/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 Marvell. */ #include #include "otx2_common.h" #include "otx_ep_common.h" #include "otx_ep_vf.h" #include "otx2_ep_vf.h" #include "otx_ep_rxtx.h" #define OTX_EP_DEV(_eth_dev) \ ((struct otx_ep_device *)(_eth_dev)->data->dev_private) static const struct rte_eth_desc_lim otx_ep_rx_desc_lim = { .nb_max = OTX_EP_MAX_OQ_DESCRIPTORS, .nb_min = OTX_EP_MIN_OQ_DESCRIPTORS, .nb_align = OTX_EP_RXD_ALIGN, }; static const struct rte_eth_desc_lim otx_ep_tx_desc_lim = { .nb_max = OTX_EP_MAX_IQ_DESCRIPTORS, .nb_min = OTX_EP_MIN_IQ_DESCRIPTORS, .nb_align = OTX_EP_TXD_ALIGN, }; static int otx_ep_dev_info_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *devinfo) { struct otx_ep_device *otx_epvf; otx_epvf = OTX_EP_DEV(eth_dev); devinfo->speed_capa = ETH_LINK_SPEED_10G; devinfo->max_rx_queues = otx_epvf->max_rx_queues; devinfo->max_tx_queues = otx_epvf->max_tx_queues; devinfo->min_rx_bufsize = OTX_EP_MIN_RX_BUF_SIZE; devinfo->max_rx_pktlen = OTX_EP_MAX_PKT_SZ; devinfo->rx_offload_capa = DEV_RX_OFFLOAD_JUMBO_FRAME; devinfo->rx_offload_capa |= DEV_RX_OFFLOAD_SCATTER; devinfo->tx_offload_capa = DEV_TX_OFFLOAD_MULTI_SEGS; devinfo->max_mac_addrs = OTX_EP_MAX_MAC_ADDRS; devinfo->rx_desc_lim = otx_ep_rx_desc_lim; devinfo->tx_desc_lim = otx_ep_tx_desc_lim; return 0; } static int otx_ep_dev_start(struct rte_eth_dev *eth_dev) { struct otx_ep_device *otx_epvf; unsigned int q; int ret; otx_epvf = (struct otx_ep_device *)OTX_EP_DEV(eth_dev); /* Enable IQ/OQ for this device */ ret = otx_epvf->fn_list.enable_io_queues(otx_epvf); if (ret) { otx_ep_err("IOQ enable failed\n"); return ret; } for (q = 0; q < otx_epvf->nb_rx_queues; q++) { rte_write32(otx_epvf->droq[q]->nb_desc, otx_epvf->droq[q]->pkts_credit_reg); rte_wmb(); otx_ep_info("OQ[%d] dbells [%d]\n", q, rte_read32(otx_epvf->droq[q]->pkts_credit_reg)); } otx_ep_info("dev started\n"); return 0; } /* Stop device and disable input/output functions */ static int otx_ep_dev_stop(struct rte_eth_dev *eth_dev) { struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev); otx_epvf->fn_list.disable_io_queues(otx_epvf); return 0; } static int otx_ep_chip_specific_setup(struct otx_ep_device *otx_epvf) { struct rte_pci_device *pdev = otx_epvf->pdev; uint32_t dev_id = pdev->id.device_id; int ret = 0; switch (dev_id) { case PCI_DEVID_OCTEONTX_EP_VF: otx_epvf->chip_id = dev_id; ret = otx_ep_vf_setup_device(otx_epvf); otx_epvf->fn_list.disable_io_queues(otx_epvf); break; case PCI_DEVID_OCTEONTX2_EP_NET_VF: case PCI_DEVID_CN98XX_EP_NET_VF: otx_epvf->chip_id = dev_id; ret = otx2_ep_vf_setup_device(otx_epvf); otx_epvf->fn_list.disable_io_queues(otx_epvf); break; default: otx_ep_err("Unsupported device\n"); ret = -EINVAL; } if (!ret) otx_ep_info("OTX_EP dev_id[%d]\n", dev_id); return ret; } /* OTX_EP VF device initialization */ static int otx_epdev_init(struct otx_ep_device *otx_epvf) { uint32_t ethdev_queues; int ret = 0; ret = otx_ep_chip_specific_setup(otx_epvf); if (ret) { otx_ep_err("Chip specific setup failed\n"); goto setup_fail; } otx_epvf->fn_list.setup_device_regs(otx_epvf); otx_epvf->eth_dev->rx_pkt_burst = &otx_ep_recv_pkts; if (otx_epvf->chip_id == PCI_DEVID_OCTEONTX_EP_VF) otx_epvf->eth_dev->tx_pkt_burst = &otx_ep_xmit_pkts; else if (otx_epvf->chip_id == PCI_DEVID_OCTEONTX2_EP_NET_VF || otx_epvf->chip_id == PCI_DEVID_CN98XX_EP_NET_VF) otx_epvf->eth_dev->tx_pkt_burst = &otx2_ep_xmit_pkts; ethdev_queues = (uint32_t)(otx_epvf->sriov_info.rings_per_vf); otx_epvf->max_rx_queues = ethdev_queues; otx_epvf->max_tx_queues = ethdev_queues; otx_ep_info("OTX_EP Device is Ready\n"); setup_fail: return ret; } static int otx_ep_dev_configure(struct rte_eth_dev *eth_dev) { struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev); struct rte_eth_dev_data *data = eth_dev->data; struct rte_eth_rxmode *rxmode; struct rte_eth_txmode *txmode; struct rte_eth_conf *conf; conf = &data->dev_conf; rxmode = &conf->rxmode; txmode = &conf->txmode; if (eth_dev->data->nb_rx_queues > otx_epvf->max_rx_queues || eth_dev->data->nb_tx_queues > otx_epvf->max_tx_queues) { otx_ep_err("invalid num queues\n"); return -EINVAL; } otx_ep_info("OTX_EP Device is configured with num_txq %d num_rxq %d\n", eth_dev->data->nb_rx_queues, eth_dev->data->nb_tx_queues); otx_epvf->rx_offloads = rxmode->offloads; otx_epvf->tx_offloads = txmode->offloads; return 0; } /** * Setup our receive queue/ringbuffer. This is the * queue the Octeon uses to send us packets and * responses. We are given a memory pool for our * packet buffers that are used to populate the receive * queue. * * @param eth_dev * Pointer to the structure rte_eth_dev * @param q_no * Queue number * @param num_rx_descs * Number of entries in the queue * @param socket_id * Where to allocate memory * @param rx_conf * Pointer to the struction rte_eth_rxconf * @param mp * Pointer to the packet pool * * @return * - On success, return 0 * - On failure, return -1 */ static int otx_ep_rx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t q_no, uint16_t num_rx_descs, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf __rte_unused, struct rte_mempool *mp) { struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev); struct rte_pktmbuf_pool_private *mbp_priv; uint16_t buf_size; if (q_no >= otx_epvf->max_rx_queues) { otx_ep_err("Invalid rx queue number %u\n", q_no); return -EINVAL; } if (num_rx_descs & (num_rx_descs - 1)) { otx_ep_err("Invalid rx desc number should be pow 2 %u\n", num_rx_descs); return -EINVAL; } if (num_rx_descs < (SDP_GBL_WMARK * 8)) { otx_ep_err("Invalid rx desc number should at least be greater than 8xwmark %u\n", num_rx_descs); return -EINVAL; } otx_ep_dbg("setting up rx queue %u\n", q_no); mbp_priv = rte_mempool_get_priv(mp); buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM; if (otx_ep_setup_oqs(otx_epvf, q_no, num_rx_descs, buf_size, mp, socket_id)) { otx_ep_err("droq allocation failed\n"); return -1; } eth_dev->data->rx_queues[q_no] = otx_epvf->droq[q_no]; return 0; } /** * Release the receive queue/ringbuffer. Called by * the upper layers. * * @param rxq * Opaque pointer to the receive queue to release * * @return * - nothing */ static void otx_ep_rx_queue_release(void *rxq) { struct otx_ep_droq *rq = (struct otx_ep_droq *)rxq; struct otx_ep_device *otx_epvf = rq->otx_ep_dev; int q_id = rq->q_no; if (otx_ep_delete_oqs(otx_epvf, q_id)) otx_ep_err("Failed to delete OQ:%d\n", q_id); } /** * Allocate and initialize SW ring. Initialize associated HW registers. * * @param eth_dev * Pointer to structure rte_eth_dev * * @param q_no * Queue number * * @param num_tx_descs * Number of ringbuffer descriptors * * @param socket_id * NUMA socket id, used for memory allocations * * @param tx_conf * Pointer to the structure rte_eth_txconf * * @return * - On success, return 0 * - On failure, return -errno value */ static int otx_ep_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t q_no, uint16_t num_tx_descs, unsigned int socket_id, const struct rte_eth_txconf *tx_conf __rte_unused) { struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev); int retval; if (q_no >= otx_epvf->max_tx_queues) { otx_ep_err("Invalid tx queue number %u\n", q_no); return -EINVAL; } if (num_tx_descs & (num_tx_descs - 1)) { otx_ep_err("Invalid tx desc number should be pow 2 %u\n", num_tx_descs); return -EINVAL; } retval = otx_ep_setup_iqs(otx_epvf, q_no, num_tx_descs, socket_id); if (retval) { otx_ep_err("IQ(TxQ) creation failed.\n"); return retval; } eth_dev->data->tx_queues[q_no] = otx_epvf->instr_queue[q_no]; otx_ep_dbg("tx queue[%d] setup\n", q_no); return 0; } /** * Release the transmit queue/ringbuffer. Called by * the upper layers. * * @param txq * Opaque pointer to the transmit queue to release * * @return * - nothing */ static void otx_ep_tx_queue_release(void *txq) { struct otx_ep_instr_queue *tq = (struct otx_ep_instr_queue *)txq; otx_ep_delete_iqs(tq->otx_ep_dev, tq->q_no); } /* Define our ethernet definitions */ static const struct eth_dev_ops otx_ep_eth_dev_ops = { .dev_configure = otx_ep_dev_configure, .dev_start = otx_ep_dev_start, .dev_stop = otx_ep_dev_stop, .rx_queue_setup = otx_ep_rx_queue_setup, .rx_queue_release = otx_ep_rx_queue_release, .tx_queue_setup = otx_ep_tx_queue_setup, .tx_queue_release = otx_ep_tx_queue_release, .dev_infos_get = otx_ep_dev_info_get, }; static int otx_epdev_exit(struct rte_eth_dev *eth_dev) { struct otx_ep_device *otx_epvf; uint32_t num_queues, q; otx_ep_info("%s:\n", __func__); otx_epvf = OTX_EP_DEV(eth_dev); otx_epvf->fn_list.disable_io_queues(otx_epvf); num_queues = otx_epvf->nb_rx_queues; for (q = 0; q < num_queues; q++) { if (otx_ep_delete_oqs(otx_epvf, q)) { otx_ep_err("Failed to delete OQ:%d\n", q); return -EINVAL; } } otx_ep_info("Num OQs:%d freed\n", otx_epvf->nb_rx_queues); num_queues = otx_epvf->nb_tx_queues; for (q = 0; q < num_queues; q++) { if (otx_ep_delete_iqs(otx_epvf, q)) { otx_ep_err("Failed to delete IQ:%d\n", q); return -EINVAL; } } otx_ep_dbg("Num IQs:%d freed\n", otx_epvf->nb_tx_queues); return 0; } static int otx_ep_eth_dev_uninit(struct rte_eth_dev *eth_dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; otx_epdev_exit(eth_dev); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; return 0; } static int otx_ep_eth_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(eth_dev); struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev); struct rte_ether_addr vf_mac_addr; /* Single process support */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; otx_epvf->eth_dev = eth_dev; otx_epvf->port_id = eth_dev->data->port_id; eth_dev->dev_ops = &otx_ep_eth_dev_ops; eth_dev->data->mac_addrs = rte_zmalloc("otx_ep", RTE_ETHER_ADDR_LEN, 0); if (eth_dev->data->mac_addrs == NULL) { otx_ep_err("MAC addresses memory allocation failed\n"); eth_dev->dev_ops = NULL; return -ENOMEM; } rte_eth_random_addr(vf_mac_addr.addr_bytes); rte_ether_addr_copy(&vf_mac_addr, eth_dev->data->mac_addrs); otx_epvf->hw_addr = pdev->mem_resource[0].addr; otx_epvf->pdev = pdev; otx_epdev_init(otx_epvf); if (pdev->id.device_id == PCI_DEVID_OCTEONTX2_EP_NET_VF) otx_epvf->pkind = SDP_OTX2_PKIND; else otx_epvf->pkind = SDP_PKIND; otx_ep_info("using pkind %d\n", otx_epvf->pkind); return 0; } static int otx_ep_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct otx_ep_device), otx_ep_eth_dev_init); } static int otx_ep_eth_dev_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, otx_ep_eth_dev_uninit); } /* Set of PCI devices this driver supports */ static const struct rte_pci_id pci_id_otx_ep_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX_EP_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_EP_NET_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN98XX_EP_NET_VF) }, { .vendor_id = 0, /* sentinel */ } }; static struct rte_pci_driver rte_otx_ep_pmd = { .id_table = pci_id_otx_ep_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, .probe = otx_ep_eth_dev_pci_probe, .remove = otx_ep_eth_dev_pci_remove, }; RTE_PMD_REGISTER_PCI(net_otx_ep, rte_otx_ep_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_otx_ep, pci_id_otx_ep_map); RTE_PMD_REGISTER_KMOD_DEP(net_otx_ep, "* igb_uio | vfio-pci"); RTE_LOG_REGISTER(otx_net_ep_logtype, pmd.net.octeontx_ep, NOTICE);