv_unlock(priv); return; } end: priv->allmulti = 1; priv_unlock(priv); } /** * DPDK callback to disable allmulti mode. * * @param dev * Pointer to Ethernet device structure. */ static void mlx4_allmulticast_disable(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i; if (mlx4_is_secondary()) return; priv_lock(priv); if (!priv->allmulti) { priv_unlock(priv); return; } if (priv->rss) { rxq_allmulticast_disable(&priv->rxq_parent); goto end; } for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] != NULL) rxq_allmulticast_disable((*priv->rxqs)[i]); end: priv->allmulti = 0; priv_unlock(priv); } /** * DPDK callback to retrieve physical link information (unlocked version). * * @param dev * Pointer to Ethernet device structure. * @param wait_to_complete * Wait for request completion (ignored). */ static int mlx4_link_update_unlocked(struct rte_eth_dev *dev, int wait_to_complete) { struct priv *priv = mlx4_get_priv(dev); struct ethtool_cmd edata = { .cmd = ETHTOOL_GSET }; struct ifreq ifr; struct rte_eth_link dev_link; int link_speed = 0; if (priv == NULL) return -EINVAL; (void)wait_to_complete; if (priv_ifreq(priv, SIOCGIFFLAGS, &ifr)) { WARN("ioctl(SIOCGIFFLAGS) failed: %s", strerror(errno)); return -1; } memset(&dev_link, 0, sizeof(dev_link)); dev_link.link_status = ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING)); ifr.ifr_data = &edata; if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) { WARN("ioctl(SIOCETHTOOL, ETHTOOL_GSET) failed: %s", strerror(errno)); return -1; } link_speed = ethtool_cmd_speed(&edata); if (link_speed == -1) dev_link.link_speed = 0; else dev_link.link_speed = link_speed; dev_link.link_duplex = ((edata.duplex == DUPLEX_HALF) ? ETH_LINK_HALF_DUPLEX : ETH_LINK_FULL_DUPLEX); if (memcmp(&dev_link, &dev->data->dev_link, sizeof(dev_link))) { /* Link status changed. */ dev->data->dev_link = dev_link; return 0; } /* Link status is still the same. */ return -1; } /** * DPDK callback to retrieve physical link information. * * @param dev * Pointer to Ethernet device structure. * @param wait_to_complete * Wait for request completion (ignored). */ static int mlx4_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct priv *priv = mlx4_get_priv(dev); int ret; if (priv == NULL) return -EINVAL; priv_lock(priv); ret = mlx4_link_update_unlocked(dev, wait_to_complete); priv_unlock(priv); return ret; } /** * DPDK callback to change the MTU. * * Setting the MTU affects hardware MRU (packets larger than the MTU cannot be * received). Use this as a hint to enable/disable scattered packets support * and improve performance when not needed. * Since failure is not an option, reconfiguring queues on the fly is not * recommended. * * @param dev * Pointer to Ethernet device structure. * @param in_mtu * New MTU. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) { struct priv *priv = dev->data->dev_private; int ret = 0; unsigned int i; uint16_t (*rx_func)(void *, struct rte_mbuf **, uint16_t) = mlx4_rx_burst; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); /* Set kernel interface MTU first. */ if (priv_set_mtu(priv, mtu)) { ret = errno; WARN("cannot set port %u MTU to %u: %s", priv->port, mtu, strerror(ret)); goto out; } else DEBUG("adapter port %u MTU set to %u", priv->port, mtu); priv->mtu = mtu; /* Temporarily replace RX handler with a fake one, assuming it has not * been copied elsewhere. */ dev->rx_pkt_burst = removed_rx_burst; /* Make sure everyone has left mlx4_rx_burst() and uses * removed_rx_burst() instead. */ rte_wmb(); usleep(1000); /* Reconfigure each RX queue. */ for (i = 0; (i != priv->rxqs_n); ++i) { struct rxq *rxq = (*priv->rxqs)[i]; unsigned int max_frame_len; int sp; if (rxq == NULL) continue; /* Calculate new maximum frame length according to MTU and * toggle scattered support (sp) if necessary. */ max_frame_len = (priv->mtu + ETHER_HDR_LEN + (ETHER_MAX_VLAN_FRAME_LEN - ETHER_MAX_LEN)); sp = (max_frame_len > (rxq->mb_len - RTE_PKTMBUF_HEADROOM)); /* Provide new values to rxq_setup(). */ dev->data->dev_conf.rxmode.jumbo_frame = sp; dev->data->dev_conf.rxmode.max_rx_pkt_len = max_frame_len; ret = rxq_rehash(dev, rxq); if (ret) { /* Force SP RX if that queue requires it and abort. */ if (rxq->sp) rx_func = mlx4_rx_burst_sp; break; } /* Reenable non-RSS queue attributes. No need to check * for errors at this stage. */ if (!priv->rss) { rxq_mac_addrs_add(rxq); if (priv->promisc) rxq_promiscuous_enable(rxq); if (priv->allmulti) rxq_allmulticast_enable(rxq); } /* Scattered burst function takes priority. */ if (rxq->sp) rx_func = mlx4_rx_burst_sp; } /* Burst functions can now be called again. */ rte_wmb(); dev->rx_pkt_burst = rx_func; out: priv_unlock(priv); assert(ret >= 0); return -ret; } /** * DPDK callback to get flow control status. * * @param dev * Pointer to Ethernet device structure. * @param[out] fc_conf * Flow control output buffer. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_dev_get_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct priv *priv = dev->data->dev_private; struct ifreq ifr; struct ethtool_pauseparam ethpause = { .cmd = ETHTOOL_GPAUSEPARAM }; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; ifr.ifr_data = ðpause; priv_lock(priv); if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) { ret = errno; WARN("ioctl(SIOCETHTOOL, ETHTOOL_GPAUSEPARAM)" " failed: %s", strerror(ret)); goto out; } fc_conf->autoneg = ethpause.autoneg; if (ethpause.rx_pause && ethpause.tx_pause) fc_conf->mode = RTE_FC_FULL; else if (ethpause.rx_pause) fc_conf->mode = RTE_FC_RX_PAUSE; else if (ethpause.tx_pause) fc_conf->mode = RTE_FC_TX_PAUSE; else fc_conf->mode = RTE_FC_NONE; ret = 0; out: priv_unlock(priv); assert(ret >= 0); return -ret; } /** * DPDK callback to modify flow control parameters. * * @param dev * Pointer to Ethernet device structure. * @param[in] fc_conf * Flow control parameters. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_dev_set_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct priv *priv = dev->data->dev_private; struct ifreq ifr; struct ethtool_pauseparam ethpause = { .cmd = ETHTOOL_SPAUSEPARAM }; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; ifr.ifr_data = ðpause; ethpause.autoneg = fc_conf->autoneg; if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) || (fc_conf->mode & RTE_FC_RX_PAUSE)) ethpause.rx_pause = 1; else ethpause.rx_pause = 0; if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) || (fc_conf->mode & RTE_FC_TX_PAUSE)) ethpause.tx_pause = 1; else ethpause.tx_pause = 0; priv_lock(priv); if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) { ret = errno; WARN("ioctl(SIOCETHTOOL, ETHTOOL_SPAUSEPARAM)" " failed: %s", strerror(ret)); goto out; } ret = 0; out: priv_unlock(priv); assert(ret >= 0); return -ret; } /** * Configure a VLAN filter. * * @param dev * Pointer to Ethernet device structure. * @param vlan_id * VLAN ID to filter. * @param on * Toggle filter. * * @return * 0 on success, errno value on failure. */ static int vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct priv *priv = dev->data->dev_private; unsigned int i; unsigned int j = -1; DEBUG("%p: %s VLAN filter ID %" PRIu16, (void *)dev, (on ? "enable" : "disable"), vlan_id); for (i = 0; (i != elemof(priv->vlan_filter)); ++i) { if (!priv->vlan_filter[i].enabled) { /* Unused index, remember it. */ j = i; continue; } if (priv->vlan_filter[i].id != vlan_id) continue; /* This VLAN ID is already known, use its index. */ j = i; break; } /* Check if there's room for another VLAN filter. */ if (j == (unsigned int)-1) return ENOMEM; /* * VLAN filters apply to all configured MAC addresses, flow * specifications must be reconfigured accordingly. */ priv->vlan_filter[j].id = vlan_id; if ((on) && (!priv->vlan_filter[j].enabled)) { /* * Filter is disabled, enable it. * Rehashing flows in all RX queues is necessary. */ if (priv->rss) rxq_mac_addrs_del(&priv->rxq_parent); else for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] != NULL) rxq_mac_addrs_del((*priv->rxqs)[i]); priv->vlan_filter[j].enabled = 1; if (priv->started) { if (priv->rss) rxq_mac_addrs_add(&priv->rxq_parent); else for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; rxq_mac_addrs_add((*priv->rxqs)[i]); } } } else if ((!on) && (priv->vlan_filter[j].enabled)) { /* * Filter is enabled, disable it. * Rehashing flows in all RX queues is necessary. */ if (priv->rss) rxq_mac_addrs_del(&priv->rxq_parent); else for (i = 0; (i != priv->rxqs_n); ++i) if ((*priv->rxqs)[i] != NULL) rxq_mac_addrs_del((*priv->rxqs)[i]); priv->vlan_filter[j].enabled = 0; if (priv->started) { if (priv->rss) rxq_mac_addrs_add(&priv->rxq_parent); else for (i = 0; (i != priv->rxqs_n); ++i) { if ((*priv->rxqs)[i] == NULL) continue; rxq_mac_addrs_add((*priv->rxqs)[i]); } } } return 0; } /** * DPDK callback to configure a VLAN filter. * * @param dev * Pointer to Ethernet device structure. * @param vlan_id * VLAN ID to filter. * @param on * Toggle filter. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct priv *priv = dev->data->dev_private; int ret; if (mlx4_is_secondary()) return -E_RTE_SECONDARY; priv_lock(priv); ret = vlan_filter_set(dev, vlan_id, on); priv_unlock(priv); assert(ret >= 0); return -ret; } static const struct eth_dev_ops mlx4_dev_ops = { .dev_configure = mlx4_dev_configure, .dev_start = mlx4_dev_start, .dev_stop = mlx4_dev_stop, .dev_close = mlx4_dev_close, .promiscuous_enable = mlx4_promiscuous_enable, .promiscuous_disable = mlx4_promiscuous_disable, .allmulticast_enable = mlx4_allmulticast_enable, .allmulticast_disable = mlx4_allmulticast_disable, .link_update = mlx4_link_update, .stats_get = mlx4_stats_get, .stats_reset = mlx4_stats_reset, .queue_stats_mapping_set = NULL, .dev_infos_get = mlx4_dev_infos_get, .vlan_filter_set = mlx4_vlan_filter_set, .vlan_tpid_set = NULL, .vlan_strip_queue_set = NULL, .vlan_offload_set = NULL, .rx_queue_setup = mlx4_rx_queue_setup, .tx_queue_setup = mlx4_tx_queue_setup, .rx_queue_release = mlx4_rx_queue_release, .tx_queue_release = mlx4_tx_queue_release, .dev_led_on = NULL, .dev_led_off = NULL, .flow_ctrl_get = mlx4_dev_get_flow_ctrl, .flow_ctrl_set = mlx4_dev_set_flow_ctrl, .priority_flow_ctrl_set = NULL, .mac_addr_remove = mlx4_mac_addr_remove, .mac_addr_add = mlx4_mac_addr_add, .mac_addr_set = mlx4_mac_addr_set, .mtu_set = mlx4_dev_set_mtu, }; /** * Get PCI information from struct ibv_device. * * @param device * Pointer to Ethernet device structure. * @param[out] pci_addr * PCI bus address output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int mlx4_ibv_device_to_pci_addr(const struct ibv_device *device, struct rte_pci_addr *pci_addr) { FILE *file; char line[32]; MKSTR(path, "%s/device/uevent", device->ibdev_path); file = fopen(path, "rb"); if (file == NULL) return -1; while (fgets(line, sizeof(line), file) == line) { size_t len = strlen(line); int ret; /* Truncate long lines. */ if (len == (sizeof(line) - 1)) while (line[(len - 1)] != '\n') { ret = fgetc(file); if (ret == EOF) break; line[(len - 1)] = ret; } /* Extract information. */ if (sscanf(line, "PCI_SLOT_NAME=" "%" SCNx16 ":%" SCNx8 ":%" SCNx8 ".%" SCNx8 "\n", &pci_addr->domain, &pci_addr->bus, &pci_addr->devid, &pci_addr->function) == 4) { ret = 0; break; } } fclose(file); return 0; } /** * Get MAC address by querying netdevice. * * @param[in] priv * struct priv for the requested device. * @param[out] mac * MAC address output buffer. * * @return * 0 on success, -1 on failure and errno is set. */ static int priv_get_mac(struct priv *priv, uint8_t (*mac)[ETHER_ADDR_LEN]) { struct ifreq request; if (priv_ifreq(priv, SIOCGIFHWADDR, &request)) return -1; memcpy(mac, request.ifr_hwaddr.sa_data, ETHER_ADDR_LEN); return 0; } /* Support up to 32 adapters. */ static struct { struct rte_pci_addr pci_addr; /* associated PCI address */ uint32_t ports; /* physical ports bitfield. */ } mlx4_dev[32]; /** * Get device index in mlx4_dev[] from PCI bus address. * * @param[in] pci_addr * PCI bus address to look for. * * @return * mlx4_dev[] index on success, -1 on failure. */ static int mlx4_dev_idx(struct rte_pci_addr *pci_addr) { unsigned int i; int ret = -1; assert(pci_addr != NULL); for (i = 0; (i != elemof(mlx4_dev)); ++i) { if ((mlx4_dev[i].pci_addr.domain == pci_addr->domain) && (mlx4_dev[i].pci_addr.bus == pci_addr->bus) && (mlx4_dev[i].pci_addr.devid == pci_addr->devid) && (mlx4_dev[i].pci_addr.function == pci_addr->function)) return i; if ((mlx4_dev[i].ports == 0) && (ret == -1)) ret = i; } return ret; } /** * Retrieve integer value from environment variable. * * @param[in] name * Environment variable name. * * @return * Integer value, 0 if the variable is not set. */ static int mlx4_getenv_int(const char *name) { const char *val = getenv(name); if (val == NULL) return 0; return atoi(val); } static void mlx4_dev_link_status_handler(void *); static void mlx4_dev_interrupt_handler(struct rte_intr_handle *, void *); /** * Link status handler. * * @param priv * Pointer to private structure. * @param dev * Pointer to the rte_eth_dev structure. * * @return * Nonzero if the callback process can be called immediately. */ static int priv_dev_link_status_handler(struct priv *priv, struct rte_eth_dev *dev) { struct ibv_async_event event; int port_change = 0; int ret = 0; /* Read all message and acknowledge them. */ for (;;) { if (ibv_get_async_event(priv->ctx, &event)) break; if (event.event_type == IBV_EVENT_PORT_ACTIVE || event.event_type == IBV_EVENT_PORT_ERR) port_change = 1; else DEBUG("event type %d on port %d not handled", event.event_type, event.element.port_num); ibv_ack_async_event(&event); } if (port_change ^ priv->pending_alarm) { struct rte_eth_link *link = &dev->data->dev_link; priv->pending_alarm = 0; mlx4_link_update_unlocked(dev, 0); if (((link->link_speed == 0) && link->link_status) || ((link->link_speed != 0) && !link->link_status)) { /* Inconsistent status, check again later. */ priv->pending_alarm = 1; rte_eal_alarm_set(MLX4_ALARM_TIMEOUT_US, mlx4_dev_link_status_handler, dev); } else ret = 1; } return ret; } /** * Handle delayed link status event. * * @param arg * Registered argument. */ static void mlx4_dev_link_status_handler(void *arg) { struct rte_eth_dev *dev = arg; struct priv *priv = dev->data->dev_private; int ret; priv_lock(priv); assert(priv->pending_alarm == 1); ret = priv_dev_link_status_handler(priv, dev); priv_unlock(priv); if (ret) _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC); } /** * Handle interrupts from the NIC. * * @param[in] intr_handle * Interrupt handler. * @param cb_arg * Callback argument. */ static void mlx4_dev_interrupt_handler(struct rte_intr_handle *intr_handle, void *cb_arg) { struct rte_eth_dev *dev = cb_arg; struct priv *priv = dev->data->dev_private; int ret; (void)intr_handle; priv_lock(priv); ret = priv_dev_link_status_handler(priv, dev); priv_unlock(priv); if (ret) _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC); } /** * Uninstall interrupt handler. * * @param priv * Pointer to private structure. * @param dev * Pointer to the rte_eth_dev structure. */ static void priv_dev_interrupt_handler_uninstall(struct priv *priv, struct rte_eth_dev *dev) { if (!dev->data->dev_conf.intr_conf.lsc) return; rte_intr_callback_unregister(&priv->intr_handle, mlx4_dev_interrupt_handler, dev); if (priv->pending_alarm) rte_eal_alarm_cancel(mlx4_dev_link_status_handler, dev); priv->pending_alarm = 0; priv->intr_handle.fd = 0; priv->intr_handle.type = 0; } /** * Install interrupt handler. * * @param priv * Pointer to private structure. * @param dev * Pointer to the rte_eth_dev structure. */ static void priv_dev_interrupt_handler_install(struct priv *priv, struct rte_eth_dev *dev) { int rc, flags; if (!dev->data->dev_conf.intr_conf.lsc) return; assert(priv->ctx->async_fd > 0); flags = fcntl(priv->ctx->async_fd, F_GETFL); rc = fcntl(priv->ctx->async_fd, F_SETFL, flags | O_NONBLOCK); if (rc < 0) { INFO("failed to change file descriptor async event queue"); dev->data->dev_conf.intr_conf.lsc = 0; } else { priv->intr_handle.fd = priv->ctx->async_fd; priv->intr_handle.type = RTE_INTR_HANDLE_EXT; rte_intr_callback_register(&priv->intr_handle, mlx4_dev_interrupt_handler, dev); } } static struct eth_driver mlx4_driver; /** * DPDK callback to register a PCI device. * * This function creates an Ethernet device for each port of a given * PCI device. * * @param[in] pci_drv * PCI driver structure (mlx4_driver). * @param[in] pci_dev * PCI device information. * * @return * 0 on success, negative errno value on failure. */ static int mlx4_pci_devinit(struct rte_pci_driver *pci_drv, struct rte_pci_device *pci_dev) { struct ibv_device **list; struct ibv_device *ibv_dev; int err = 0; struct ibv_context *attr_ctx = NULL; struct ibv_device_attr device_attr; unsigned int vf; int idx; int i; (void)pci_drv; assert(pci_drv == &mlx4_driver.pci_drv); /* Get mlx4_dev[] index. */ idx = mlx4_dev_idx(&pci_dev->addr); if (idx == -1) { ERROR("this driver cannot support any more adapters"); return -ENOMEM; } DEBUG("using driver device index %d", idx); /* Save PCI address. */ mlx4_dev[idx].pci_addr = pci_dev->addr; list = ibv_get_device_list(&i); if (list == NULL) { assert(errno); if (errno == ENOSYS) { WARN("cannot list devices, is ib_uverbs loaded?"); return 0; } return -errno; } assert(i >= 0); /* * For each listed device, check related sysfs entry against * the provided PCI ID. */ while (i != 0) { struct rte_pci_addr pci_addr; --i; DEBUG("checking device \"%s\"", list[i]->name); if (mlx4_ibv_device_to_pci_addr(list[i], &pci_addr)) continue; if ((pci_dev->addr.domain != pci_addr.domain) || (pci_dev->addr.bus != pci_addr.bus) || (pci_dev->addr.devid != pci_addr.devid) || (pci_dev->addr.function != pci_addr.function)) continue; vf = (pci_dev->id.device_id == PCI_DEVICE_ID_MELLANOX_CONNECTX3VF); INFO("PCI information matches, using device \"%s\" (VF: %s)", list[i]->name, (vf ? "true" : "false")); attr_ctx = ibv_open_device(list[i]); err = errno; break; } if (attr_ctx == NULL) { ibv_free_device_list(list); switch (err) { case 0: WARN("cannot access device, is mlx4_ib loaded?"); return 0; case EINVAL: WARN("cannot use device, are drivers up to date?"); return 0; } assert(err > 0); return -err; } ibv_dev = list[i]; DEBUG("device opened"); if (ibv_query_device(attr_ctx, &device_attr)) goto error; INFO("%u port(s) detected", device_attr.phys_port_cnt); for (i = 0; i < device_attr.phys_port_cnt; i++) { uint32_t port = i + 1; /* ports are indexed from one */ uint32_t test = (1 << i); struct ibv_context *ctx = NULL; struct ibv_port_attr port_attr; struct ibv_pd *pd = NULL; struct priv *priv = NULL; struct rte_eth_dev *eth_dev = NULL; #ifdef HAVE_EXP_QUERY_DEVICE struct ibv_exp_device_attr exp_device_attr; #endif /* HAVE_EXP_QUERY_DEVICE */ struct ether_addr mac; #ifdef HAVE_EXP_QUERY_DEVICE exp_device_attr.comp_mask = IBV_EXP_DEVICE_ATTR_EXP_CAP_FLAGS; #ifdef RSS_SUPPORT exp_device_attr.comp_mask |= IBV_EXP_DEVICE_ATTR_RSS_TBL_SZ; #endif /* RSS_SUPPORT */ #endif /* HAVE_EXP_QUERY_DEVICE */ DEBUG("using port %u (%08" PRIx32 ")", port, test); ctx = ibv_open_device(ibv_dev); if (ctx == NULL) goto port_error; /* Check port status. */ err = ibv_query_port(ctx, port, &port_attr); if (err) { ERROR("port query failed: %s", strerror(err)); goto port_error; } if (port_attr.state != IBV_PORT_ACTIVE) DEBUG("port %d is not active: \"%s\" (%d)", port, ibv_port_state_str(port_attr.state), port_attr.state); /* Allocate protection domain. */ pd = ibv_alloc_pd(ctx); if (pd == NULL) { ERROR("PD allocation failure"); err = ENOMEM; goto port_error; } mlx4_dev[idx].ports |= test; /* from rte_ethdev.c */ priv = rte_zmalloc("ethdev private structure", sizeof(*priv), RTE_CACHE_LINE_SIZE); if (priv == NULL) { ERROR("priv allocation failure"); err = ENOMEM; goto port_error; } priv->ctx = ctx; priv->device_attr = device_attr; priv->port = port; priv->pd = pd; priv->mtu = ETHER_MTU; #ifdef HAVE_EXP_QUERY_DEVICE if (ibv_exp_query_device(ctx, &exp_device_attr)) { ERROR("ibv_exp_query_device() failed"); goto port_error; } #ifdef RSS_SUPPORT if ((exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_QPG) && (exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_UD_RSS) && (exp_device_attr.comp_mask & IBV_EXP_DEVICE_ATTR_RSS_TBL_SZ) && (exp_device_attr.max_rss_tbl_sz > 0)) { priv->hw_qpg = 1; priv->hw_rss = 1; priv->max_rss_tbl_sz = exp_device_attr.max_rss_tbl_sz; } else { priv->hw_qpg = 0; priv->hw_rss = 0; priv->max_rss_tbl_sz = 0; } priv->hw_tss = !!(exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_UD_TSS); DEBUG("device flags: %s%s%s", (priv->hw_qpg ? "IBV_DEVICE_QPG " : ""), (priv->hw_tss ? "IBV_DEVICE_TSS " : ""), (priv->hw_rss ? "IBV_DEVICE_RSS " : "")); if (priv->hw_rss) DEBUG("maximum RSS indirection table size: %u", exp_device_attr.max_rss_tbl_sz); #endif /* RSS_SUPPORT */ priv->hw_csum = ((exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_RX_CSUM_TCP_UDP_PKT) && (exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_RX_CSUM_IP_PKT)); DEBUG("checksum offloading is %ssupported", (priv->hw_csum ? "" : "not ")); priv->hw_csum_l2tun = !!(exp_device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_VXLAN_SUPPORT); DEBUG("L2 tunnel checksum offloads are %ssupported", (priv->hw_csum_l2tun ? "" : "not ")); #ifdef INLINE_RECV priv->inl_recv_size = mlx4_getenv_int("MLX4_INLINE_RECV_SIZE"); if (priv->inl_recv_size) { exp_device_attr.comp_mask = IBV_EXP_DEVICE_ATTR_INLINE_RECV_SZ; if (ibv_exp_query_device(ctx, &exp_device_attr)) { INFO("Couldn't query device for inline-receive" " capabilities."); priv->inl_recv_size = 0; } else { if ((unsigned)exp_device_attr.inline_recv_sz < priv->inl_recv_size) { INFO("Max inline-receive (%d) <" " requested inline-receive (%u)", exp_device_attr.inline_recv_sz, priv->inl_recv_size); priv->inl_recv_size = exp_device_attr.inline_recv_sz; } } INFO("Set inline receive size to %u", priv->inl_recv_size); } #endif /* INLINE_RECV */ #endif /* HAVE_EXP_QUERY_DEVICE */ (void)mlx4_getenv_int; priv->vf = vf; /* Configure the first MAC address by default. */ if (priv_get_mac(priv, &mac.addr_bytes)) { ERROR("cannot get MAC address, is mlx4_en loaded?" " (errno: %s)", strerror(errno)); goto port_error; } INFO("port %u MAC address is %02x:%02x:%02x:%02x:%02x:%02x", priv->port, mac.addr_bytes[0], mac.addr_bytes[1], mac.addr_bytes[2], mac.addr_bytes[3], mac.addr_bytes[4], mac.addr_bytes[5]); /* Register MAC and broadcast addresses. */ claim_zero(priv_mac_addr_add(priv, 0, (const uint8_t (*)[ETHER_ADDR_LEN]) mac.addr_bytes)); claim_zero(priv_mac_addr_add(priv, (elemof(priv->mac) - 1), &(const uint8_t [ETHER_ADDR_LEN]) { "\xff\xff\xff\xff\xff\xff" })); #ifndef NDEBUG { char ifname[IF_NAMESIZE]; if (priv_get_ifname(priv, &ifname) == 0) DEBUG("port %u ifname is \"%s\"", priv->port, ifname); else DEBUG("port %u ifname is unknown", priv->port); } #endif /* Get actual MTU if possible. */ priv_get_mtu(priv, &priv->mtu); DEBUG("port %u MTU is %u", priv->port, priv->mtu); /* from rte_ethdev.c */ { char name[RTE_ETH_NAME_MAX_LEN]; snprintf(name, sizeof(name), "%s port %u", ibv_get_device_name(ibv_dev), port); eth_dev = rte_eth_dev_allocate(name, RTE_ETH_DEV_PCI); } if (eth_dev == NULL) { ERROR("can not allocate rte ethdev"); err = ENOMEM; goto port_error; } /* Secondary processes have to use local storage for their * private data as well as a copy of eth_dev->data, but this * pointer must not be modified before burst functions are * actually called. */ if (mlx4_is_secondary()) { struct mlx4_secondary_data *sd = &mlx4_secondary_data[eth_dev->data->port_id]; sd->primary_priv = eth_dev->data->dev_private; if (sd->primary_priv == NULL) { ERROR("no private data for port %u", eth_dev->data->port_id); err = EINVAL; goto port_error; } sd->shared_dev_data = eth_dev->data; rte_spinlock_init(&sd->lock); memcpy(sd->data.name, sd->shared_dev_data->name, sizeof(sd->data.name)); sd->data.dev_private = priv; sd->data.rx_mbuf_alloc_failed = 0; sd->data.mtu = ETHER_MTU; sd->data.port_id = sd->shared_dev_data->port_id; sd->data.mac_addrs = priv->mac; eth_dev->tx_pkt_burst = mlx4_tx_burst_secondary_setup; eth_dev->rx_pkt_burst = mlx4_rx_burst_secondary_setup; } else { eth_dev->data->dev_private = priv; eth_dev->data->rx_mbuf_alloc_failed = 0; eth_dev->data->mtu = ETHER_MTU; eth_dev->data->mac_addrs = priv->mac; } eth_dev->pci_dev = pci_dev; rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->driver = &mlx4_driver; priv->dev = eth_dev; eth_dev->dev_ops = &mlx4_dev_ops; TAILQ_INIT(ð_dev->link_intr_cbs); /* Bring Ethernet device up. */ DEBUG("forcing Ethernet interface up"); priv_set_flags(priv, ~IFF_UP, IFF_UP); continue; port_error: rte_free(priv); if (pd) claim_zero(ibv_dealloc_pd(pd)); if (ctx) claim_zero(ibv_close_device(ctx)); if (eth_dev) rte_eth_dev_release_port(eth_dev); break; } /* * XXX if something went wrong in the loop above, there is a resource * leak (ctx, pd, priv, dpdk ethdev) but we can do nothing about it as * long as the dpdk does not provide a way to deallocate a ethdev and a * way to enumerate the registered ethdevs to free the previous ones. */ /* no port found, complain */ if (!mlx4_dev[idx].ports) { err = ENODEV; goto error; } error: if (attr_ctx) claim_zero(ibv_close_device(attr_ctx)); if (list) ibv_free_device_list(list); assert(err >= 0); return -err; } static const struct rte_pci_id mlx4_pci_id_map[] = { { .vendor_id = PCI_VENDOR_ID_MELLANOX, .device_id = PCI_DEVICE_ID_MELLANOX_CONNECTX3, .subsystem_vendor_id = PCI_ANY_ID, .subsystem_device_id = PCI_ANY_ID }, { .vendor_id = PCI_VENDOR_ID_MELLANOX, .device_id = PCI_DEVICE_ID_MELLANOX_CONNECTX3PRO, .subsystem_vendor_id = PCI_ANY_ID, .subsystem_device_id = PCI_ANY_ID }, { .vendor_id = PCI_VENDOR_ID_MELLANOX, .device_id = PCI_DEVICE_ID_MELLANOX_CONNECTX3VF, .subsystem_vendor_id = PCI_ANY_ID, .subsystem_device_id = PCI_ANY_ID }, { .vendor_id = 0 } }; static struct eth_driver mlx4_driver = { .pci_drv = { .name = MLX4_DRIVER_NAME, .id_table = mlx4_pci_id_map, .devinit = mlx4_pci_devinit, .drv_flags = RTE_PCI_DRV_INTR_LSC, }, .dev_private_size = sizeof(struct priv) }; /** * Driver initialization routine. */ static int rte_mlx4_pmd_init(const char *name, const char *args) { (void)name; (void)args; RTE_BUILD_BUG_ON(sizeof(wr_id_t) != sizeof(uint64_t)); /* * RDMAV_HUGEPAGES_SAFE tells ibv_fork_init() we intend to use * huge pages. Calling ibv_fork_init() during init allows * applications to use fork() safely for purposes other than * using this PMD, which is not supported in forked processes. */ setenv("RDMAV_HUGEPAGES_SAFE", "1", 1); ibv_fork_init(); rte_eal_pci_register(&mlx4_driver.pci_drv); return 0; } static struct rte_driver rte_mlx4_driver = { .type = PMD_PDEV, .name = MLX4_DRIVER_NAME, .init = rte_mlx4_pmd_init, }; PMD_REGISTER_DRIVER(rte_mlx4_driver)