/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include "base/ice_sched.h" #include "base/ice_flow.h" #include "base/ice_dcb.h" #include "base/ice_common.h" #include "rte_pmd_ice.h" #include "ice_ethdev.h" #include "ice_rxtx.h" #include "ice_generic_flow.h" /* devargs */ #define ICE_SAFE_MODE_SUPPORT_ARG "safe-mode-support" #define ICE_PIPELINE_MODE_SUPPORT_ARG "pipeline-mode-support" #define ICE_PROTO_XTR_ARG "proto_xtr" static const char * const ice_valid_args[] = { ICE_SAFE_MODE_SUPPORT_ARG, ICE_PIPELINE_MODE_SUPPORT_ARG, ICE_PROTO_XTR_ARG, NULL }; static const struct rte_mbuf_dynfield ice_proto_xtr_metadata_param = { .name = "intel_pmd_dynfield_proto_xtr_metadata", .size = sizeof(uint32_t), .align = __alignof__(uint32_t), .flags = 0, }; struct proto_xtr_ol_flag { const struct rte_mbuf_dynflag param; uint64_t *ol_flag; bool required; }; static bool ice_proto_xtr_hw_support[PROTO_XTR_MAX]; static struct proto_xtr_ol_flag ice_proto_xtr_ol_flag_params[] = { [PROTO_XTR_VLAN] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_vlan_mask }, [PROTO_XTR_IPV4] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv4_mask }, [PROTO_XTR_IPV6] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_mask }, [PROTO_XTR_IPV6_FLOW] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask }, [PROTO_XTR_TCP] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_tcp_mask }, [PROTO_XTR_IP_OFFSET] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" }, .ol_flag = &rte_net_ice_dynflag_proto_xtr_ip_offset_mask }, }; #define ICE_OS_DEFAULT_PKG_NAME "ICE OS Default Package" #define ICE_COMMS_PKG_NAME "ICE COMMS Package" #define ICE_MAX_RES_DESC_NUM 1024 static int ice_dev_configure(struct rte_eth_dev *dev); static int ice_dev_start(struct rte_eth_dev *dev); static int ice_dev_stop(struct rte_eth_dev *dev); static int ice_dev_close(struct rte_eth_dev *dev); static int ice_dev_reset(struct rte_eth_dev *dev); static int ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int ice_link_update(struct rte_eth_dev *dev, int wait_to_complete); static int ice_dev_set_link_up(struct rte_eth_dev *dev); static int ice_dev_set_link_down(struct rte_eth_dev *dev); static int ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int ice_vlan_offload_set(struct rte_eth_dev *dev, int mask); static int ice_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int ice_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int ice_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int ice_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int ice_promisc_enable(struct rte_eth_dev *dev); static int ice_promisc_disable(struct rte_eth_dev *dev); static int ice_allmulti_enable(struct rte_eth_dev *dev); static int ice_allmulti_disable(struct rte_eth_dev *dev); static int ice_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int ice_macaddr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr); static int ice_macaddr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, __rte_unused uint32_t index, uint32_t pool); static void ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index); static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static int ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size); static int ice_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on); static int ice_get_eeprom_length(struct rte_eth_dev *dev); static int ice_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom); static int ice_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static int ice_stats_reset(struct rte_eth_dev *dev); static int ice_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n); static int ice_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int limit); static int ice_dev_flow_ops_get(struct rte_eth_dev *dev, const struct rte_flow_ops **ops); static int ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel); static int ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel); static const struct rte_pci_id pci_id_ice_map[] = { { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_10G_BASE_T) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_1GBE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_QSFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_QSFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_QSFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_QSFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_10G_BASE_T) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SGMII) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_QSFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_10G_BASE_T) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SGMII) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_BACKPLANE) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SFP) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_10G_BASE_T) }, { RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SGMII) }, { .vendor_id = 0, /* sentinel */ }, }; static const struct eth_dev_ops ice_eth_dev_ops = { .dev_configure = ice_dev_configure, .dev_start = ice_dev_start, .dev_stop = ice_dev_stop, .dev_close = ice_dev_close, .dev_reset = ice_dev_reset, .dev_set_link_up = ice_dev_set_link_up, .dev_set_link_down = ice_dev_set_link_down, .rx_queue_start = ice_rx_queue_start, .rx_queue_stop = ice_rx_queue_stop, .tx_queue_start = ice_tx_queue_start, .tx_queue_stop = ice_tx_queue_stop, .rx_queue_setup = ice_rx_queue_setup, .rx_queue_release = ice_rx_queue_release, .tx_queue_setup = ice_tx_queue_setup, .tx_queue_release = ice_tx_queue_release, .dev_infos_get = ice_dev_info_get, .dev_supported_ptypes_get = ice_dev_supported_ptypes_get, .link_update = ice_link_update, .mtu_set = ice_mtu_set, .mac_addr_set = ice_macaddr_set, .mac_addr_add = ice_macaddr_add, .mac_addr_remove = ice_macaddr_remove, .vlan_filter_set = ice_vlan_filter_set, .vlan_offload_set = ice_vlan_offload_set, .reta_update = ice_rss_reta_update, .reta_query = ice_rss_reta_query, .rss_hash_update = ice_rss_hash_update, .rss_hash_conf_get = ice_rss_hash_conf_get, .promiscuous_enable = ice_promisc_enable, .promiscuous_disable = ice_promisc_disable, .allmulticast_enable = ice_allmulti_enable, .allmulticast_disable = ice_allmulti_disable, .rx_queue_intr_enable = ice_rx_queue_intr_enable, .rx_queue_intr_disable = ice_rx_queue_intr_disable, .fw_version_get = ice_fw_version_get, .vlan_pvid_set = ice_vlan_pvid_set, .rxq_info_get = ice_rxq_info_get, .txq_info_get = ice_txq_info_get, .rx_burst_mode_get = ice_rx_burst_mode_get, .tx_burst_mode_get = ice_tx_burst_mode_get, .get_eeprom_length = ice_get_eeprom_length, .get_eeprom = ice_get_eeprom, .stats_get = ice_stats_get, .stats_reset = ice_stats_reset, .xstats_get = ice_xstats_get, .xstats_get_names = ice_xstats_get_names, .xstats_reset = ice_stats_reset, .flow_ops_get = ice_dev_flow_ops_get, .udp_tunnel_port_add = ice_dev_udp_tunnel_port_add, .udp_tunnel_port_del = ice_dev_udp_tunnel_port_del, .tx_done_cleanup = ice_tx_done_cleanup, .get_monitor_addr = ice_get_monitor_addr, }; /* store statistics names and its offset in stats structure */ struct ice_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned int offset; }; static const struct ice_xstats_name_off ice_stats_strings[] = { {"rx_unicast_packets", offsetof(struct ice_eth_stats, rx_unicast)}, {"rx_multicast_packets", offsetof(struct ice_eth_stats, rx_multicast)}, {"rx_broadcast_packets", offsetof(struct ice_eth_stats, rx_broadcast)}, {"rx_dropped_packets", offsetof(struct ice_eth_stats, rx_discards)}, {"rx_unknown_protocol_packets", offsetof(struct ice_eth_stats, rx_unknown_protocol)}, {"tx_unicast_packets", offsetof(struct ice_eth_stats, tx_unicast)}, {"tx_multicast_packets", offsetof(struct ice_eth_stats, tx_multicast)}, {"tx_broadcast_packets", offsetof(struct ice_eth_stats, tx_broadcast)}, {"tx_dropped_packets", offsetof(struct ice_eth_stats, tx_discards)}, }; #define ICE_NB_ETH_XSTATS (sizeof(ice_stats_strings) / \ sizeof(ice_stats_strings[0])) static const struct ice_xstats_name_off ice_hw_port_strings[] = { {"tx_link_down_dropped", offsetof(struct ice_hw_port_stats, tx_dropped_link_down)}, {"rx_crc_errors", offsetof(struct ice_hw_port_stats, crc_errors)}, {"rx_illegal_byte_errors", offsetof(struct ice_hw_port_stats, illegal_bytes)}, {"rx_error_bytes", offsetof(struct ice_hw_port_stats, error_bytes)}, {"mac_local_errors", offsetof(struct ice_hw_port_stats, mac_local_faults)}, {"mac_remote_errors", offsetof(struct ice_hw_port_stats, mac_remote_faults)}, {"rx_len_errors", offsetof(struct ice_hw_port_stats, rx_len_errors)}, {"tx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_tx)}, {"rx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_rx)}, {"tx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_tx)}, {"rx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_rx)}, {"rx_size_64_packets", offsetof(struct ice_hw_port_stats, rx_size_64)}, {"rx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats, rx_size_127)}, {"rx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats, rx_size_255)}, {"rx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats, rx_size_511)}, {"rx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats, rx_size_1023)}, {"rx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats, rx_size_1522)}, {"rx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats, rx_size_big)}, {"rx_undersized_errors", offsetof(struct ice_hw_port_stats, rx_undersize)}, {"rx_oversize_errors", offsetof(struct ice_hw_port_stats, rx_oversize)}, {"rx_mac_short_pkt_dropped", offsetof(struct ice_hw_port_stats, mac_short_pkt_dropped)}, {"rx_fragmented_errors", offsetof(struct ice_hw_port_stats, rx_fragments)}, {"rx_jabber_errors", offsetof(struct ice_hw_port_stats, rx_jabber)}, {"tx_size_64_packets", offsetof(struct ice_hw_port_stats, tx_size_64)}, {"tx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats, tx_size_127)}, {"tx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats, tx_size_255)}, {"tx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats, tx_size_511)}, {"tx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats, tx_size_1023)}, {"tx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats, tx_size_1522)}, {"tx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats, tx_size_big)}, }; #define ICE_NB_HW_PORT_XSTATS (sizeof(ice_hw_port_strings) / \ sizeof(ice_hw_port_strings[0])) static void ice_init_controlq_parameter(struct ice_hw *hw) { /* fields for adminq */ hw->adminq.num_rq_entries = ICE_ADMINQ_LEN; hw->adminq.num_sq_entries = ICE_ADMINQ_LEN; hw->adminq.rq_buf_size = ICE_ADMINQ_BUF_SZ; hw->adminq.sq_buf_size = ICE_ADMINQ_BUF_SZ; /* fields for mailboxq, DPDK used as PF host */ hw->mailboxq.num_rq_entries = ICE_MAILBOXQ_LEN; hw->mailboxq.num_sq_entries = ICE_MAILBOXQ_LEN; hw->mailboxq.rq_buf_size = ICE_MAILBOXQ_BUF_SZ; hw->mailboxq.sq_buf_size = ICE_MAILBOXQ_BUF_SZ; } static int lookup_proto_xtr_type(const char *xtr_name) { static struct { const char *name; enum proto_xtr_type type; } xtr_type_map[] = { { "vlan", PROTO_XTR_VLAN }, { "ipv4", PROTO_XTR_IPV4 }, { "ipv6", PROTO_XTR_IPV6 }, { "ipv6_flow", PROTO_XTR_IPV6_FLOW }, { "tcp", PROTO_XTR_TCP }, { "ip_offset", PROTO_XTR_IP_OFFSET }, }; uint32_t i; for (i = 0; i < RTE_DIM(xtr_type_map); i++) { if (strcmp(xtr_name, xtr_type_map[i].name) == 0) return xtr_type_map[i].type; } return -1; } /* * Parse elem, the elem could be single number/range or '(' ')' group * 1) A single number elem, it's just a simple digit. e.g. 9 * 2) A single range elem, two digits with a '-' between. e.g. 2-6 * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6) * Within group elem, '-' used for a range separator; * ',' used for a single number. */ static int parse_queue_set(const char *input, int xtr_type, struct ice_devargs *devargs) { const char *str = input; char *end = NULL; uint32_t min, max; uint32_t idx; while (isblank(*str)) str++; if (!isdigit(*str) && *str != '(') return -1; /* process single number or single range of number */ if (*str != '(') { errno = 0; idx = strtoul(str, &end, 10); if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM) return -1; while (isblank(*end)) end++; min = idx; max = idx; /* process single - */ if (*end == '-') { end++; while (isblank(*end)) end++; if (!isdigit(*end)) return -1; errno = 0; idx = strtoul(end, &end, 10); if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM) return -1; max = idx; while (isblank(*end)) end++; } if (*end != ':') return -1; for (idx = RTE_MIN(min, max); idx <= RTE_MAX(min, max); idx++) devargs->proto_xtr[idx] = xtr_type; return 0; } /* process set within bracket */ str++; while (isblank(*str)) str++; if (*str == '\0') return -1; min = ICE_MAX_QUEUE_NUM; do { /* go ahead to the first digit */ while (isblank(*str)) str++; if (!isdigit(*str)) return -1; /* get the digit value */ errno = 0; idx = strtoul(str, &end, 10); if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM) return -1; /* go ahead to separator '-',',' and ')' */ while (isblank(*end)) end++; if (*end == '-') { if (min == ICE_MAX_QUEUE_NUM) min = idx; else /* avoid continuous '-' */ return -1; } else if (*end == ',' || *end == ')') { max = idx; if (min == ICE_MAX_QUEUE_NUM) min = idx; for (idx = RTE_MIN(min, max); idx <= RTE_MAX(min, max); idx++) devargs->proto_xtr[idx] = xtr_type; min = ICE_MAX_QUEUE_NUM; } else { return -1; } str = end + 1; } while (*end != ')' && *end != '\0'); return 0; } static int parse_queue_proto_xtr(const char *queues, struct ice_devargs *devargs) { const char *queue_start; uint32_t idx; int xtr_type; char xtr_name[32]; while (isblank(*queues)) queues++; if (*queues != '[') { xtr_type = lookup_proto_xtr_type(queues); if (xtr_type < 0) return -1; devargs->proto_xtr_dflt = xtr_type; return 0; } queues++; do { while (isblank(*queues)) queues++; if (*queues == '\0') return -1; queue_start = queues; /* go across a complete bracket */ if (*queue_start == '(') { queues += strcspn(queues, ")"); if (*queues != ')') return -1; } /* scan the separator ':' */ queues += strcspn(queues, ":"); if (*queues++ != ':') return -1; while (isblank(*queues)) queues++; for (idx = 0; ; idx++) { if (isblank(queues[idx]) || queues[idx] == ',' || queues[idx] == ']' || queues[idx] == '\0') break; if (idx > sizeof(xtr_name) - 2) return -1; xtr_name[idx] = queues[idx]; } xtr_name[idx] = '\0'; xtr_type = lookup_proto_xtr_type(xtr_name); if (xtr_type < 0) return -1; queues += idx; while (isblank(*queues) || *queues == ',' || *queues == ']') queues++; if (parse_queue_set(queue_start, xtr_type, devargs) < 0) return -1; } while (*queues != '\0'); return 0; } static int handle_proto_xtr_arg(__rte_unused const char *key, const char *value, void *extra_args) { struct ice_devargs *devargs = extra_args; if (value == NULL || extra_args == NULL) return -EINVAL; if (parse_queue_proto_xtr(value, devargs) < 0) { PMD_DRV_LOG(ERR, "The protocol extraction parameter is wrong : '%s'", value); return -1; } return 0; } static void ice_check_proto_xtr_support(struct ice_hw *hw) { #define FLX_REG(val, fld, idx) \ (((val) & GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_M) >> \ GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_S) static struct { uint32_t rxdid; uint8_t opcode; uint8_t protid_0; uint8_t protid_1; } xtr_sets[] = { [PROTO_XTR_VLAN] = { ICE_RXDID_COMMS_AUX_VLAN, ICE_RX_OPC_EXTRACT, ICE_PROT_EVLAN_O, ICE_PROT_VLAN_O}, [PROTO_XTR_IPV4] = { ICE_RXDID_COMMS_AUX_IPV4, ICE_RX_OPC_EXTRACT, ICE_PROT_IPV4_OF_OR_S, ICE_PROT_IPV4_OF_OR_S }, [PROTO_XTR_IPV6] = { ICE_RXDID_COMMS_AUX_IPV6, ICE_RX_OPC_EXTRACT, ICE_PROT_IPV6_OF_OR_S, ICE_PROT_IPV6_OF_OR_S }, [PROTO_XTR_IPV6_FLOW] = { ICE_RXDID_COMMS_AUX_IPV6_FLOW, ICE_RX_OPC_EXTRACT, ICE_PROT_IPV6_OF_OR_S, ICE_PROT_IPV6_OF_OR_S }, [PROTO_XTR_TCP] = { ICE_RXDID_COMMS_AUX_TCP, ICE_RX_OPC_EXTRACT, ICE_PROT_TCP_IL, ICE_PROT_ID_INVAL }, [PROTO_XTR_IP_OFFSET] = { ICE_RXDID_COMMS_AUX_IP_OFFSET, ICE_RX_OPC_PROTID, ICE_PROT_IPV4_OF_OR_S, ICE_PROT_IPV6_OF_OR_S }, }; uint32_t i; for (i = 0; i < RTE_DIM(xtr_sets); i++) { uint32_t rxdid = xtr_sets[i].rxdid; uint32_t v; if (xtr_sets[i].protid_0 != ICE_PROT_ID_INVAL) { v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_4(rxdid)); if (FLX_REG(v, PROT_MDID, 4) == xtr_sets[i].protid_0 && FLX_REG(v, RXDID_OPCODE, 4) == xtr_sets[i].opcode) ice_proto_xtr_hw_support[i] = true; } if (xtr_sets[i].protid_1 != ICE_PROT_ID_INVAL) { v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_5(rxdid)); if (FLX_REG(v, PROT_MDID, 5) == xtr_sets[i].protid_1 && FLX_REG(v, RXDID_OPCODE, 5) == xtr_sets[i].opcode) ice_proto_xtr_hw_support[i] = true; } } } static int ice_res_pool_init(struct ice_res_pool_info *pool, uint32_t base, uint32_t num) { struct pool_entry *entry; if (!pool || !num) return -EINVAL; entry = rte_zmalloc(NULL, sizeof(*entry), 0); if (!entry) { PMD_INIT_LOG(ERR, "Failed to allocate memory for resource pool"); return -ENOMEM; } /* queue heap initialize */ pool->num_free = num; pool->num_alloc = 0; pool->base = base; LIST_INIT(&pool->alloc_list); LIST_INIT(&pool->free_list); /* Initialize element */ entry->base = 0; entry->len = num; LIST_INSERT_HEAD(&pool->free_list, entry, next); return 0; } static int ice_res_pool_alloc(struct ice_res_pool_info *pool, uint16_t num) { struct pool_entry *entry, *valid_entry; if (!pool || !num) { PMD_INIT_LOG(ERR, "Invalid parameter"); return -EINVAL; } if (pool->num_free < num) { PMD_INIT_LOG(ERR, "No resource. ask:%u, available:%u", num, pool->num_free); return -ENOMEM; } valid_entry = NULL; /* Lookup in free list and find most fit one */ LIST_FOREACH(entry, &pool->free_list, next) { if (entry->len >= num) { /* Find best one */ if (entry->len == num) { valid_entry = entry; break; } if (!valid_entry || valid_entry->len > entry->len) valid_entry = entry; } } /* Not find one to satisfy the request, return */ if (!valid_entry) { PMD_INIT_LOG(ERR, "No valid entry found"); return -ENOMEM; } /** * The entry have equal queue number as requested, * remove it from alloc_list. */ if (valid_entry->len == num) { LIST_REMOVE(valid_entry, next); } else { /** * The entry have more numbers than requested, * create a new entry for alloc_list and minus its * queue base and number in free_list. */ entry = rte_zmalloc(NULL, sizeof(*entry), 0); if (!entry) { PMD_INIT_LOG(ERR, "Failed to allocate memory for " "resource pool"); return -ENOMEM; } entry->base = valid_entry->base; entry->len = num; valid_entry->base += num; valid_entry->len -= num; valid_entry = entry; } /* Insert it into alloc list, not sorted */ LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next); pool->num_free -= valid_entry->len; pool->num_alloc += valid_entry->len; return valid_entry->base + pool->base; } static void ice_res_pool_destroy(struct ice_res_pool_info *pool) { struct pool_entry *entry, *next_entry; if (!pool) return; for (entry = LIST_FIRST(&pool->alloc_list); entry && (next_entry = LIST_NEXT(entry, next), 1); entry = next_entry) { LIST_REMOVE(entry, next); rte_free(entry); } for (entry = LIST_FIRST(&pool->free_list); entry && (next_entry = LIST_NEXT(entry, next), 1); entry = next_entry) { LIST_REMOVE(entry, next); rte_free(entry); } pool->num_free = 0; pool->num_alloc = 0; pool->base = 0; LIST_INIT(&pool->alloc_list); LIST_INIT(&pool->free_list); } static void ice_vsi_config_default_rss(struct ice_aqc_vsi_props *info) { /* Set VSI LUT selection */ info->q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI & ICE_AQ_VSI_Q_OPT_RSS_LUT_M; /* Set Hash scheme */ info->q_opt_rss |= ICE_AQ_VSI_Q_OPT_RSS_TPLZ & ICE_AQ_VSI_Q_OPT_RSS_HASH_M; /* enable TC */ info->q_opt_tc = ICE_AQ_VSI_Q_OPT_TC_OVR_M; } static enum ice_status ice_vsi_config_tc_queue_mapping(struct ice_vsi *vsi, struct ice_aqc_vsi_props *info, uint8_t enabled_tcmap) { uint16_t bsf, qp_idx; /* default tc 0 now. Multi-TC supporting need to be done later. * Configure TC and queue mapping parameters, for enabled TC, * allocate qpnum_per_tc queues to this traffic. */ if (enabled_tcmap != 0x01) { PMD_INIT_LOG(ERR, "only TC0 is supported"); return -ENOTSUP; } vsi->nb_qps = RTE_MIN(vsi->nb_qps, ICE_MAX_Q_PER_TC); bsf = rte_bsf32(vsi->nb_qps); /* Adjust the queue number to actual queues that can be applied */ vsi->nb_qps = 0x1 << bsf; qp_idx = 0; /* Set tc and queue mapping with VSI */ info->tc_mapping[0] = rte_cpu_to_le_16((qp_idx << ICE_AQ_VSI_TC_Q_OFFSET_S) | (bsf << ICE_AQ_VSI_TC_Q_NUM_S)); /* Associate queue number with VSI */ info->mapping_flags |= rte_cpu_to_le_16(ICE_AQ_VSI_Q_MAP_CONTIG); info->q_mapping[0] = rte_cpu_to_le_16(vsi->base_queue); info->q_mapping[1] = rte_cpu_to_le_16(vsi->nb_qps); info->valid_sections |= rte_cpu_to_le_16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); /* Set the info.ingress_table and info.egress_table * for UP translate table. Now just set it to 1:1 map by default * -- 0b 111 110 101 100 011 010 001 000 == 0xFAC688 */ #define ICE_TC_QUEUE_TABLE_DFLT 0x00FAC688 info->ingress_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT); info->egress_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT); info->outer_up_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT); return 0; } static int ice_init_mac_address(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (!rte_is_unicast_ether_addr ((struct rte_ether_addr *)hw->port_info[0].mac.lan_addr)) { PMD_INIT_LOG(ERR, "Invalid MAC address"); return -EINVAL; } rte_ether_addr_copy( (struct rte_ether_addr *)hw->port_info[0].mac.lan_addr, (struct rte_ether_addr *)hw->port_info[0].mac.perm_addr); dev->data->mac_addrs = rte_zmalloc(NULL, sizeof(struct rte_ether_addr) * ICE_NUM_MACADDR_MAX, 0); if (!dev->data->mac_addrs) { PMD_INIT_LOG(ERR, "Failed to allocate memory to store mac address"); return -ENOMEM; } /* store it to dev data */ rte_ether_addr_copy( (struct rte_ether_addr *)hw->port_info[0].mac.perm_addr, &dev->data->mac_addrs[0]); return 0; } /* Find out specific MAC filter */ static struct ice_mac_filter * ice_find_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *macaddr) { struct ice_mac_filter *f; TAILQ_FOREACH(f, &vsi->mac_list, next) { if (rte_is_same_ether_addr(macaddr, &f->mac_info.mac_addr)) return f; } return NULL; } static int ice_add_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr) { struct ice_fltr_list_entry *m_list_itr = NULL; struct ice_mac_filter *f; struct LIST_HEAD_TYPE list_head; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret = 0; /* If it's added and configured, return */ f = ice_find_mac_filter(vsi, mac_addr); if (f) { PMD_DRV_LOG(INFO, "This MAC filter already exists."); return 0; } INIT_LIST_HEAD(&list_head); m_list_itr = (struct ice_fltr_list_entry *) ice_malloc(hw, sizeof(*m_list_itr)); if (!m_list_itr) { ret = -ENOMEM; goto DONE; } ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA); m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI; m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC; m_list_itr->fltr_info.flag = ICE_FLTR_TX; m_list_itr->fltr_info.vsi_handle = vsi->idx; LIST_ADD(&m_list_itr->list_entry, &list_head); /* Add the mac */ ret = ice_add_mac(hw, &list_head); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add MAC filter"); ret = -EINVAL; goto DONE; } /* Add the mac addr into mac list */ f = rte_zmalloc(NULL, sizeof(*f), 0); if (!f) { PMD_DRV_LOG(ERR, "failed to allocate memory"); ret = -ENOMEM; goto DONE; } rte_ether_addr_copy(mac_addr, &f->mac_info.mac_addr); TAILQ_INSERT_TAIL(&vsi->mac_list, f, next); vsi->mac_num++; ret = 0; DONE: rte_free(m_list_itr); return ret; } static int ice_remove_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr) { struct ice_fltr_list_entry *m_list_itr = NULL; struct ice_mac_filter *f; struct LIST_HEAD_TYPE list_head; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret = 0; /* Can't find it, return an error */ f = ice_find_mac_filter(vsi, mac_addr); if (!f) return -EINVAL; INIT_LIST_HEAD(&list_head); m_list_itr = (struct ice_fltr_list_entry *) ice_malloc(hw, sizeof(*m_list_itr)); if (!m_list_itr) { ret = -ENOMEM; goto DONE; } ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA); m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI; m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC; m_list_itr->fltr_info.flag = ICE_FLTR_TX; m_list_itr->fltr_info.vsi_handle = vsi->idx; LIST_ADD(&m_list_itr->list_entry, &list_head); /* remove the mac filter */ ret = ice_remove_mac(hw, &list_head); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to remove MAC filter"); ret = -EINVAL; goto DONE; } /* Remove the mac addr from mac list */ TAILQ_REMOVE(&vsi->mac_list, f, next); rte_free(f); vsi->mac_num--; ret = 0; DONE: rte_free(m_list_itr); return ret; } /* Find out specific VLAN filter */ static struct ice_vlan_filter * ice_find_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan) { struct ice_vlan_filter *f; TAILQ_FOREACH(f, &vsi->vlan_list, next) { if (vlan->tpid == f->vlan_info.vlan.tpid && vlan->vid == f->vlan_info.vlan.vid) return f; } return NULL; } static int ice_add_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan) { struct ice_fltr_list_entry *v_list_itr = NULL; struct ice_vlan_filter *f; struct LIST_HEAD_TYPE list_head; struct ice_hw *hw; int ret = 0; if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID) return -EINVAL; hw = ICE_VSI_TO_HW(vsi); /* If it's added and configured, return. */ f = ice_find_vlan_filter(vsi, vlan); if (f) { PMD_DRV_LOG(INFO, "This VLAN filter already exists."); return 0; } if (!vsi->vlan_anti_spoof_on && !vsi->vlan_filter_on) return 0; INIT_LIST_HEAD(&list_head); v_list_itr = (struct ice_fltr_list_entry *) ice_malloc(hw, sizeof(*v_list_itr)); if (!v_list_itr) { ret = -ENOMEM; goto DONE; } v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid; v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid; v_list_itr->fltr_info.l_data.vlan.tpid_valid = true; v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI; v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; v_list_itr->fltr_info.flag = ICE_FLTR_TX; v_list_itr->fltr_info.vsi_handle = vsi->idx; LIST_ADD(&v_list_itr->list_entry, &list_head); /* Add the vlan */ ret = ice_add_vlan(hw, &list_head); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add VLAN filter"); ret = -EINVAL; goto DONE; } /* Add vlan into vlan list */ f = rte_zmalloc(NULL, sizeof(*f), 0); if (!f) { PMD_DRV_LOG(ERR, "failed to allocate memory"); ret = -ENOMEM; goto DONE; } f->vlan_info.vlan.tpid = vlan->tpid; f->vlan_info.vlan.vid = vlan->vid; TAILQ_INSERT_TAIL(&vsi->vlan_list, f, next); vsi->vlan_num++; ret = 0; DONE: rte_free(v_list_itr); return ret; } static int ice_remove_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan) { struct ice_fltr_list_entry *v_list_itr = NULL; struct ice_vlan_filter *f; struct LIST_HEAD_TYPE list_head; struct ice_hw *hw; int ret = 0; if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID) return -EINVAL; hw = ICE_VSI_TO_HW(vsi); /* Can't find it, return an error */ f = ice_find_vlan_filter(vsi, vlan); if (!f) return -EINVAL; INIT_LIST_HEAD(&list_head); v_list_itr = (struct ice_fltr_list_entry *) ice_malloc(hw, sizeof(*v_list_itr)); if (!v_list_itr) { ret = -ENOMEM; goto DONE; } v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid; v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid; v_list_itr->fltr_info.l_data.vlan.tpid_valid = true; v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI; v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; v_list_itr->fltr_info.flag = ICE_FLTR_TX; v_list_itr->fltr_info.vsi_handle = vsi->idx; LIST_ADD(&v_list_itr->list_entry, &list_head); /* remove the vlan filter */ ret = ice_remove_vlan(hw, &list_head); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to remove VLAN filter"); ret = -EINVAL; goto DONE; } /* Remove the vlan id from vlan list */ TAILQ_REMOVE(&vsi->vlan_list, f, next); rte_free(f); vsi->vlan_num--; ret = 0; DONE: rte_free(v_list_itr); return ret; } static int ice_remove_all_mac_vlan_filters(struct ice_vsi *vsi) { struct ice_mac_filter *m_f; struct ice_vlan_filter *v_f; void *temp; int ret = 0; if (!vsi || !vsi->mac_num) return -EINVAL; TAILQ_FOREACH_SAFE(m_f, &vsi->mac_list, next, temp) { ret = ice_remove_mac_filter(vsi, &m_f->mac_info.mac_addr); if (ret != ICE_SUCCESS) { ret = -EINVAL; goto DONE; } } if (vsi->vlan_num == 0) return 0; TAILQ_FOREACH_SAFE(v_f, &vsi->vlan_list, next, temp) { ret = ice_remove_vlan_filter(vsi, &v_f->vlan_info.vlan); if (ret != ICE_SUCCESS) { ret = -EINVAL; goto DONE; } } DONE: return ret; } /* Enable IRQ0 */ static void ice_pf_enable_irq0(struct ice_hw *hw) { /* reset the registers */ ICE_WRITE_REG(hw, PFINT_OICR_ENA, 0); ICE_READ_REG(hw, PFINT_OICR); #ifdef ICE_LSE_SPT ICE_WRITE_REG(hw, PFINT_OICR_ENA, (uint32_t)(PFINT_OICR_ENA_INT_ENA_M & (~PFINT_OICR_LINK_STAT_CHANGE_M))); ICE_WRITE_REG(hw, PFINT_OICR_CTL, (0 & PFINT_OICR_CTL_MSIX_INDX_M) | ((0 << PFINT_OICR_CTL_ITR_INDX_S) & PFINT_OICR_CTL_ITR_INDX_M) | PFINT_OICR_CTL_CAUSE_ENA_M); ICE_WRITE_REG(hw, PFINT_FW_CTL, (0 & PFINT_FW_CTL_MSIX_INDX_M) | ((0 << PFINT_FW_CTL_ITR_INDX_S) & PFINT_FW_CTL_ITR_INDX_M) | PFINT_FW_CTL_CAUSE_ENA_M); #else ICE_WRITE_REG(hw, PFINT_OICR_ENA, PFINT_OICR_ENA_INT_ENA_M); #endif ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | GLINT_DYN_CTL_ITR_INDX_M); ice_flush(hw); } /* Disable IRQ0 */ static void ice_pf_disable_irq0(struct ice_hw *hw) { /* Disable all interrupt types */ ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M); ice_flush(hw); } #ifdef ICE_LSE_SPT static void ice_handle_aq_msg(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_ctl_q_info *cq = &hw->adminq; struct ice_rq_event_info event; uint16_t pending, opcode; int ret; event.buf_len = ICE_AQ_MAX_BUF_LEN; event.msg_buf = rte_zmalloc(NULL, event.buf_len, 0); if (!event.msg_buf) { PMD_DRV_LOG(ERR, "Failed to allocate mem"); return; } pending = 1; while (pending) { ret = ice_clean_rq_elem(hw, cq, &event, &pending); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ, " "adminq_err: %u", hw->adminq.sq_last_status); break; } opcode = rte_le_to_cpu_16(event.desc.opcode); switch (opcode) { case ice_aqc_opc_get_link_status: ret = ice_link_update(dev, 0); if (!ret) rte_eth_dev_callback_process (dev, RTE_ETH_EVENT_INTR_LSC, NULL); break; default: PMD_DRV_LOG(DEBUG, "Request %u is not supported yet", opcode); break; } } rte_free(event.msg_buf); } #endif /** * Interrupt handler triggered by NIC for handling * specific interrupt. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void ice_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t oicr; uint32_t reg; uint8_t pf_num; uint8_t event; uint16_t queue; int ret; #ifdef ICE_LSE_SPT uint32_t int_fw_ctl; #endif /* Disable interrupt */ ice_pf_disable_irq0(hw); /* read out interrupt causes */ oicr = ICE_READ_REG(hw, PFINT_OICR); #ifdef ICE_LSE_SPT int_fw_ctl = ICE_READ_REG(hw, PFINT_FW_CTL); #endif /* No interrupt event indicated */ if (!(oicr & PFINT_OICR_INTEVENT_M)) { PMD_DRV_LOG(INFO, "No interrupt event"); goto done; } #ifdef ICE_LSE_SPT if (int_fw_ctl & PFINT_FW_CTL_INTEVENT_M) { PMD_DRV_LOG(INFO, "FW_CTL: link state change event"); ice_handle_aq_msg(dev); } #else if (oicr & PFINT_OICR_LINK_STAT_CHANGE_M) { PMD_DRV_LOG(INFO, "OICR: link state change event"); ret = ice_link_update(dev, 0); if (!ret) rte_eth_dev_callback_process (dev, RTE_ETH_EVENT_INTR_LSC, NULL); } #endif if (oicr & PFINT_OICR_MAL_DETECT_M) { PMD_DRV_LOG(WARNING, "OICR: MDD event"); reg = ICE_READ_REG(hw, GL_MDET_TX_PQM); if (reg & GL_MDET_TX_PQM_VALID_M) { pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> GL_MDET_TX_PQM_PF_NUM_S; event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> GL_MDET_TX_PQM_MAL_TYPE_S; queue = (reg & GL_MDET_TX_PQM_QNUM_M) >> GL_MDET_TX_PQM_QNUM_S; PMD_DRV_LOG(WARNING, "Malicious Driver Detection event " "%d by PQM on TX queue %d PF# %d", event, queue, pf_num); } reg = ICE_READ_REG(hw, GL_MDET_TX_TCLAN); if (reg & GL_MDET_TX_TCLAN_VALID_M) { pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> GL_MDET_TX_TCLAN_PF_NUM_S; event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> GL_MDET_TX_TCLAN_MAL_TYPE_S; queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >> GL_MDET_TX_TCLAN_QNUM_S; PMD_DRV_LOG(WARNING, "Malicious Driver Detection event " "%d by TCLAN on TX queue %d PF# %d", event, queue, pf_num); } } done: /* Enable interrupt */ ice_pf_enable_irq0(hw); rte_intr_ack(dev->intr_handle); } static void ice_init_proto_xtr(struct rte_eth_dev *dev) { struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_PF_TO_HW(pf); const struct proto_xtr_ol_flag *ol_flag; bool proto_xtr_enable = false; int offset; uint16_t i; pf->proto_xtr = rte_zmalloc(NULL, pf->lan_nb_qps, 0); if (unlikely(pf->proto_xtr == NULL)) { PMD_DRV_LOG(ERR, "No memory for setting up protocol extraction table"); return; } for (i = 0; i < pf->lan_nb_qps; i++) { pf->proto_xtr[i] = ad->devargs.proto_xtr[i] != PROTO_XTR_NONE ? ad->devargs.proto_xtr[i] : ad->devargs.proto_xtr_dflt; if (pf->proto_xtr[i] != PROTO_XTR_NONE) { uint8_t type = pf->proto_xtr[i]; ice_proto_xtr_ol_flag_params[type].required = true; proto_xtr_enable = true; } } if (likely(!proto_xtr_enable)) return; ice_check_proto_xtr_support(hw); offset = rte_mbuf_dynfield_register(&ice_proto_xtr_metadata_param); if (unlikely(offset == -1)) { PMD_DRV_LOG(ERR, "Protocol extraction metadata is disabled in mbuf with error %d", -rte_errno); return; } PMD_DRV_LOG(DEBUG, "Protocol extraction metadata offset in mbuf is : %d", offset); rte_net_ice_dynfield_proto_xtr_metadata_offs = offset; for (i = 0; i < RTE_DIM(ice_proto_xtr_ol_flag_params); i++) { ol_flag = &ice_proto_xtr_ol_flag_params[i]; if (!ol_flag->required) continue; if (!ice_proto_xtr_hw_support[i]) { PMD_DRV_LOG(ERR, "Protocol extraction type %u is not supported in hardware", i); rte_net_ice_dynfield_proto_xtr_metadata_offs = -1; break; } offset = rte_mbuf_dynflag_register(&ol_flag->param); if (unlikely(offset == -1)) { PMD_DRV_LOG(ERR, "Protocol extraction offload '%s' failed to register with error %d", ol_flag->param.name, -rte_errno); rte_net_ice_dynfield_proto_xtr_metadata_offs = -1; break; } PMD_DRV_LOG(DEBUG, "Protocol extraction offload '%s' offset in mbuf is : %d", ol_flag->param.name, offset); *ol_flag->ol_flag = 1ULL << offset; } } /* Initialize SW parameters of PF */ static int ice_pf_sw_init(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_PF_TO_HW(pf); pf->lan_nb_qp_max = (uint16_t)RTE_MIN(hw->func_caps.common_cap.num_txq, hw->func_caps.common_cap.num_rxq); pf->lan_nb_qps = pf->lan_nb_qp_max; ice_init_proto_xtr(dev); if (hw->func_caps.fd_fltr_guar > 0 || hw->func_caps.fd_fltr_best_effort > 0) { pf->flags |= ICE_FLAG_FDIR; pf->fdir_nb_qps = ICE_DEFAULT_QP_NUM_FDIR; pf->lan_nb_qps = pf->lan_nb_qp_max - pf->fdir_nb_qps; } else { pf->fdir_nb_qps = 0; } pf->fdir_qp_offset = 0; return 0; } struct ice_vsi * ice_setup_vsi(struct ice_pf *pf, enum ice_vsi_type type) { struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi = NULL; struct ice_vsi_ctx vsi_ctx; int ret; struct rte_ether_addr broadcast = { .addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff} }; struct rte_ether_addr mac_addr; uint16_t max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; uint8_t tc_bitmap = 0x1; uint16_t cfg; /* hw->num_lports = 1 in NIC mode */ vsi = rte_zmalloc(NULL, sizeof(struct ice_vsi), 0); if (!vsi) return NULL; vsi->idx = pf->next_vsi_idx; pf->next_vsi_idx++; vsi->type = type; vsi->adapter = ICE_PF_TO_ADAPTER(pf); vsi->max_macaddrs = ICE_NUM_MACADDR_MAX; vsi->vlan_anti_spoof_on = 0; vsi->vlan_filter_on = 1; TAILQ_INIT(&vsi->mac_list); TAILQ_INIT(&vsi->vlan_list); /* Be sync with ETH_RSS_RETA_SIZE_x maximum value definition */ pf->hash_lut_size = hw->func_caps.common_cap.rss_table_size > ETH_RSS_RETA_SIZE_512 ? ETH_RSS_RETA_SIZE_512 : hw->func_caps.common_cap.rss_table_size; pf->flags |= ICE_FLAG_RSS_AQ_CAPABLE; memset(&vsi_ctx, 0, sizeof(vsi_ctx)); switch (type) { case ICE_VSI_PF: vsi->nb_qps = pf->lan_nb_qps; vsi->base_queue = 1; ice_vsi_config_default_rss(&vsi_ctx.info); vsi_ctx.alloc_from_pool = true; vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF; /* switch_id is queried by get_switch_config aq, which is done * by ice_init_hw */ vsi_ctx.info.sw_id = hw->port_info->sw_id; vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; /* Allow all untagged or tagged packets */ vsi_ctx.info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL; vsi_ctx.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; vsi_ctx.info.q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF | ICE_AQ_VSI_Q_OPT_RSS_TPLZ; if (ice_is_dvm_ena(hw)) { vsi_ctx.info.outer_vlan_flags = (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; vsi_ctx.info.outer_vlan_flags |= (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << ICE_AQ_VSI_OUTER_TAG_TYPE_S) & ICE_AQ_VSI_OUTER_TAG_TYPE_M; } /* FDIR */ cfg = ICE_AQ_VSI_PROP_SECURITY_VALID | ICE_AQ_VSI_PROP_FLOW_DIR_VALID; vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg); cfg = ICE_AQ_VSI_FD_ENABLE; vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg); vsi_ctx.info.max_fd_fltr_dedicated = rte_cpu_to_le_16(hw->func_caps.fd_fltr_guar); vsi_ctx.info.max_fd_fltr_shared = rte_cpu_to_le_16(hw->func_caps.fd_fltr_best_effort); /* Enable VLAN/UP trip */ ret = ice_vsi_config_tc_queue_mapping(vsi, &vsi_ctx.info, ICE_DEFAULT_TCMAP); if (ret) { PMD_INIT_LOG(ERR, "tc queue mapping with vsi failed, " "err = %d", ret); goto fail_mem; } break; case ICE_VSI_CTRL: vsi->nb_qps = pf->fdir_nb_qps; vsi->base_queue = ICE_FDIR_QUEUE_ID; vsi_ctx.alloc_from_pool = true; vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF; cfg = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg); cfg = ICE_AQ_VSI_FD_PROG_ENABLE; vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg); vsi_ctx.info.sw_id = hw->port_info->sw_id; vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; ret = ice_vsi_config_tc_queue_mapping(vsi, &vsi_ctx.info, ICE_DEFAULT_TCMAP); if (ret) { PMD_INIT_LOG(ERR, "tc queue mapping with vsi failed, " "err = %d", ret); goto fail_mem; } break; default: /* for other types of VSI */ PMD_INIT_LOG(ERR, "other types of VSI not supported"); goto fail_mem; } /* VF has MSIX interrupt in VF range, don't allocate here */ if (type == ICE_VSI_PF) { ret = ice_res_pool_alloc(&pf->msix_pool, RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID)); if (ret < 0) { PMD_INIT_LOG(ERR, "VSI MAIN %d get heap failed %d", vsi->vsi_id, ret); } vsi->msix_intr = ret; vsi->nb_msix = RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID); } else if (type == ICE_VSI_CTRL) { ret = ice_res_pool_alloc(&pf->msix_pool, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "VSI %d get heap failed %d", vsi->vsi_id, ret); } vsi->msix_intr = ret; vsi->nb_msix = 1; } else { vsi->msix_intr = 0; vsi->nb_msix = 0; } ret = ice_add_vsi(hw, vsi->idx, &vsi_ctx, NULL); if (ret != ICE_SUCCESS) { PMD_INIT_LOG(ERR, "add vsi failed, err = %d", ret); goto fail_mem; } /* store vsi information is SW structure */ vsi->vsi_id = vsi_ctx.vsi_num; vsi->info = vsi_ctx.info; pf->vsis_allocated = vsi_ctx.vsis_allocd; pf->vsis_unallocated = vsi_ctx.vsis_unallocated; if (type == ICE_VSI_PF) { /* MAC configuration */ rte_ether_addr_copy((struct rte_ether_addr *) hw->port_info->mac.perm_addr, &pf->dev_addr); rte_ether_addr_copy(&pf->dev_addr, &mac_addr); ret = ice_add_mac_filter(vsi, &mac_addr); if (ret != ICE_SUCCESS) PMD_INIT_LOG(ERR, "Failed to add dflt MAC filter"); rte_ether_addr_copy(&broadcast, &mac_addr); ret = ice_add_mac_filter(vsi, &mac_addr); if (ret != ICE_SUCCESS) PMD_INIT_LOG(ERR, "Failed to add MAC filter"); } /* At the beginning, only TC0. */ /* What we need here is the maximam number of the TX queues. * Currently vsi->nb_qps means it. * Correct it if any change. */ max_txqs[0] = vsi->nb_qps; ret = ice_cfg_vsi_lan(hw->port_info, vsi->idx, tc_bitmap, max_txqs); if (ret != ICE_SUCCESS) PMD_INIT_LOG(ERR, "Failed to config vsi sched"); return vsi; fail_mem: rte_free(vsi); pf->next_vsi_idx--; return NULL; } static int ice_send_driver_ver(struct ice_hw *hw) { struct ice_driver_ver dv; /* we don't have driver version use 0 for dummy */ dv.major_ver = 0; dv.minor_ver = 0; dv.build_ver = 0; dv.subbuild_ver = 0; strncpy((char *)dv.driver_string, "dpdk", sizeof(dv.driver_string)); return ice_aq_send_driver_ver(hw, &dv, NULL); } static int ice_pf_setup(struct ice_pf *pf) { struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi; uint16_t unused; /* Clear all stats counters */ pf->offset_loaded = false; memset(&pf->stats, 0, sizeof(struct ice_hw_port_stats)); memset(&pf->stats_offset, 0, sizeof(struct ice_hw_port_stats)); memset(&pf->internal_stats, 0, sizeof(struct ice_eth_stats)); memset(&pf->internal_stats_offset, 0, sizeof(struct ice_eth_stats)); /* force guaranteed filter pool for PF */ ice_alloc_fd_guar_item(hw, &unused, hw->func_caps.fd_fltr_guar); /* force shared filter pool for PF */ ice_alloc_fd_shrd_item(hw, &unused, hw->func_caps.fd_fltr_best_effort); vsi = ice_setup_vsi(pf, ICE_VSI_PF); if (!vsi) { PMD_INIT_LOG(ERR, "Failed to add vsi for PF"); return -EINVAL; } pf->main_vsi = vsi; return 0; } /* * Extract device serial number from PCIe Configuration Space and * determine the pkg file path according to the DSN. */ #ifndef RTE_EXEC_ENV_WINDOWS static int ice_pkg_file_search_path(struct rte_pci_device *pci_dev, char *pkg_file) { off_t pos; char opt_ddp_filename[ICE_MAX_PKG_FILENAME_SIZE]; uint32_t dsn_low, dsn_high; memset(opt_ddp_filename, 0, ICE_MAX_PKG_FILENAME_SIZE); pos = rte_pci_find_ext_capability(pci_dev, RTE_PCI_EXT_CAP_ID_DSN); if (pos) { if (rte_pci_read_config(pci_dev, &dsn_low, 4, pos + 4) < 0) { PMD_INIT_LOG(ERR, "Failed to read pci config space\n"); return -1; } if (rte_pci_read_config(pci_dev, &dsn_high, 4, pos + 8) < 0) { PMD_INIT_LOG(ERR, "Failed to read pci config space\n"); return -1; } snprintf(opt_ddp_filename, ICE_MAX_PKG_FILENAME_SIZE, "ice-%08x%08x.pkg", dsn_high, dsn_low); } else { PMD_INIT_LOG(ERR, "Failed to read device serial number\n"); goto fail_dsn; } strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_UPDATES, ICE_MAX_PKG_FILENAME_SIZE); if (!ice_access(strcat(pkg_file, opt_ddp_filename), 0)) return 0; strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_DEFAULT, ICE_MAX_PKG_FILENAME_SIZE); if (!ice_access(strcat(pkg_file, opt_ddp_filename), 0)) return 0; fail_dsn: strncpy(pkg_file, ICE_PKG_FILE_UPDATES, ICE_MAX_PKG_FILENAME_SIZE); if (!ice_access(pkg_file, 0)) return 0; strncpy(pkg_file, ICE_PKG_FILE_DEFAULT, ICE_MAX_PKG_FILENAME_SIZE); return 0; } #endif enum ice_pkg_type ice_load_pkg_type(struct ice_hw *hw) { enum ice_pkg_type package_type; /* store the activated package type (OS default or Comms) */ if (!strncmp((char *)hw->active_pkg_name, ICE_OS_DEFAULT_PKG_NAME, ICE_PKG_NAME_SIZE)) package_type = ICE_PKG_TYPE_OS_DEFAULT; else if (!strncmp((char *)hw->active_pkg_name, ICE_COMMS_PKG_NAME, ICE_PKG_NAME_SIZE)) package_type = ICE_PKG_TYPE_COMMS; else package_type = ICE_PKG_TYPE_UNKNOWN; PMD_INIT_LOG(NOTICE, "Active package is: %d.%d.%d.%d, %s (%s VLAN mode)", hw->active_pkg_ver.major, hw->active_pkg_ver.minor, hw->active_pkg_ver.update, hw->active_pkg_ver.draft, hw->active_pkg_name, ice_is_dvm_ena(hw) ? "double" : "single"); return package_type; } #ifndef RTE_EXEC_ENV_WINDOWS static int ice_load_pkg(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); char pkg_file[ICE_MAX_PKG_FILENAME_SIZE]; int err; uint8_t *buf; int buf_len; FILE *file; struct stat fstat; struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); err = ice_pkg_file_search_path(pci_dev, pkg_file); if (err) { PMD_INIT_LOG(ERR, "failed to search file path\n"); return err; } file = fopen(pkg_file, "rb"); if (!file) { PMD_INIT_LOG(ERR, "failed to open file: %s\n", pkg_file); return -1; } err = stat(pkg_file, &fstat); if (err) { PMD_INIT_LOG(ERR, "failed to get file stats\n"); fclose(file); return err; } buf_len = fstat.st_size; buf = rte_malloc(NULL, buf_len, 0); if (!buf) { PMD_INIT_LOG(ERR, "failed to allocate buf of size %d for package\n", buf_len); fclose(file); return -1; } err = fread(buf, buf_len, 1, file); if (err != 1) { PMD_INIT_LOG(ERR, "failed to read package data\n"); fclose(file); err = -1; goto fail_exit; } fclose(file); err = ice_copy_and_init_pkg(hw, buf, buf_len); if (err) { PMD_INIT_LOG(ERR, "ice_copy_and_init_hw failed: %d\n", err); goto fail_exit; } /* store the loaded pkg type info */ ad->active_pkg_type = ice_load_pkg_type(hw); err = ice_init_hw_tbls(hw); if (err) { PMD_INIT_LOG(ERR, "ice_init_hw_tbls failed: %d\n", err); goto fail_init_tbls; } return 0; fail_init_tbls: rte_free(hw->pkg_copy); fail_exit: rte_free(buf); return err; } #endif static void ice_base_queue_get(struct ice_pf *pf) { uint32_t reg; struct ice_hw *hw = ICE_PF_TO_HW(pf); reg = ICE_READ_REG(hw, PFLAN_RX_QALLOC); if (reg & PFLAN_RX_QALLOC_VALID_M) { pf->base_queue = reg & PFLAN_RX_QALLOC_FIRSTQ_M; } else { PMD_INIT_LOG(WARNING, "Failed to get Rx base queue" " index"); } } static int parse_bool(const char *key, const char *value, void *args) { int *i = (int *)args; char *end; int num; num = strtoul(value, &end, 10); if (num != 0 && num != 1) { PMD_DRV_LOG(WARNING, "invalid value:\"%s\" for key:\"%s\", " "value must be 0 or 1", value, key); return -1; } *i = num; return 0; } static int ice_parse_devargs(struct rte_eth_dev *dev) { struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct rte_devargs *devargs = dev->device->devargs; struct rte_kvargs *kvlist; int ret; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, ice_valid_args); if (kvlist == NULL) { PMD_INIT_LOG(ERR, "Invalid kvargs key\n"); return -EINVAL; } ad->devargs.proto_xtr_dflt = PROTO_XTR_NONE; memset(ad->devargs.proto_xtr, PROTO_XTR_NONE, sizeof(ad->devargs.proto_xtr)); ret = rte_kvargs_process(kvlist, ICE_PROTO_XTR_ARG, &handle_proto_xtr_arg, &ad->devargs); if (ret) goto bail; ret = rte_kvargs_process(kvlist, ICE_SAFE_MODE_SUPPORT_ARG, &parse_bool, &ad->devargs.safe_mode_support); if (ret) goto bail; ret = rte_kvargs_process(kvlist, ICE_PIPELINE_MODE_SUPPORT_ARG, &parse_bool, &ad->devargs.pipe_mode_support); if (ret) goto bail; bail: rte_kvargs_free(kvlist); return ret; } /* Forward LLDP packets to default VSI by set switch rules */ static int ice_vsi_config_sw_lldp(struct ice_vsi *vsi, bool on) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); struct ice_fltr_list_entry *s_list_itr = NULL; struct LIST_HEAD_TYPE list_head; int ret = 0; INIT_LIST_HEAD(&list_head); s_list_itr = (struct ice_fltr_list_entry *) ice_malloc(hw, sizeof(*s_list_itr)); if (!s_list_itr) return -ENOMEM; s_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; s_list_itr->fltr_info.vsi_handle = vsi->idx; s_list_itr->fltr_info.l_data.ethertype_mac.ethertype = RTE_ETHER_TYPE_LLDP; s_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; s_list_itr->fltr_info.flag = ICE_FLTR_RX; s_list_itr->fltr_info.src_id = ICE_SRC_ID_LPORT; LIST_ADD(&s_list_itr->list_entry, &list_head); if (on) ret = ice_add_eth_mac(hw, &list_head); else ret = ice_remove_eth_mac(hw, &list_head); rte_free(s_list_itr); return ret; } static enum ice_status ice_get_hw_res(struct ice_hw *hw, uint16_t res_type, uint16_t num, uint16_t desc_id, uint16_t *prof_buf, uint16_t *num_prof) { struct ice_aqc_res_elem *resp_buf; int ret; uint16_t buf_len; bool res_shared = 1; struct ice_aq_desc aq_desc; struct ice_sq_cd *cd = NULL; struct ice_aqc_get_allocd_res_desc *cmd = &aq_desc.params.get_res_desc; buf_len = sizeof(*resp_buf) * num; resp_buf = ice_malloc(hw, buf_len); if (!resp_buf) return -ENOMEM; ice_fill_dflt_direct_cmd_desc(&aq_desc, ice_aqc_opc_get_allocd_res_desc); cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) & ICE_AQC_RES_TYPE_M) | (res_shared ? ICE_AQC_RES_TYPE_FLAG_SHARED : 0)); cmd->ops.cmd.first_desc = CPU_TO_LE16(desc_id); ret = ice_aq_send_cmd(hw, &aq_desc, resp_buf, buf_len, cd); if (!ret) *num_prof = LE16_TO_CPU(cmd->ops.resp.num_desc); else goto exit; ice_memcpy(prof_buf, resp_buf, sizeof(*resp_buf) * (*num_prof), ICE_NONDMA_TO_NONDMA); exit: rte_free(resp_buf); return ret; } static int ice_cleanup_resource(struct ice_hw *hw, uint16_t res_type) { int ret; uint16_t prof_id; uint16_t prof_buf[ICE_MAX_RES_DESC_NUM]; uint16_t first_desc = 1; uint16_t num_prof = 0; ret = ice_get_hw_res(hw, res_type, ICE_MAX_RES_DESC_NUM, first_desc, prof_buf, &num_prof); if (ret) { PMD_INIT_LOG(ERR, "Failed to get fxp resource"); return ret; } for (prof_id = 0; prof_id < num_prof; prof_id++) { ret = ice_free_hw_res(hw, res_type, 1, &prof_buf[prof_id]); if (ret) { PMD_INIT_LOG(ERR, "Failed to free fxp resource"); return ret; } } return 0; } static int ice_reset_fxp_resource(struct ice_hw *hw) { int ret; ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID); if (ret) { PMD_INIT_LOG(ERR, "Failed to clearup fdir resource"); return ret; } ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID); if (ret) { PMD_INIT_LOG(ERR, "Failed to clearup rss resource"); return ret; } return 0; } static void ice_rss_ctx_init(struct ice_pf *pf) { memset(&pf->hash_ctx, 0, sizeof(pf->hash_ctx)); } static uint64_t ice_get_supported_rxdid(struct ice_hw *hw) { uint64_t supported_rxdid = 0; /* bitmap for supported RXDID */ uint32_t regval; int i; supported_rxdid |= BIT(ICE_RXDID_LEGACY_1); for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { regval = ICE_READ_REG(hw, GLFLXP_RXDID_FLAGS(i, 0)); if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) supported_rxdid |= BIT(i); } return supported_rxdid; } static int ice_dev_init(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct ice_vsi *vsi; int ret; dev->dev_ops = &ice_eth_dev_ops; dev->rx_queue_count = ice_rx_queue_count; dev->rx_descriptor_status = ice_rx_descriptor_status; dev->tx_descriptor_status = ice_tx_descriptor_status; dev->rx_pkt_burst = ice_recv_pkts; dev->tx_pkt_burst = ice_xmit_pkts; dev->tx_pkt_prepare = ice_prep_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { ice_set_rx_function(dev); ice_set_tx_function(dev); return 0; } dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; ice_set_default_ptype_table(dev); pci_dev = RTE_DEV_TO_PCI(dev->device); intr_handle = &pci_dev->intr_handle; pf->adapter = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); pf->adapter->eth_dev = dev; pf->dev_data = dev->data; hw->back = pf->adapter; hw->hw_addr = (uint8_t *)pci_dev->mem_resource[0].addr; hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; ret = ice_parse_devargs(dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to parse devargs"); return -EINVAL; } ice_init_controlq_parameter(hw); ret = ice_init_hw(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to initialize HW"); return -EINVAL; } #ifndef RTE_EXEC_ENV_WINDOWS ret = ice_load_pkg(dev); if (ret) { if (ad->devargs.safe_mode_support == 0) { PMD_INIT_LOG(ERR, "Failed to load the DDP package," "Use safe-mode-support=1 to enter Safe Mode"); return ret; } PMD_INIT_LOG(WARNING, "Failed to load the DDP package," "Entering Safe Mode"); ad->is_safe_mode = 1; } #endif PMD_INIT_LOG(INFO, "FW %d.%d.%05d API %d.%d", hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, hw->api_maj_ver, hw->api_min_ver); ice_pf_sw_init(dev); ret = ice_init_mac_address(dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to initialize mac address"); goto err_init_mac; } ret = ice_res_pool_init(&pf->msix_pool, 1, hw->func_caps.common_cap.num_msix_vectors - 1); if (ret) { PMD_INIT_LOG(ERR, "Failed to init MSIX pool"); goto err_msix_pool_init; } ret = ice_pf_setup(pf); if (ret) { PMD_INIT_LOG(ERR, "Failed to setup PF"); goto err_pf_setup; } ret = ice_send_driver_ver(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to send driver version"); goto err_pf_setup; } vsi = pf->main_vsi; ret = ice_aq_stop_lldp(hw, true, false, NULL); if (ret != ICE_SUCCESS) PMD_INIT_LOG(DEBUG, "lldp has already stopped\n"); ret = ice_init_dcb(hw, true); if (ret != ICE_SUCCESS) PMD_INIT_LOG(DEBUG, "Failed to init DCB\n"); /* Forward LLDP packets to default VSI */ ret = ice_vsi_config_sw_lldp(vsi, true); if (ret != ICE_SUCCESS) PMD_INIT_LOG(DEBUG, "Failed to cfg lldp\n"); /* register callback func to eal lib */ rte_intr_callback_register(intr_handle, ice_interrupt_handler, dev); ice_pf_enable_irq0(hw); /* enable uio intr after callback register */ rte_intr_enable(intr_handle); /* get base queue pairs index in the device */ ice_base_queue_get(pf); /* Initialize RSS context for gtpu_eh */ ice_rss_ctx_init(pf); if (!ad->is_safe_mode) { ret = ice_flow_init(ad); if (ret) { PMD_INIT_LOG(ERR, "Failed to initialize flow"); return ret; } } ret = ice_reset_fxp_resource(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to reset fxp resource"); return ret; } pf->supported_rxdid = ice_get_supported_rxdid(hw); return 0; err_pf_setup: ice_res_pool_destroy(&pf->msix_pool); err_msix_pool_init: rte_free(dev->data->mac_addrs); dev->data->mac_addrs = NULL; err_init_mac: ice_sched_cleanup_all(hw); rte_free(hw->port_info); ice_shutdown_all_ctrlq(hw); rte_free(pf->proto_xtr); return ret; } int ice_release_vsi(struct ice_vsi *vsi) { struct ice_hw *hw; struct ice_vsi_ctx vsi_ctx; enum ice_status ret; int error = 0; if (!vsi) return error; hw = ICE_VSI_TO_HW(vsi); ice_remove_all_mac_vlan_filters(vsi); memset(&vsi_ctx, 0, sizeof(vsi_ctx)); vsi_ctx.vsi_num = vsi->vsi_id; vsi_ctx.info = vsi->info; ret = ice_free_vsi(hw, vsi->idx, &vsi_ctx, false, NULL); if (ret != ICE_SUCCESS) { PMD_INIT_LOG(ERR, "Failed to free vsi by aq, %u", vsi->vsi_id); error = -1; } rte_free(vsi->rss_lut); rte_free(vsi->rss_key); rte_free(vsi); return error; } void ice_vsi_disable_queues_intr(struct ice_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); uint16_t msix_intr, i; /* disable interrupt and also clear all the exist config */ for (i = 0; i < vsi->nb_qps; i++) { ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0); ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0); rte_wmb(); } if (rte_intr_allow_others(intr_handle)) /* vfio-pci */ for (i = 0; i < vsi->nb_msix; i++) { msix_intr = vsi->msix_intr + i; ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), GLINT_DYN_CTL_WB_ON_ITR_M); } else /* igb_uio */ ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M); } static int ice_dev_stop(struct rte_eth_dev *dev) { struct rte_eth_dev_data *data = dev->data; struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *main_vsi = pf->main_vsi; struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint16_t i; /* avoid stopping again */ if (pf->adapter_stopped) return 0; /* stop and clear all Rx queues */ for (i = 0; i < data->nb_rx_queues; i++) ice_rx_queue_stop(dev, i); /* stop and clear all Tx queues */ for (i = 0; i < data->nb_tx_queues; i++) ice_tx_queue_stop(dev, i); /* disable all queue interrupts */ ice_vsi_disable_queues_intr(main_vsi); if (pf->init_link_up) ice_dev_set_link_up(dev); else ice_dev_set_link_down(dev); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } pf->adapter_stopped = true; dev->data->dev_started = 0; return 0; } static int ice_dev_close(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; /* Since stop will make link down, then the link event will be * triggered, disable the irq firstly to avoid the port_infoe etc * resources deallocation causing the interrupt service thread * crash. */ ice_pf_disable_irq0(hw); ret = ice_dev_stop(dev); if (!ad->is_safe_mode) ice_flow_uninit(ad); /* release all queue resource */ ice_free_queues(dev); ice_res_pool_destroy(&pf->msix_pool); ice_release_vsi(pf->main_vsi); ice_sched_cleanup_all(hw); ice_free_hw_tbls(hw); rte_free(hw->port_info); hw->port_info = NULL; ice_shutdown_all_ctrlq(hw); rte_free(pf->proto_xtr); pf->proto_xtr = NULL; /* disable uio intr before callback unregister */ rte_intr_disable(intr_handle); /* unregister callback func from eal lib */ rte_intr_callback_unregister(intr_handle, ice_interrupt_handler, dev); return ret; } static int ice_dev_uninit(struct rte_eth_dev *dev) { ice_dev_close(dev); return 0; } static bool is_hash_cfg_valid(struct ice_rss_hash_cfg *cfg) { return (cfg->hash_flds != 0 && cfg->addl_hdrs != 0) ? true : false; } static void hash_cfg_reset(struct ice_rss_hash_cfg *cfg) { cfg->hash_flds = 0; cfg->addl_hdrs = 0; cfg->symm = 0; cfg->hdr_type = ICE_RSS_OUTER_HEADERS; } static int ice_hash_moveout(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg) { enum ice_status status = ICE_SUCCESS; struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi = pf->main_vsi; if (!is_hash_cfg_valid(cfg)) return -ENOENT; status = ice_rem_rss_cfg(hw, vsi->idx, cfg); if (status && status != ICE_ERR_DOES_NOT_EXIST) { PMD_DRV_LOG(ERR, "ice_rem_rss_cfg failed for VSI:%d, error:%d\n", vsi->idx, status); return -EBUSY; } return 0; } static int ice_hash_moveback(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg) { enum ice_status status = ICE_SUCCESS; struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi = pf->main_vsi; if (!is_hash_cfg_valid(cfg)) return -ENOENT; status = ice_add_rss_cfg(hw, vsi->idx, cfg); if (status) { PMD_DRV_LOG(ERR, "ice_add_rss_cfg failed for VSI:%d, error:%d\n", vsi->idx, status); return -EBUSY; } return 0; } static int ice_hash_remove(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg) { int ret; ret = ice_hash_moveout(pf, cfg); if (ret && (ret != -ENOENT)) return ret; hash_cfg_reset(cfg); return 0; } static int ice_add_rss_cfg_pre_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx, u8 ctx_idx) { int ret; switch (ctx_idx) { case ICE_HASH_GTPU_CTX_EH_IP: ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_EH_IP_UDP: ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_EH_IP_TCP: ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_UP_IP: ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_UP_IP_UDP: case ICE_HASH_GTPU_CTX_UP_IP_TCP: ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_DW_IP: ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_remove(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_DW_IP_UDP: case ICE_HASH_GTPU_CTX_DW_IP_TCP: ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveout(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; default: break; } return 0; } static u8 calc_gtpu_ctx_idx(uint32_t hdr) { u8 eh_idx, ip_idx; if (hdr & ICE_FLOW_SEG_HDR_GTPU_EH) eh_idx = 0; else if (hdr & ICE_FLOW_SEG_HDR_GTPU_UP) eh_idx = 1; else if (hdr & ICE_FLOW_SEG_HDR_GTPU_DWN) eh_idx = 2; else return ICE_HASH_GTPU_CTX_MAX; ip_idx = 0; if (hdr & ICE_FLOW_SEG_HDR_UDP) ip_idx = 1; else if (hdr & ICE_FLOW_SEG_HDR_TCP) ip_idx = 2; if (hdr & (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)) return eh_idx * 3 + ip_idx; else return ICE_HASH_GTPU_CTX_MAX; } static int ice_add_rss_cfg_pre(struct ice_pf *pf, uint32_t hdr) { u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr); if (hdr & ICE_FLOW_SEG_HDR_IPV4) return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu4, gtpu_ctx_idx); else if (hdr & ICE_FLOW_SEG_HDR_IPV6) return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu6, gtpu_ctx_idx); return 0; } static int ice_add_rss_cfg_post_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx, u8 ctx_idx, struct ice_rss_hash_cfg *cfg) { int ret; if (ctx_idx < ICE_HASH_GTPU_CTX_MAX) ctx->ctx[ctx_idx] = *cfg; switch (ctx_idx) { case ICE_HASH_GTPU_CTX_EH_IP: break; case ICE_HASH_GTPU_CTX_EH_IP_UDP: ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_EH_IP_TCP: ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; break; case ICE_HASH_GTPU_CTX_UP_IP: case ICE_HASH_GTPU_CTX_UP_IP_UDP: case ICE_HASH_GTPU_CTX_UP_IP_TCP: case ICE_HASH_GTPU_CTX_DW_IP: case ICE_HASH_GTPU_CTX_DW_IP_UDP: case ICE_HASH_GTPU_CTX_DW_IP_TCP: ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]); if (ret && (ret != -ENOENT)) return ret; ret = ice_hash_moveback(pf, &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]); if (ret && (ret != -ENOENT)) return ret; break; default: break; } return 0; } static int ice_add_rss_cfg_post(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg) { u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(cfg->addl_hdrs); if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV4) return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu4, gtpu_ctx_idx, cfg); else if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV6) return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu6, gtpu_ctx_idx, cfg); return 0; } static void ice_rem_rss_cfg_post(struct ice_pf *pf, uint32_t hdr) { u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr); if (gtpu_ctx_idx >= ICE_HASH_GTPU_CTX_MAX) return; if (hdr & ICE_FLOW_SEG_HDR_IPV4) hash_cfg_reset(&pf->hash_ctx.gtpu4.ctx[gtpu_ctx_idx]); else if (hdr & ICE_FLOW_SEG_HDR_IPV6) hash_cfg_reset(&pf->hash_ctx.gtpu6.ctx[gtpu_ctx_idx]); } int ice_rem_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id, struct ice_rss_hash_cfg *cfg) { struct ice_hw *hw = ICE_PF_TO_HW(pf); int ret; ret = ice_rem_rss_cfg(hw, vsi_id, cfg); if (ret && ret != ICE_ERR_DOES_NOT_EXIST) PMD_DRV_LOG(ERR, "remove rss cfg failed\n"); ice_rem_rss_cfg_post(pf, cfg->addl_hdrs); return 0; } int ice_add_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id, struct ice_rss_hash_cfg *cfg) { struct ice_hw *hw = ICE_PF_TO_HW(pf); int ret; ret = ice_add_rss_cfg_pre(pf, cfg->addl_hdrs); if (ret) PMD_DRV_LOG(ERR, "add rss cfg pre failed\n"); ret = ice_add_rss_cfg(hw, vsi_id, cfg); if (ret) PMD_DRV_LOG(ERR, "add rss cfg failed\n"); ret = ice_add_rss_cfg_post(pf, cfg); if (ret) PMD_DRV_LOG(ERR, "add rss cfg post failed\n"); return 0; } static void ice_rss_hash_set(struct ice_pf *pf, uint64_t rss_hf) { struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi = pf->main_vsi; struct ice_rss_hash_cfg cfg; int ret; #define ICE_RSS_HF_ALL ( \ ETH_RSS_IPV4 | \ ETH_RSS_IPV6 | \ ETH_RSS_NONFRAG_IPV4_UDP | \ ETH_RSS_NONFRAG_IPV6_UDP | \ ETH_RSS_NONFRAG_IPV4_TCP | \ ETH_RSS_NONFRAG_IPV6_TCP | \ ETH_RSS_NONFRAG_IPV4_SCTP | \ ETH_RSS_NONFRAG_IPV6_SCTP) ret = ice_rem_vsi_rss_cfg(hw, vsi->idx); if (ret) PMD_DRV_LOG(ERR, "%s Remove rss vsi fail %d", __func__, ret); cfg.symm = 0; cfg.hdr_type = ICE_RSS_OUTER_HEADERS; /* Configure RSS for IPv4 with src/dst addr as input set */ if (rss_hf & ETH_RSS_IPV4) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_FLOW_HASH_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s IPV4 rss flow fail %d", __func__, ret); } /* Configure RSS for IPv6 with src/dst addr as input set */ if (rss_hf & ETH_RSS_IPV6) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_FLOW_HASH_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s IPV6 rss flow fail %d", __func__, ret); } /* Configure RSS for udp4 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_UDP_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s UDP_IPV4 rss flow fail %d", __func__, ret); } /* Configure RSS for udp6 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_UDP_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s UDP_IPV6 rss flow fail %d", __func__, ret); } /* Configure RSS for tcp4 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_TCP_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s TCP_IPV4 rss flow fail %d", __func__, ret); } /* Configure RSS for tcp6 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_TCP_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s TCP_IPV6 rss flow fail %d", __func__, ret); } /* Configure RSS for sctp4 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV4_SCTP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_SCTP_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s SCTP_IPV4 rss flow fail %d", __func__, ret); } /* Configure RSS for sctp6 with src/dst addr and port as input set */ if (rss_hf & ETH_RSS_NONFRAG_IPV6_SCTP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_SCTP_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s SCTP_IPV6 rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_IPV4) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_FLOW_HASH_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV4 rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_IPV6) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_FLOW_HASH_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV6 rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_UDP_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_UDP rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_UDP_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_UDP rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_TCP_IPV4; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_TCP rss flow fail %d", __func__, ret); } if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) { cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER; cfg.hash_flds = ICE_HASH_TCP_IPV6; ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg); if (ret) PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_TCP rss flow fail %d", __func__, ret); } pf->rss_hf = rss_hf & ICE_RSS_HF_ALL; } static int ice_init_rss(struct ice_pf *pf) { struct ice_hw *hw = ICE_PF_TO_HW(pf); struct ice_vsi *vsi = pf->main_vsi; struct rte_eth_dev *dev = pf->adapter->eth_dev; struct ice_aq_get_set_rss_lut_params lut_params; struct rte_eth_rss_conf *rss_conf; struct ice_aqc_get_set_rss_keys key; uint16_t i, nb_q; int ret = 0; bool is_safe_mode = pf->adapter->is_safe_mode; uint32_t reg; rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf; nb_q = dev->data->nb_rx_queues; vsi->rss_key_size = ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE; vsi->rss_lut_size = pf->hash_lut_size; if (nb_q == 0) { PMD_DRV_LOG(WARNING, "RSS is not supported as rx queues number is zero\n"); return 0; } if (is_safe_mode) { PMD_DRV_LOG(WARNING, "RSS is not supported in safe mode\n"); return 0; } if (!vsi->rss_key) { vsi->rss_key = rte_zmalloc(NULL, vsi->rss_key_size, 0); if (vsi->rss_key == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key"); return -ENOMEM; } } if (!vsi->rss_lut) { vsi->rss_lut = rte_zmalloc(NULL, vsi->rss_lut_size, 0); if (vsi->rss_lut == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key"); rte_free(vsi->rss_key); vsi->rss_key = NULL; return -ENOMEM; } } /* configure RSS key */ if (!rss_conf->rss_key) { /* Calculate the default hash key */ for (i = 0; i <= vsi->rss_key_size; i++) vsi->rss_key[i] = (uint8_t)rte_rand(); } else { rte_memcpy(vsi->rss_key, rss_conf->rss_key, RTE_MIN(rss_conf->rss_key_len, vsi->rss_key_size)); } rte_memcpy(key.standard_rss_key, vsi->rss_key, vsi->rss_key_size); ret = ice_aq_set_rss_key(hw, vsi->idx, &key); if (ret) goto out; /* init RSS LUT table */ for (i = 0; i < vsi->rss_lut_size; i++) vsi->rss_lut[i] = i % nb_q; lut_params.vsi_handle = vsi->idx; lut_params.lut_size = vsi->rss_lut_size; lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; lut_params.lut = vsi->rss_lut; lut_params.global_lut_id = 0; ret = ice_aq_set_rss_lut(hw, &lut_params); if (ret) goto out; /* Enable registers for symmetric_toeplitz function. */ reg = ICE_READ_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id)); reg = (reg & (~VSIQF_HASH_CTL_HASH_SCHEME_M)) | (1 << VSIQF_HASH_CTL_HASH_SCHEME_S); ICE_WRITE_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id), reg); /* RSS hash configuration */ ice_rss_hash_set(pf, rss_conf->rss_hf); return 0; out: rte_free(vsi->rss_key); vsi->rss_key = NULL; rte_free(vsi->rss_lut); vsi->rss_lut = NULL; return -EINVAL; } static int ice_dev_configure(struct rte_eth_dev *dev) { struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); int ret; /* Initialize to TRUE. If any of Rx queues doesn't meet the * bulk allocation or vector Rx preconditions we will reset it. */ ad->rx_bulk_alloc_allowed = true; ad->tx_simple_allowed = true; if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; if (dev->data->nb_rx_queues) { ret = ice_init_rss(pf); if (ret) { PMD_DRV_LOG(ERR, "Failed to enable rss for PF"); return ret; } } return 0; } static void __vsi_queues_bind_intr(struct ice_vsi *vsi, uint16_t msix_vect, int base_queue, int nb_queue) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); uint32_t val, val_tx; int i; for (i = 0; i < nb_queue; i++) { /*do actual bind*/ val = (msix_vect & QINT_RQCTL_MSIX_INDX_M) | (0 << QINT_RQCTL_ITR_INDX_S) | QINT_RQCTL_CAUSE_ENA_M; val_tx = (msix_vect & QINT_TQCTL_MSIX_INDX_M) | (0 << QINT_TQCTL_ITR_INDX_S) | QINT_TQCTL_CAUSE_ENA_M; PMD_DRV_LOG(INFO, "queue %d is binding to vect %d", base_queue + i, msix_vect); /* set ITR0 value */ ICE_WRITE_REG(hw, GLINT_ITR(0, msix_vect), 0x2); ICE_WRITE_REG(hw, QINT_RQCTL(base_queue + i), val); ICE_WRITE_REG(hw, QINT_TQCTL(base_queue + i), val_tx); } } void ice_vsi_queues_bind_intr(struct ice_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); uint16_t msix_vect = vsi->msix_intr; uint16_t nb_msix = RTE_MIN(vsi->nb_msix, intr_handle->nb_efd); uint16_t queue_idx = 0; int record = 0; int i; /* clear Rx/Tx queue interrupt */ for (i = 0; i < vsi->nb_used_qps; i++) { ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0); ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0); } /* PF bind interrupt */ if (rte_intr_dp_is_en(intr_handle)) { queue_idx = 0; record = 1; } for (i = 0; i < vsi->nb_used_qps; i++) { if (nb_msix <= 1) { if (!rte_intr_allow_others(intr_handle)) msix_vect = ICE_MISC_VEC_ID; /* uio mapping all queue to one msix_vect */ __vsi_queues_bind_intr(vsi, msix_vect, vsi->base_queue + i, vsi->nb_used_qps - i); for (; !!record && i < vsi->nb_used_qps; i++) intr_handle->intr_vec[queue_idx + i] = msix_vect; break; } /* vfio 1:1 queue/msix_vect mapping */ __vsi_queues_bind_intr(vsi, msix_vect, vsi->base_queue + i, 1); if (!!record) intr_handle->intr_vec[queue_idx + i] = msix_vect; msix_vect++; nb_msix--; } } void ice_vsi_enable_queues_intr(struct ice_vsi *vsi) { struct rte_eth_dev *dev = vsi->adapter->eth_dev; struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); uint16_t msix_intr, i; if (rte_intr_allow_others(intr_handle)) for (i = 0; i < vsi->nb_used_qps; i++) { msix_intr = vsi->msix_intr + i; ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | GLINT_DYN_CTL_ITR_INDX_M | GLINT_DYN_CTL_WB_ON_ITR_M); } else ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | GLINT_DYN_CTL_ITR_INDX_M | GLINT_DYN_CTL_WB_ON_ITR_M); } static int ice_rxq_intr_setup(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_vsi *vsi = pf->main_vsi; uint32_t intr_vector = 0; rte_intr_disable(intr_handle); /* check and configure queue intr-vector mapping */ if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(dev).active) && dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = dev->data->nb_rx_queues; if (intr_vector > ICE_MAX_INTR_QUEUE_NUM) { PMD_DRV_LOG(ERR, "At most %d intr queues supported", ICE_MAX_INTR_QUEUE_NUM); return -ENOTSUP; } if (rte_intr_efd_enable(intr_handle, intr_vector)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc(NULL, dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues intr_vec", dev->data->nb_rx_queues); return -ENOMEM; } } /* Map queues with MSIX interrupt */ vsi->nb_used_qps = dev->data->nb_rx_queues; ice_vsi_queues_bind_intr(vsi); /* Enable interrupts for all the queues */ ice_vsi_enable_queues_intr(vsi); rte_intr_enable(intr_handle); return 0; } static void ice_get_init_link_status(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false; struct ice_link_status link_status; int ret; ret = ice_aq_get_link_info(hw->port_info, enable_lse, &link_status, NULL); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to get link info"); pf->init_link_up = false; return; } if (link_status.link_info & ICE_AQ_LINK_UP) pf->init_link_up = true; } static int ice_dev_start(struct rte_eth_dev *dev) { struct rte_eth_dev_data *data = dev->data; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; uint16_t nb_rxq = 0; uint16_t nb_txq, i; uint16_t max_frame_size; int mask, ret; /* program Tx queues' context in hardware */ for (nb_txq = 0; nb_txq < data->nb_tx_queues; nb_txq++) { ret = ice_tx_queue_start(dev, nb_txq); if (ret) { PMD_DRV_LOG(ERR, "fail to start Tx queue %u", nb_txq); goto tx_err; } } /* program Rx queues' context in hardware*/ for (nb_rxq = 0; nb_rxq < data->nb_rx_queues; nb_rxq++) { ret = ice_rx_queue_start(dev, nb_rxq); if (ret) { PMD_DRV_LOG(ERR, "fail to start Rx queue %u", nb_rxq); goto rx_err; } } ice_set_rx_function(dev); ice_set_tx_function(dev); mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | ETH_VLAN_EXTEND_MASK; ret = ice_vlan_offload_set(dev, mask); if (ret) { PMD_INIT_LOG(ERR, "Unable to set VLAN offload"); goto rx_err; } /* enable Rx interrput and mapping Rx queue to interrupt vector */ if (ice_rxq_intr_setup(dev)) return -EIO; /* Enable receiving broadcast packets and transmitting packets */ ret = ice_set_vsi_promisc(hw, vsi->idx, ICE_PROMISC_BCAST_RX | ICE_PROMISC_BCAST_TX | ICE_PROMISC_UCAST_TX | ICE_PROMISC_MCAST_TX, 0); if (ret != ICE_SUCCESS) PMD_DRV_LOG(INFO, "fail to set vsi broadcast"); ret = ice_aq_set_event_mask(hw, hw->port_info->lport, ((u16)(ICE_AQ_LINK_EVENT_LINK_FAULT | ICE_AQ_LINK_EVENT_PHY_TEMP_ALARM | ICE_AQ_LINK_EVENT_EXCESSIVE_ERRORS | ICE_AQ_LINK_EVENT_SIGNAL_DETECT | ICE_AQ_LINK_EVENT_AN_COMPLETED | ICE_AQ_LINK_EVENT_PORT_TX_SUSPENDED)), NULL); if (ret != ICE_SUCCESS) PMD_DRV_LOG(WARNING, "Fail to set phy mask"); ice_get_init_link_status(dev); ice_dev_set_link_up(dev); /* Call get_link_info aq commond to enable/disable LSE */ ice_link_update(dev, 0); pf->adapter_stopped = false; /* Set the max frame size to default value*/ max_frame_size = pf->dev_data->dev_conf.rxmode.max_rx_pkt_len ? pf->dev_data->dev_conf.rxmode.max_rx_pkt_len : ICE_FRAME_SIZE_MAX; /* Set the max frame size to HW*/ ice_aq_set_mac_cfg(hw, max_frame_size, NULL); return 0; /* stop the started queues if failed to start all queues */ rx_err: for (i = 0; i < nb_rxq; i++) ice_rx_queue_stop(dev, i); tx_err: for (i = 0; i < nb_txq; i++) ice_tx_queue_stop(dev, i); return -EIO; } static int ice_dev_reset(struct rte_eth_dev *dev) { int ret; if (dev->data->sriov.active) return -ENOTSUP; ret = ice_dev_uninit(dev); if (ret) { PMD_INIT_LOG(ERR, "failed to uninit device, status = %d", ret); return -ENXIO; } ret = ice_dev_init(dev); if (ret) { PMD_INIT_LOG(ERR, "failed to init device, status = %d", ret); return -ENXIO; } return 0; } static int ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); bool is_safe_mode = pf->adapter->is_safe_mode; u64 phy_type_low; u64 phy_type_high; dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN; dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX; dev_info->max_rx_queues = vsi->nb_qps; dev_info->max_tx_queues = vsi->nb_qps; dev_info->max_mac_addrs = vsi->max_macaddrs; dev_info->max_vfs = pci_dev->max_vfs; dev_info->max_mtu = dev_info->max_rx_pktlen - ICE_ETH_OVERHEAD; dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_KEEP_CRC | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_VLAN_FILTER; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->flow_type_rss_offloads = 0; if (!is_safe_mode) { dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_VLAN_EXTEND | DEV_RX_OFFLOAD_RSS_HASH; dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_QINQ_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_OUTER_UDP_CKSUM; dev_info->flow_type_rss_offloads |= ICE_RSS_OFFLOAD_ALL; } dev_info->rx_queue_offload_capa = 0; dev_info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->reta_size = pf->hash_lut_size; dev_info->hash_key_size = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = ICE_DEFAULT_RX_PTHRESH, .hthresh = ICE_DEFAULT_RX_HTHRESH, .wthresh = ICE_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = ICE_DEFAULT_TX_PTHRESH, .hthresh = ICE_DEFAULT_TX_HTHRESH, .wthresh = ICE_DEFAULT_TX_WTHRESH, }, .tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH, .offloads = 0, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = ICE_MAX_RING_DESC, .nb_min = ICE_MIN_RING_DESC, .nb_align = ICE_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = ICE_MAX_RING_DESC, .nb_min = ICE_MIN_RING_DESC, .nb_align = ICE_ALIGN_RING_DESC, }; dev_info->speed_capa = ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | ETH_LINK_SPEED_5G | ETH_LINK_SPEED_10G | ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G; phy_type_low = hw->port_info->phy.phy_type_low; phy_type_high = hw->port_info->phy.phy_type_high; if (ICE_PHY_TYPE_SUPPORT_50G(phy_type_low)) dev_info->speed_capa |= ETH_LINK_SPEED_50G; if (ICE_PHY_TYPE_SUPPORT_100G_LOW(phy_type_low) || ICE_PHY_TYPE_SUPPORT_100G_HIGH(phy_type_high)) dev_info->speed_capa |= ETH_LINK_SPEED_100G; dev_info->nb_rx_queues = dev->data->nb_rx_queues; dev_info->nb_tx_queues = dev->data->nb_tx_queues; dev_info->default_rxportconf.burst_size = ICE_RX_MAX_BURST; dev_info->default_txportconf.burst_size = ICE_TX_MAX_BURST; dev_info->default_rxportconf.nb_queues = 1; dev_info->default_txportconf.nb_queues = 1; dev_info->default_rxportconf.ring_size = ICE_BUF_SIZE_MIN; dev_info->default_txportconf.ring_size = ICE_BUF_SIZE_MIN; return 0; } static inline int ice_atomic_read_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = link; struct rte_eth_link *src = &dev->data->dev_link; if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } static inline int ice_atomic_write_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = &dev->data->dev_link; struct rte_eth_link *src = link; if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } static int ice_link_update(struct rte_eth_dev *dev, int wait_to_complete) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_REPEAT_TIME 10 /* 1s (10 * 100ms) in total */ struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_link_status link_status; struct rte_eth_link link, old; int status; unsigned int rep_cnt = MAX_REPEAT_TIME; bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false; memset(&link, 0, sizeof(link)); memset(&old, 0, sizeof(old)); memset(&link_status, 0, sizeof(link_status)); ice_atomic_read_link_status(dev, &old); do { /* Get link status information from hardware */ status = ice_aq_get_link_info(hw->port_info, enable_lse, &link_status, NULL); if (status != ICE_SUCCESS) { link.link_speed = ETH_SPEED_NUM_100M; link.link_duplex = ETH_LINK_FULL_DUPLEX; PMD_DRV_LOG(ERR, "Failed to get link info"); goto out; } link.link_status = link_status.link_info & ICE_AQ_LINK_UP; if (!wait_to_complete || link.link_status) break; rte_delay_ms(CHECK_INTERVAL); } while (--rep_cnt); if (!link.link_status) goto out; /* Full-duplex operation at all supported speeds */ link.link_duplex = ETH_LINK_FULL_DUPLEX; /* Parse the link status */ switch (link_status.link_speed) { case ICE_AQ_LINK_SPEED_10MB: link.link_speed = ETH_SPEED_NUM_10M; break; case ICE_AQ_LINK_SPEED_100MB: link.link_speed = ETH_SPEED_NUM_100M; break; case ICE_AQ_LINK_SPEED_1000MB: link.link_speed = ETH_SPEED_NUM_1G; break; case ICE_AQ_LINK_SPEED_2500MB: link.link_speed = ETH_SPEED_NUM_2_5G; break; case ICE_AQ_LINK_SPEED_5GB: link.link_speed = ETH_SPEED_NUM_5G; break; case ICE_AQ_LINK_SPEED_10GB: link.link_speed = ETH_SPEED_NUM_10G; break; case ICE_AQ_LINK_SPEED_20GB: link.link_speed = ETH_SPEED_NUM_20G; break; case ICE_AQ_LINK_SPEED_25GB: link.link_speed = ETH_SPEED_NUM_25G; break; case ICE_AQ_LINK_SPEED_40GB: link.link_speed = ETH_SPEED_NUM_40G; break; case ICE_AQ_LINK_SPEED_50GB: link.link_speed = ETH_SPEED_NUM_50G; break; case ICE_AQ_LINK_SPEED_100GB: link.link_speed = ETH_SPEED_NUM_100G; break; case ICE_AQ_LINK_SPEED_UNKNOWN: PMD_DRV_LOG(ERR, "Unknown link speed"); link.link_speed = ETH_SPEED_NUM_UNKNOWN; break; default: PMD_DRV_LOG(ERR, "None link speed"); link.link_speed = ETH_SPEED_NUM_NONE; break; } link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); out: ice_atomic_write_link_status(dev, &link); if (link.link_status == old.link_status) return -1; return 0; } /* Force the physical link state by getting the current PHY capabilities from * hardware and setting the PHY config based on the determined capabilities. If * link changes, link event will be triggered because both the Enable Automatic * Link Update and LESM Enable bits are set when setting the PHY capabilities. */ static enum ice_status ice_force_phys_link_state(struct ice_hw *hw, bool link_up) { struct ice_aqc_set_phy_cfg_data cfg = { 0 }; struct ice_aqc_get_phy_caps_data *pcaps; struct ice_port_info *pi; enum ice_status status; if (!hw || !hw->port_info) return ICE_ERR_PARAM; pi = hw->port_info; pcaps = (struct ice_aqc_get_phy_caps_data *) ice_malloc(hw, sizeof(*pcaps)); if (!pcaps) return ICE_ERR_NO_MEMORY; status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, NULL); if (status) goto out; /* No change in link */ if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) goto out; cfg.phy_type_low = pcaps->phy_type_low; cfg.phy_type_high = pcaps->phy_type_high; cfg.caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; cfg.low_power_ctrl_an = pcaps->low_power_ctrl_an; cfg.eee_cap = pcaps->eee_cap; cfg.eeer_value = pcaps->eeer_value; cfg.link_fec_opt = pcaps->link_fec_options; if (link_up) cfg.caps |= ICE_AQ_PHY_ENA_LINK; else cfg.caps &= ~ICE_AQ_PHY_ENA_LINK; status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); out: ice_free(hw, pcaps); return status; } static int ice_dev_set_link_up(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); return ice_force_phys_link_state(hw, true); } static int ice_dev_set_link_down(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); return ice_force_phys_link_state(hw, false); } static int ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct rte_eth_dev_data *dev_data = pf->dev_data; uint32_t frame_size = mtu + ICE_ETH_OVERHEAD; /* check if mtu is within the allowed range */ if (mtu < RTE_ETHER_MIN_MTU || frame_size > ICE_FRAME_SIZE_MAX) return -EINVAL; /* mtu setting is forbidden if port is start */ if (dev_data->dev_started) { PMD_DRV_LOG(ERR, "port %d must be stopped before configuration", dev_data->port_id); return -EBUSY; } if (frame_size > ICE_ETH_MAX_LEN) dev_data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else dev_data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return 0; } static int ice_macaddr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; struct ice_mac_filter *f; uint8_t flags = 0; int ret; if (!rte_is_valid_assigned_ether_addr(mac_addr)) { PMD_DRV_LOG(ERR, "Tried to set invalid MAC address."); return -EINVAL; } TAILQ_FOREACH(f, &vsi->mac_list, next) { if (rte_is_same_ether_addr(&pf->dev_addr, &f->mac_info.mac_addr)) break; } if (!f) { PMD_DRV_LOG(ERR, "Failed to find filter for default mac"); return -EIO; } ret = ice_remove_mac_filter(vsi, &f->mac_info.mac_addr); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to delete mac filter"); return -EIO; } ret = ice_add_mac_filter(vsi, mac_addr); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add mac filter"); return -EIO; } rte_ether_addr_copy(mac_addr, &pf->dev_addr); flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; ret = ice_aq_manage_mac_write(hw, mac_addr->addr_bytes, flags, NULL); if (ret != ICE_SUCCESS) PMD_DRV_LOG(ERR, "Failed to set manage mac"); return 0; } /* Add a MAC address, and update filters */ static int ice_macaddr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; int ret; ret = ice_add_mac_filter(vsi, mac_addr); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to add MAC filter"); return -EINVAL; } return ICE_SUCCESS; } /* Remove a MAC address, and update filters */ static void ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; struct rte_eth_dev_data *data = dev->data; struct rte_ether_addr *macaddr; int ret; macaddr = &data->mac_addrs[index]; ret = ice_remove_mac_filter(vsi, macaddr); if (ret) { PMD_DRV_LOG(ERR, "Failed to remove MAC filter"); return; } } static int ice_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vlan vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, vlan_id); struct ice_vsi *vsi = pf->main_vsi; int ret; PMD_INIT_FUNC_TRACE(); /** * Vlan 0 is the generic filter for untagged packets * and can't be removed or added by user. */ if (vlan_id == 0) return 0; if (on) { ret = ice_add_vlan_filter(vsi, &vlan); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to add vlan filter"); return -EINVAL; } } else { ret = ice_remove_vlan_filter(vsi, &vlan); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to remove vlan filter"); return -EINVAL; } } return 0; } /* In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are * based on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) * doesn't matter. In Double VLAN Mode (DVM), outer/single VLAN filters via * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. * * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged * traffic in SVM, since the VLAN TPID isn't part of filtering. * * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is * part of filtering. */ static int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) { struct ice_vlan vlan; int err; vlan = ICE_VLAN(0, 0); err = ice_add_vlan_filter(vsi, &vlan); if (err) { PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0"); return err; } /* in SVM both VLAN 0 filters are identical */ if (!ice_is_dvm_ena(&vsi->adapter->hw)) return 0; vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0); err = ice_add_vlan_filter(vsi, &vlan); if (err) { PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0 in double VLAN mode"); return err; } return 0; } /* * Delete the VLAN 0 filters in the same manner that they were added in * ice_vsi_add_vlan_zero. */ static int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) { struct ice_vlan vlan; int err; vlan = ICE_VLAN(0, 0); err = ice_remove_vlan_filter(vsi, &vlan); if (err) { PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0"); return err; } /* in SVM both VLAN 0 filters are identical */ if (!ice_is_dvm_ena(&vsi->adapter->hw)) return 0; vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0); err = ice_remove_vlan_filter(vsi, &vlan); if (err) { PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0 in double VLAN mode"); return err; } return 0; } /* Configure vlan filter on or off */ static int ice_vsi_config_vlan_filter(struct ice_vsi *vsi, bool on) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); struct ice_vsi_ctx ctxt; uint8_t sw_flags2; int ret = 0; sw_flags2 = ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; if (on) vsi->info.sw_flags2 |= sw_flags2; else vsi->info.sw_flags2 &= ~sw_flags2; vsi->info.sw_id = hw->port_info->sw_id; (void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID | ICE_AQ_VSI_PROP_SECURITY_VALID); ctxt.vsi_num = vsi->vsi_id; ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (ret) { PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan rx pruning", on ? "enable" : "disable"); return -EINVAL; } else { vsi->info.valid_sections |= rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID | ICE_AQ_VSI_PROP_SECURITY_VALID); } /* consist with other drivers, allow untagged packet when vlan filter on */ if (on) ret = ice_vsi_add_vlan_zero(vsi); else ret = ice_vsi_del_vlan_zero(vsi); return 0; } /* Manage VLAN stripping for the VSI for Rx */ static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); struct ice_vsi_ctx ctxt; enum ice_status status; int err = 0; /* do not allow modifying VLAN stripping when a port VLAN is configured * on this VSI */ if (vsi->info.port_based_inner_vlan) return 0; memset(&ctxt, 0, sizeof(ctxt)); if (ena) /* Strip VLAN tag from Rx packet and put it in the desc */ ctxt.info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_EMODE_STR_BOTH; else /* Disable stripping. Leave tag in packet */ ctxt.info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; /* Allow all packets untagged/tagged */ ctxt.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL; ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID); status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (status) { PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan stripping", ena ? "enable" : "disable"); err = -EIO; } else { vsi->info.inner_vlan_flags = ctxt.info.inner_vlan_flags; } return err; } static int ice_vsi_ena_inner_stripping(struct ice_vsi *vsi) { return ice_vsi_manage_vlan_stripping(vsi, true); } static int ice_vsi_dis_inner_stripping(struct ice_vsi *vsi) { return ice_vsi_manage_vlan_stripping(vsi, false); } static int ice_vsi_ena_outer_stripping(struct ice_vsi *vsi) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); struct ice_vsi_ctx ctxt; enum ice_status status; int err = 0; /* do not allow modifying VLAN stripping when a port VLAN is configured * on this VSI */ if (vsi->info.port_based_outer_vlan) return 0; memset(&ctxt, 0, sizeof(ctxt)); ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID); /* clear current outer VLAN strip settings */ ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags & ~(ICE_AQ_VSI_OUTER_VLAN_EMODE_M | ICE_AQ_VSI_OUTER_TAG_TYPE_M); ctxt.info.outer_vlan_flags |= (ICE_AQ_VSI_OUTER_VLAN_EMODE_SHOW_BOTH << ICE_AQ_VSI_OUTER_VLAN_EMODE_S) | (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << ICE_AQ_VSI_OUTER_TAG_TYPE_S); status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (status) { PMD_DRV_LOG(ERR, "Update VSI failed to enable outer VLAN stripping"); err = -EIO; } else { vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags; } return err; } static int ice_vsi_dis_outer_stripping(struct ice_vsi *vsi) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); struct ice_vsi_ctx ctxt; enum ice_status status; int err = 0; if (vsi->info.port_based_outer_vlan) return 0; memset(&ctxt, 0, sizeof(ctxt)); ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID); /* clear current outer VLAN strip settings */ ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags & ~ICE_AQ_VSI_OUTER_VLAN_EMODE_M; ctxt.info.outer_vlan_flags |= ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING << ICE_AQ_VSI_OUTER_VLAN_EMODE_S; status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (status) { PMD_DRV_LOG(ERR, "Update VSI failed to disable outer VLAN stripping"); err = -EIO; } else { vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags; } return err; } static int ice_vsi_config_vlan_stripping(struct ice_vsi *vsi, bool ena) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret; if (ice_is_dvm_ena(hw)) { if (ena) ret = ice_vsi_ena_outer_stripping(vsi); else ret = ice_vsi_dis_outer_stripping(vsi); } else { if (ena) ret = ice_vsi_ena_inner_stripping(vsi); else ret = ice_vsi_dis_inner_stripping(vsi); } return ret; } static int ice_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; struct rte_eth_rxmode *rxmode; rxmode = &dev->data->dev_conf.rxmode; if (mask & ETH_VLAN_FILTER_MASK) { if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER) ice_vsi_config_vlan_filter(vsi, true); else ice_vsi_config_vlan_filter(vsi, false); } if (mask & ETH_VLAN_STRIP_MASK) { if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) ice_vsi_config_vlan_stripping(vsi, true); else ice_vsi_config_vlan_stripping(vsi, false); } return 0; } static int ice_get_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct ice_aq_get_set_rss_lut_params lut_params; struct ice_pf *pf = ICE_VSI_TO_PF(vsi); struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret; if (!lut) return -EINVAL; if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) { lut_params.vsi_handle = vsi->idx; lut_params.lut_size = lut_size; lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; lut_params.lut = lut; lut_params.global_lut_id = 0; ret = ice_aq_get_rss_lut(hw, &lut_params); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS lookup table"); return -EINVAL; } } else { uint64_t *lut_dw = (uint64_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) lut_dw[i] = ICE_READ_REG(hw, PFQF_HLUT(i)); } return 0; } static int ice_set_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct ice_aq_get_set_rss_lut_params lut_params; struct ice_pf *pf; struct ice_hw *hw; int ret; if (!vsi || !lut) return -EINVAL; pf = ICE_VSI_TO_PF(vsi); hw = ICE_VSI_TO_HW(vsi); if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) { lut_params.vsi_handle = vsi->idx; lut_params.lut_size = lut_size; lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; lut_params.lut = lut; lut_params.global_lut_id = 0; ret = ice_aq_set_rss_lut(hw, &lut_params); if (ret) { PMD_DRV_LOG(ERR, "Failed to set RSS lookup table"); return -EINVAL; } } else { uint64_t *lut_dw = (uint64_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) ICE_WRITE_REG(hw, PFQF_HLUT(i), lut_dw[i]); ice_flush(hw); } return 0; } static int ice_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); uint16_t i, lut_size = pf->hash_lut_size; uint16_t idx, shift; uint8_t *lut; int ret; if (reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128 && reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512 && reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured (%d)" "doesn't match the number hardware can " "supported (128, 512, 2048)", reta_size); return -EINVAL; } /* It MUST use the current LUT size to get the RSS lookup table, * otherwise if will fail with -100 error code. */ lut = rte_zmalloc(NULL, RTE_MAX(reta_size, lut_size), 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = ice_get_rss_lut(pf->main_vsi, lut, lut_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) lut[i] = reta_conf[idx].reta[shift]; } ret = ice_set_rss_lut(pf->main_vsi, lut, reta_size); if (ret == 0 && lut_size != reta_size) { PMD_DRV_LOG(INFO, "The size of hash lookup table is changed from (%d) to (%d)", lut_size, reta_size); pf->hash_lut_size = reta_size; } out: rte_free(lut); return ret; } static int ice_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); uint16_t i, lut_size = pf->hash_lut_size; uint16_t idx, shift; uint8_t *lut; int ret; if (reta_size != lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured (%d)" "doesn't match the number hardware can " "supported (%d)", reta_size, lut_size); return -EINVAL; } lut = rte_zmalloc(NULL, reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = ice_get_rss_lut(pf->main_vsi, lut, reta_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = lut[i]; } out: rte_free(lut); return ret; } static int ice_set_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t key_len) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret = 0; if (!key || key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); return 0; } else if (key_len != (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) { PMD_DRV_LOG(ERR, "Invalid key length %u", key_len); return -EINVAL; } struct ice_aqc_get_set_rss_keys *key_dw = (struct ice_aqc_get_set_rss_keys *)key; ret = ice_aq_set_rss_key(hw, vsi->idx, key_dw); if (ret) { PMD_DRV_LOG(ERR, "Failed to configure RSS key via AQ"); ret = -EINVAL; } return ret; } static int ice_get_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t *key_len) { struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int ret; if (!key || !key_len) return -EINVAL; ret = ice_aq_get_rss_key (hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)key); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS key via AQ"); return -EINVAL; } *key_len = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); return 0; } static int ice_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { enum ice_status status = ICE_SUCCESS; struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; /* set hash key */ status = ice_set_rss_key(vsi, rss_conf->rss_key, rss_conf->rss_key_len); if (status) return status; if (rss_conf->rss_hf == 0) { pf->rss_hf = 0; return 0; } /* RSS hash configuration */ ice_rss_hash_set(pf, rss_conf->rss_hf); return 0; } static int ice_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; ice_get_rss_key(vsi, rss_conf->rss_key, &rss_conf->rss_key_len); rss_conf->rss_hf = pf->rss_hf; return 0; } static int ice_promisc_enable(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; enum ice_status status; uint8_t pmask; int ret = 0; pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX | ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX; status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0); switch (status) { case ICE_ERR_ALREADY_EXISTS: PMD_DRV_LOG(DEBUG, "Promisc mode has already been enabled"); case ICE_SUCCESS: break; default: PMD_DRV_LOG(ERR, "Failed to enable promisc, err=%d", status); ret = -EAGAIN; } return ret; } static int ice_promisc_disable(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; enum ice_status status; uint8_t pmask; int ret = 0; if (dev->data->all_multicast == 1) pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX; else pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX | ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX; status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0); if (status != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to clear promisc, err=%d", status); ret = -EAGAIN; } return ret; } static int ice_allmulti_enable(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; enum ice_status status; uint8_t pmask; int ret = 0; pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX; status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0); switch (status) { case ICE_ERR_ALREADY_EXISTS: PMD_DRV_LOG(DEBUG, "Allmulti has already been enabled"); case ICE_SUCCESS: break; default: PMD_DRV_LOG(ERR, "Failed to enable allmulti, err=%d", status); ret = -EAGAIN; } return ret; } static int ice_allmulti_disable(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; enum ice_status status; uint8_t pmask; int ret = 0; if (dev->data->promiscuous == 1) return 0; /* must remain in all_multicast mode */ pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX; status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0); if (status != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "Failed to clear allmulti, err=%d", status); ret = -EAGAIN; } return ret; } static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t val; uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | GLINT_DYN_CTL_ITR_INDX_M; val &= ~GLINT_DYN_CTL_WB_ON_ITR_M; ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), val); rte_intr_ack(&pci_dev->intr_handle); return 0; } static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), GLINT_DYN_CTL_WB_ON_ITR_M); return 0; } static int ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); u8 ver, patch; u16 build; int ret; ver = hw->flash.orom.major; patch = hw->flash.orom.patch; build = hw->flash.orom.build; ret = snprintf(fw_version, fw_size, "%x.%02x 0x%08x %d.%d.%d", hw->flash.nvm.major, hw->flash.nvm.minor, hw->flash.nvm.eetrack, ver, build, patch); if (ret < 0) return -EINVAL; /* add the size of '\0' */ ret += 1; if (fw_size < (size_t)ret) return ret; else return 0; } static int ice_vsi_vlan_pvid_set(struct ice_vsi *vsi, struct ice_vsi_vlan_pvid_info *info) { struct ice_hw *hw; struct ice_vsi_ctx ctxt; uint8_t vlan_flags = 0; int ret; if (!vsi || !info) { PMD_DRV_LOG(ERR, "invalid parameters"); return -EINVAL; } if (info->on) { vsi->info.port_based_inner_vlan = info->config.pvid; /** * If insert pvid is enabled, only tagged pkts are * allowed to be sent out. */ vlan_flags = ICE_AQ_VSI_INNER_VLAN_INSERT_PVID | ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED; } else { vsi->info.port_based_inner_vlan = 0; if (info->config.reject.tagged == 0) vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTTAGGED; if (info->config.reject.untagged == 0) vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED; } vsi->info.inner_vlan_flags &= ~(ICE_AQ_VSI_INNER_VLAN_INSERT_PVID | ICE_AQ_VSI_INNER_VLAN_EMODE_M); vsi->info.inner_vlan_flags |= vlan_flags; memset(&ctxt, 0, sizeof(ctxt)); rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID); ctxt.vsi_num = vsi->vsi_id; hw = ICE_VSI_TO_HW(vsi); ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (ret != ICE_SUCCESS) { PMD_DRV_LOG(ERR, "update VSI for VLAN insert failed, err %d", ret); return -EINVAL; } vsi->info.valid_sections |= rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID); return ret; } static int ice_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_vsi *vsi = pf->main_vsi; struct rte_eth_dev_data *data = pf->dev_data; struct ice_vsi_vlan_pvid_info info; int ret; memset(&info, 0, sizeof(info)); info.on = on; if (info.on) { info.config.pvid = pvid; } else { info.config.reject.tagged = data->dev_conf.txmode.hw_vlan_reject_tagged; info.config.reject.untagged = data->dev_conf.txmode.hw_vlan_reject_untagged; } ret = ice_vsi_vlan_pvid_set(vsi, &info); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to set pvid."); return -EINVAL; } return 0; } static int ice_get_eeprom_length(struct rte_eth_dev *dev) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); return hw->flash.flash_size; } static int ice_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom) { struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); enum ice_status status = ICE_SUCCESS; uint8_t *data = eeprom->data; eeprom->magic = hw->vendor_id | (hw->device_id << 16); status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) { PMD_DRV_LOG(ERR, "acquire nvm failed."); return -EIO; } status = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->length, data, false); ice_release_nvm(hw); if (status) { PMD_DRV_LOG(ERR, "EEPROM read failed."); return -EIO; } return 0; } static void ice_stat_update_32(struct ice_hw *hw, uint32_t reg, bool offset_loaded, uint64_t *offset, uint64_t *stat) { uint64_t new_data; new_data = (uint64_t)ICE_READ_REG(hw, reg); if (!offset_loaded) *offset = new_data; if (new_data >= *offset) *stat = (uint64_t)(new_data - *offset); else *stat = (uint64_t)((new_data + ((uint64_t)1 << ICE_32_BIT_WIDTH)) - *offset); } static void ice_stat_update_40(struct ice_hw *hw, uint32_t hireg, uint32_t loreg, bool offset_loaded, uint64_t *offset, uint64_t *stat) { uint64_t new_data; new_data = (uint64_t)ICE_READ_REG(hw, loreg); new_data |= (uint64_t)(ICE_READ_REG(hw, hireg) & ICE_8_BIT_MASK) << ICE_32_BIT_WIDTH; if (!offset_loaded) *offset = new_data; if (new_data >= *offset) *stat = new_data - *offset; else *stat = (uint64_t)((new_data + ((uint64_t)1 << ICE_40_BIT_WIDTH)) - *offset); *stat &= ICE_40_BIT_MASK; } /* Get all the statistics of a VSI */ static void ice_update_vsi_stats(struct ice_vsi *vsi) { struct ice_eth_stats *oes = &vsi->eth_stats_offset; struct ice_eth_stats *nes = &vsi->eth_stats; struct ice_hw *hw = ICE_VSI_TO_HW(vsi); int idx = rte_le_to_cpu_16(vsi->vsi_id); ice_stat_update_40(hw, GLV_GORCH(idx), GLV_GORCL(idx), vsi->offset_loaded, &oes->rx_bytes, &nes->rx_bytes); ice_stat_update_40(hw, GLV_UPRCH(idx), GLV_UPRCL(idx), vsi->offset_loaded, &oes->rx_unicast, &nes->rx_unicast); ice_stat_update_40(hw, GLV_MPRCH(idx), GLV_MPRCL(idx), vsi->offset_loaded, &oes->rx_multicast, &nes->rx_multicast); ice_stat_update_40(hw, GLV_BPRCH(idx), GLV_BPRCL(idx), vsi->offset_loaded, &oes->rx_broadcast, &nes->rx_broadcast); /* enlarge the limitation when rx_bytes overflowed */ if (vsi->offset_loaded) { if (ICE_RXTX_BYTES_LOW(vsi->old_rx_bytes) > nes->rx_bytes) nes->rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH; nes->rx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_rx_bytes); } vsi->old_rx_bytes = nes->rx_bytes; /* exclude CRC bytes */ nes->rx_bytes -= (nes->rx_unicast + nes->rx_multicast + nes->rx_broadcast) * RTE_ETHER_CRC_LEN; ice_stat_update_32(hw, GLV_RDPC(idx), vsi->offset_loaded, &oes->rx_discards, &nes->rx_discards); /* GLV_REPC not supported */ /* GLV_RMPC not supported */ ice_stat_update_32(hw, GLSWID_RUPP(idx), vsi->offset_loaded, &oes->rx_unknown_protocol, &nes->rx_unknown_protocol); ice_stat_update_40(hw, GLV_GOTCH(idx), GLV_GOTCL(idx), vsi->offset_loaded, &oes->tx_bytes, &nes->tx_bytes); ice_stat_update_40(hw, GLV_UPTCH(idx), GLV_UPTCL(idx), vsi->offset_loaded, &oes->tx_unicast, &nes->tx_unicast); ice_stat_update_40(hw, GLV_MPTCH(idx), GLV_MPTCL(idx), vsi->offset_loaded, &oes->tx_multicast, &nes->tx_multicast); ice_stat_update_40(hw, GLV_BPTCH(idx), GLV_BPTCL(idx), vsi->offset_loaded, &oes->tx_broadcast, &nes->tx_broadcast); /* GLV_TDPC not supported */ ice_stat_update_32(hw, GLV_TEPC(idx), vsi->offset_loaded, &oes->tx_errors, &nes->tx_errors); /* enlarge the limitation when tx_bytes overflowed */ if (vsi->offset_loaded) { if (ICE_RXTX_BYTES_LOW(vsi->old_tx_bytes) > nes->tx_bytes) nes->tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH; nes->tx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_tx_bytes); } vsi->old_tx_bytes = nes->tx_bytes; vsi->offset_loaded = true; PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats start **************", vsi->vsi_id); PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", nes->rx_bytes); PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", nes->rx_unicast); PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", nes->rx_multicast); PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", nes->rx_broadcast); PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", nes->rx_discards); PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"", nes->rx_unknown_protocol); PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", nes->tx_bytes); PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", nes->tx_unicast); PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", nes->tx_multicast); PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", nes->tx_broadcast); PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", nes->tx_discards); PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", nes->tx_errors); PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats end ****************", vsi->vsi_id); } static void ice_read_stats_registers(struct ice_pf *pf, struct ice_hw *hw) { struct ice_hw_port_stats *ns = &pf->stats; /* new stats */ struct ice_hw_port_stats *os = &pf->stats_offset; /* old stats */ /* Get statistics of struct ice_eth_stats */ ice_stat_update_40(hw, GLPRT_GORCH(hw->port_info->lport), GLPRT_GORCL(hw->port_info->lport), pf->offset_loaded, &os->eth.rx_bytes, &ns->eth.rx_bytes); ice_stat_update_40(hw, GLPRT_UPRCH(hw->port_info->lport), GLPRT_UPRCL(hw->port_info->lport), pf->offset_loaded, &os->eth.rx_unicast, &ns->eth.rx_unicast); ice_stat_update_40(hw, GLPRT_MPRCH(hw->port_info->lport), GLPRT_MPRCL(hw->port_info->lport), pf->offset_loaded, &os->eth.rx_multicast, &ns->eth.rx_multicast); ice_stat_update_40(hw, GLPRT_BPRCH(hw->port_info->lport), GLPRT_BPRCL(hw->port_info->lport), pf->offset_loaded, &os->eth.rx_broadcast, &ns->eth.rx_broadcast); ice_stat_update_32(hw, PRTRPB_RDPC, pf->offset_loaded, &os->eth.rx_discards, &ns->eth.rx_discards); /* enlarge the limitation when rx_bytes overflowed */ if (pf->offset_loaded) { if (ICE_RXTX_BYTES_LOW(pf->old_rx_bytes) > ns->eth.rx_bytes) ns->eth.rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH; ns->eth.rx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_rx_bytes); } pf->old_rx_bytes = ns->eth.rx_bytes; /* Workaround: CRC size should not be included in byte statistics, * so subtract RTE_ETHER_CRC_LEN from the byte counter for each rx * packet. */ ns->eth.rx_bytes -= (ns->eth.rx_unicast + ns->eth.rx_multicast + ns->eth.rx_broadcast) * RTE_ETHER_CRC_LEN; /* GLPRT_REPC not supported */ /* GLPRT_RMPC not supported */ ice_stat_update_32(hw, GLSWID_RUPP(hw->port_info->lport), pf->offset_loaded, &os->eth.rx_unknown_protocol, &ns->eth.rx_unknown_protocol); ice_stat_update_40(hw, GLPRT_GOTCH(hw->port_info->lport), GLPRT_GOTCL(hw->port_info->lport), pf->offset_loaded, &os->eth.tx_bytes, &ns->eth.tx_bytes); ice_stat_update_40(hw, GLPRT_UPTCH(hw->port_info->lport), GLPRT_UPTCL(hw->port_info->lport), pf->offset_loaded, &os->eth.tx_unicast, &ns->eth.tx_unicast); ice_stat_update_40(hw, GLPRT_MPTCH(hw->port_info->lport), GLPRT_MPTCL(hw->port_info->lport), pf->offset_loaded, &os->eth.tx_multicast, &ns->eth.tx_multicast); ice_stat_update_40(hw, GLPRT_BPTCH(hw->port_info->lport), GLPRT_BPTCL(hw->port_info->lport), pf->offset_loaded, &os->eth.tx_broadcast, &ns->eth.tx_broadcast); /* enlarge the limitation when tx_bytes overflowed */ if (pf->offset_loaded) { if (ICE_RXTX_BYTES_LOW(pf->old_tx_bytes) > ns->eth.tx_bytes) ns->eth.tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH; ns->eth.tx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_tx_bytes); } pf->old_tx_bytes = ns->eth.tx_bytes; ns->eth.tx_bytes -= (ns->eth.tx_unicast + ns->eth.tx_multicast + ns->eth.tx_broadcast) * RTE_ETHER_CRC_LEN; /* GLPRT_TEPC not supported */ /* additional port specific stats */ ice_stat_update_32(hw, GLPRT_TDOLD(hw->port_info->lport), pf->offset_loaded, &os->tx_dropped_link_down, &ns->tx_dropped_link_down); ice_stat_update_32(hw, GLPRT_CRCERRS(hw->port_info->lport), pf->offset_loaded, &os->crc_errors, &ns->crc_errors); ice_stat_update_32(hw, GLPRT_ILLERRC(hw->port_info->lport), pf->offset_loaded, &os->illegal_bytes, &ns->illegal_bytes); /* GLPRT_ERRBC not supported */ ice_stat_update_32(hw, GLPRT_MLFC(hw->port_info->lport), pf->offset_loaded, &os->mac_local_faults, &ns->mac_local_faults); ice_stat_update_32(hw, GLPRT_MRFC(hw->port_info->lport), pf->offset_loaded, &os->mac_remote_faults, &ns->mac_remote_faults); ice_stat_update_32(hw, GLPRT_RLEC(hw->port_info->lport), pf->offset_loaded, &os->rx_len_errors, &ns->rx_len_errors); ice_stat_update_32(hw, GLPRT_LXONRXC(hw->port_info->lport), pf->offset_loaded, &os->link_xon_rx, &ns->link_xon_rx); ice_stat_update_32(hw, GLPRT_LXOFFRXC(hw->port_info->lport), pf->offset_loaded, &os->link_xoff_rx, &ns->link_xoff_rx); ice_stat_update_32(hw, GLPRT_LXONTXC(hw->port_info->lport), pf->offset_loaded, &os->link_xon_tx, &ns->link_xon_tx); ice_stat_update_32(hw, GLPRT_LXOFFTXC(hw->port_info->lport), pf->offset_loaded, &os->link_xoff_tx, &ns->link_xoff_tx); ice_stat_update_40(hw, GLPRT_PRC64H(hw->port_info->lport), GLPRT_PRC64L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_64, &ns->rx_size_64); ice_stat_update_40(hw, GLPRT_PRC127H(hw->port_info->lport), GLPRT_PRC127L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_127, &ns->rx_size_127); ice_stat_update_40(hw, GLPRT_PRC255H(hw->port_info->lport), GLPRT_PRC255L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_255, &ns->rx_size_255); ice_stat_update_40(hw, GLPRT_PRC511H(hw->port_info->lport), GLPRT_PRC511L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_511, &ns->rx_size_511); ice_stat_update_40(hw, GLPRT_PRC1023H(hw->port_info->lport), GLPRT_PRC1023L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_1023, &ns->rx_size_1023); ice_stat_update_40(hw, GLPRT_PRC1522H(hw->port_info->lport), GLPRT_PRC1522L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_1522, &ns->rx_size_1522); ice_stat_update_40(hw, GLPRT_PRC9522H(hw->port_info->lport), GLPRT_PRC9522L(hw->port_info->lport), pf->offset_loaded, &os->rx_size_big, &ns->rx_size_big); ice_stat_update_32(hw, GLPRT_RUC(hw->port_info->lport), pf->offset_loaded, &os->rx_undersize, &ns->rx_undersize); ice_stat_update_32(hw, GLPRT_RFC(hw->port_info->lport), pf->offset_loaded, &os->rx_fragments, &ns->rx_fragments); ice_stat_update_32(hw, GLPRT_ROC(hw->port_info->lport), pf->offset_loaded, &os->rx_oversize, &ns->rx_oversize); ice_stat_update_32(hw, GLPRT_RJC(hw->port_info->lport), pf->offset_loaded, &os->rx_jabber, &ns->rx_jabber); ice_stat_update_40(hw, GLPRT_PTC64H(hw->port_info->lport), GLPRT_PTC64L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_64, &ns->tx_size_64); ice_stat_update_40(hw, GLPRT_PTC127H(hw->port_info->lport), GLPRT_PTC127L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_127, &ns->tx_size_127); ice_stat_update_40(hw, GLPRT_PTC255H(hw->port_info->lport), GLPRT_PTC255L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_255, &ns->tx_size_255); ice_stat_update_40(hw, GLPRT_PTC511H(hw->port_info->lport), GLPRT_PTC511L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_511, &ns->tx_size_511); ice_stat_update_40(hw, GLPRT_PTC1023H(hw->port_info->lport), GLPRT_PTC1023L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_1023, &ns->tx_size_1023); ice_stat_update_40(hw, GLPRT_PTC1522H(hw->port_info->lport), GLPRT_PTC1522L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_1522, &ns->tx_size_1522); ice_stat_update_40(hw, GLPRT_PTC9522H(hw->port_info->lport), GLPRT_PTC9522L(hw->port_info->lport), pf->offset_loaded, &os->tx_size_big, &ns->tx_size_big); /* GLPRT_MSPDC not supported */ /* GLPRT_XEC not supported */ pf->offset_loaded = true; if (pf->main_vsi) ice_update_vsi_stats(pf->main_vsi); } /* Get all statistics of a port */ static int ice_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct ice_hw_port_stats *ns = &pf->stats; /* new stats */ /* call read registers - updates values, now write them to struct */ ice_read_stats_registers(pf, hw); stats->ipackets = pf->main_vsi->eth_stats.rx_unicast + pf->main_vsi->eth_stats.rx_multicast + pf->main_vsi->eth_stats.rx_broadcast - pf->main_vsi->eth_stats.rx_discards; stats->opackets = ns->eth.tx_unicast + ns->eth.tx_multicast + ns->eth.tx_broadcast; stats->ibytes = pf->main_vsi->eth_stats.rx_bytes; stats->obytes = ns->eth.tx_bytes; stats->oerrors = ns->eth.tx_errors + pf->main_vsi->eth_stats.tx_errors; /* Rx Errors */ stats->imissed = ns->eth.rx_discards + pf->main_vsi->eth_stats.rx_discards; stats->ierrors = ns->crc_errors + ns->rx_undersize + ns->rx_oversize + ns->rx_fragments + ns->rx_jabber; PMD_DRV_LOG(DEBUG, "*************** PF stats start *****************"); PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", ns->eth.rx_bytes); PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", ns->eth.rx_unicast); PMD_DRV_LOG(DEBUG, "rx_multicast:%"PRIu64"", ns->eth.rx_multicast); PMD_DRV_LOG(DEBUG, "rx_broadcast:%"PRIu64"", ns->eth.rx_broadcast); PMD_DRV_LOG(DEBUG, "rx_discards:%"PRIu64"", ns->eth.rx_discards); PMD_DRV_LOG(DEBUG, "vsi rx_discards:%"PRIu64"", pf->main_vsi->eth_stats.rx_discards); PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"", ns->eth.rx_unknown_protocol); PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", ns->eth.tx_bytes); PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", ns->eth.tx_unicast); PMD_DRV_LOG(DEBUG, "tx_multicast:%"PRIu64"", ns->eth.tx_multicast); PMD_DRV_LOG(DEBUG, "tx_broadcast:%"PRIu64"", ns->eth.tx_broadcast); PMD_DRV_LOG(DEBUG, "tx_discards:%"PRIu64"", ns->eth.tx_discards); PMD_DRV_LOG(DEBUG, "vsi tx_discards:%"PRIu64"", pf->main_vsi->eth_stats.tx_discards); PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", ns->eth.tx_errors); PMD_DRV_LOG(DEBUG, "tx_dropped_link_down: %"PRIu64"", ns->tx_dropped_link_down); PMD_DRV_LOG(DEBUG, "crc_errors: %"PRIu64"", ns->crc_errors); PMD_DRV_LOG(DEBUG, "illegal_bytes: %"PRIu64"", ns->illegal_bytes); PMD_DRV_LOG(DEBUG, "error_bytes: %"PRIu64"", ns->error_bytes); PMD_DRV_LOG(DEBUG, "mac_local_faults: %"PRIu64"", ns->mac_local_faults); PMD_DRV_LOG(DEBUG, "mac_remote_faults: %"PRIu64"", ns->mac_remote_faults); PMD_DRV_LOG(DEBUG, "link_xon_rx: %"PRIu64"", ns->link_xon_rx); PMD_DRV_LOG(DEBUG, "link_xoff_rx: %"PRIu64"", ns->link_xoff_rx); PMD_DRV_LOG(DEBUG, "link_xon_tx: %"PRIu64"", ns->link_xon_tx); PMD_DRV_LOG(DEBUG, "link_xoff_tx: %"PRIu64"", ns->link_xoff_tx); PMD_DRV_LOG(DEBUG, "rx_size_64: %"PRIu64"", ns->rx_size_64); PMD_DRV_LOG(DEBUG, "rx_size_127: %"PRIu64"", ns->rx_size_127); PMD_DRV_LOG(DEBUG, "rx_size_255: %"PRIu64"", ns->rx_size_255); PMD_DRV_LOG(DEBUG, "rx_size_511: %"PRIu64"", ns->rx_size_511); PMD_DRV_LOG(DEBUG, "rx_size_1023: %"PRIu64"", ns->rx_size_1023); PMD_DRV_LOG(DEBUG, "rx_size_1522: %"PRIu64"", ns->rx_size_1522); PMD_DRV_LOG(DEBUG, "rx_size_big: %"PRIu64"", ns->rx_size_big); PMD_DRV_LOG(DEBUG, "rx_undersize: %"PRIu64"", ns->rx_undersize); PMD_DRV_LOG(DEBUG, "rx_fragments: %"PRIu64"", ns->rx_fragments); PMD_DRV_LOG(DEBUG, "rx_oversize: %"PRIu64"", ns->rx_oversize); PMD_DRV_LOG(DEBUG, "rx_jabber: %"PRIu64"", ns->rx_jabber); PMD_DRV_LOG(DEBUG, "tx_size_64: %"PRIu64"", ns->tx_size_64); PMD_DRV_LOG(DEBUG, "tx_size_127: %"PRIu64"", ns->tx_size_127); PMD_DRV_LOG(DEBUG, "tx_size_255: %"PRIu64"", ns->tx_size_255); PMD_DRV_LOG(DEBUG, "tx_size_511: %"PRIu64"", ns->tx_size_511); PMD_DRV_LOG(DEBUG, "tx_size_1023: %"PRIu64"", ns->tx_size_1023); PMD_DRV_LOG(DEBUG, "tx_size_1522: %"PRIu64"", ns->tx_size_1522); PMD_DRV_LOG(DEBUG, "tx_size_big: %"PRIu64"", ns->tx_size_big); PMD_DRV_LOG(DEBUG, "rx_len_errors: %"PRIu64"", ns->rx_len_errors); PMD_DRV_LOG(DEBUG, "************* PF stats end ****************"); return 0; } /* Reset the statistics */ static int ice_stats_reset(struct rte_eth_dev *dev) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Mark PF and VSI stats to update the offset, aka "reset" */ pf->offset_loaded = false; if (pf->main_vsi) pf->main_vsi->offset_loaded = false; /* read the stats, reading current register values into offset */ ice_read_stats_registers(pf, hw); return 0; } static uint32_t ice_xstats_calc_num(void) { uint32_t num; num = ICE_NB_ETH_XSTATS + ICE_NB_HW_PORT_XSTATS; return num; } static int ice_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); unsigned int i; unsigned int count; struct ice_hw_port_stats *hw_stats = &pf->stats; count = ice_xstats_calc_num(); if (n < count) return count; ice_read_stats_registers(pf, hw); if (!xstats) return 0; count = 0; /* Get stats from ice_eth_stats struct */ for (i = 0; i < ICE_NB_ETH_XSTATS; i++) { xstats[count].value = *(uint64_t *)((char *)&hw_stats->eth + ice_stats_strings[i].offset); xstats[count].id = count; count++; } /* Get individiual stats from ice_hw_port struct */ for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) { xstats[count].value = *(uint64_t *)((char *)hw_stats + ice_hw_port_strings[i].offset); xstats[count].id = count; count++; } return count; } static int ice_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned int limit) { unsigned int count = 0; unsigned int i; if (!xstats_names) return ice_xstats_calc_num(); /* Note: limit checked in rte_eth_xstats_names() */ /* Get stats from ice_eth_stats struct */ for (i = 0; i < ICE_NB_ETH_XSTATS; i++) { strlcpy(xstats_names[count].name, ice_stats_strings[i].name, sizeof(xstats_names[count].name)); count++; } /* Get individiual stats from ice_hw_port struct */ for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) { strlcpy(xstats_names[count].name, ice_hw_port_strings[i].name, sizeof(xstats_names[count].name)); count++; } return count; } static int ice_dev_flow_ops_get(struct rte_eth_dev *dev, const struct rte_flow_ops **ops) { if (!dev) return -EINVAL; *ops = &ice_flow_ops; return 0; } /* Add UDP tunneling port */ static int ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel) { int ret = 0; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (udp_tunnel == NULL) return -EINVAL; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: ret = ice_create_tunnel(hw, TNL_VXLAN, udp_tunnel->udp_port); break; default: PMD_DRV_LOG(ERR, "Invalid tunnel type"); ret = -EINVAL; break; } return ret; } /* Delete UDP tunneling port */ static int ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *udp_tunnel) { int ret = 0; struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (udp_tunnel == NULL) return -EINVAL; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: ret = ice_destroy_tunnel(hw, udp_tunnel->udp_port, 0); break; default: PMD_DRV_LOG(ERR, "Invalid tunnel type"); ret = -EINVAL; break; } return ret; } static int ice_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct ice_adapter), ice_dev_init); } static int ice_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, ice_dev_uninit); } static struct rte_pci_driver rte_ice_pmd = { .id_table = pci_id_ice_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = ice_pci_probe, .remove = ice_pci_remove, }; /** * Driver initialization routine. * Invoked once at EAL init time. * Register itself as the [Poll Mode] Driver of PCI devices. */ RTE_PMD_REGISTER_PCI(net_ice, rte_ice_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_ice, pci_id_ice_map); RTE_PMD_REGISTER_KMOD_DEP(net_ice, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_ice, ICE_PROTO_XTR_ARG "=[queue:]" ICE_SAFE_MODE_SUPPORT_ARG "=<0|1>" ICE_PIPELINE_MODE_SUPPORT_ARG "=<0|1>"); RTE_LOG_REGISTER_SUFFIX(ice_logtype_init, init, NOTICE); RTE_LOG_REGISTER_SUFFIX(ice_logtype_driver, driver, NOTICE); #ifdef RTE_ETHDEV_DEBUG_RX RTE_LOG_REGISTER_SUFFIX(ice_logtype_rx, rx, DEBUG); #endif #ifdef RTE_ETHDEV_DEBUG_TX RTE_LOG_REGISTER_SUFFIX(ice_logtype_tx, tx, DEBUG); #endif