/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RTE_LIBRTE_PMD_XENVIRT #include #endif #include "testpmd.h" #include "mempool_osdep.h" uint16_t verbose_level = 0; /**< Silent by default. */ /* use master core for command line ? */ uint8_t interactive = 0; uint8_t auto_start = 0; /* * NUMA support configuration. * When set, the NUMA support attempts to dispatch the allocation of the * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the * probed ports among the CPU sockets 0 and 1. * Otherwise, all memory is allocated from CPU socket 0. */ uint8_t numa_support = 0; /**< No numa support by default */ /* * In UMA mode,all memory is allocated from socket 0 if --socket-num is * not configured. */ uint8_t socket_num = UMA_NO_CONFIG; /* * Use ANONYMOUS mapped memory (might be not physically continuous) for mbufs. */ uint8_t mp_anon = 0; /* * Record the Ethernet address of peer target ports to which packets are * forwarded. * Must be instanciated with the ethernet addresses of peer traffic generator * ports. */ struct ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; portid_t nb_peer_eth_addrs = 0; /* * Probed Target Environment. */ struct rte_port *ports; /**< For all probed ethernet ports. */ portid_t nb_ports; /**< Number of probed ethernet ports. */ struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ lcoreid_t nb_lcores; /**< Number of probed logical cores. */ /* * Test Forwarding Configuration. * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores * nb_fwd_ports <= nb_cfg_ports <= nb_ports */ lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ portid_t nb_cfg_ports; /**< Number of configured ports. */ portid_t nb_fwd_ports; /**< Number of forwarding ports. */ unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ /* * Forwarding engines. */ struct fwd_engine * fwd_engines[] = { &io_fwd_engine, &mac_fwd_engine, &mac_retry_fwd_engine, &mac_swap_engine, &flow_gen_engine, &rx_only_engine, &tx_only_engine, &csum_fwd_engine, &icmp_echo_engine, #ifdef RTE_LIBRTE_IEEE1588 &ieee1588_fwd_engine, #endif NULL, }; struct fwd_config cur_fwd_config; struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ uint16_t mbuf_data_size = DEFAULT_MBUF_DATA_SIZE; /**< Mbuf data space size. */ uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if * specified on command-line. */ /* * Configuration of packet segments used by the "txonly" processing engine. */ uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { TXONLY_DEF_PACKET_LEN, }; uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ /* current configuration is in DCB or not,0 means it is not in DCB mode */ uint8_t dcb_config = 0; /* Whether the dcb is in testing status */ uint8_t dcb_test = 0; /* DCB on and VT on mapping is default */ enum dcb_queue_mapping_mode dcb_q_mapping = DCB_VT_Q_MAPPING; /* * Configurable number of RX/TX queues. */ queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ queueid_t nb_txq = 1; /**< Number of TX queues per port. */ /* * Configurable number of RX/TX ring descriptors. */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ /* * Configurable values of RX and TX ring threshold registers. */ #define RX_PTHRESH 8 /**< Default value of RX prefetch threshold register. */ #define RX_HTHRESH 8 /**< Default value of RX host threshold register. */ #define RX_WTHRESH 0 /**< Default value of RX write-back threshold register. */ #define TX_PTHRESH 32 /**< Default value of TX prefetch threshold register. */ #define TX_HTHRESH 0 /**< Default value of TX host threshold register. */ #define TX_WTHRESH 0 /**< Default value of TX write-back threshold register. */ struct rte_eth_thresh rx_thresh = { .pthresh = RX_PTHRESH, .hthresh = RX_HTHRESH, .wthresh = RX_WTHRESH, }; struct rte_eth_thresh tx_thresh = { .pthresh = TX_PTHRESH, .hthresh = TX_HTHRESH, .wthresh = TX_WTHRESH, }; /* * Configurable value of RX free threshold. */ uint16_t rx_free_thresh = 32; /* Refill RX descriptors once every 32 packets, This setting is needed for ixgbe to enable bulk alloc or vector receive functionality. */ /* * Configurable value of RX drop enable. */ uint8_t rx_drop_en = 0; /* Drop packets when no descriptors for queue. */ /* * Configurable value of TX free threshold. */ uint16_t tx_free_thresh = 0; /* Use default values. */ /* * Configurable value of TX RS bit threshold. */ uint16_t tx_rs_thresh = 0; /* Use default values. */ /* * Configurable value of TX queue flags. */ uint32_t txq_flags = 0; /* No flags set. */ /* * Receive Side Scaling (RSS) configuration. */ uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ /* * Port topology configuration */ uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ /* * Avoids to flush all the RX streams before starts forwarding. */ uint8_t no_flush_rx = 0; /* flush by default */ /* * Avoids to check link status when starting/stopping a port. */ uint8_t no_link_check = 0; /* check by default */ /* * NIC bypass mode configuration options. */ #ifdef RTE_NIC_BYPASS /* The NIC bypass watchdog timeout. */ uint32_t bypass_timeout = RTE_BYPASS_TMT_OFF; #endif /* * Ethernet device configuration. */ struct rte_eth_rxmode rx_mode = { .max_rx_pkt_len = ETHER_MAX_LEN, /**< Default maximum frame length. */ .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled. */ .hw_ip_checksum = 0, /**< IP checksum offload disabled. */ .hw_vlan_filter = 1, /**< VLAN filtering enabled. */ .hw_vlan_strip = 1, /**< VLAN strip enabled. */ .hw_vlan_extend = 0, /**< Extended VLAN disabled. */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled. */ .hw_strip_crc = 0, /**< CRC stripping by hardware disabled. */ }; struct rte_fdir_conf fdir_conf = { .mode = RTE_FDIR_MODE_NONE, .pballoc = RTE_FDIR_PBALLOC_64K, .status = RTE_FDIR_REPORT_STATUS, .flexbytes_offset = 0x6, .drop_queue = 127, }; volatile int test_done = 1; /* stop packet forwarding when set to 1. */ struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS]; struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS]; struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array; struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array; uint16_t nb_tx_queue_stats_mappings = 0; uint16_t nb_rx_queue_stats_mappings = 0; /* Forward function declarations */ static void map_port_queue_stats_mapping_registers(uint8_t pi, struct rte_port *port); static void check_all_ports_link_status(uint8_t port_num, uint32_t port_mask); /* * Check if all the ports are started. * If yes, return positive value. If not, return zero. */ static int all_ports_started(void); /* * Setup default configuration. */ static void set_default_fwd_lcores_config(void) { unsigned int i; unsigned int nb_lc; nb_lc = 0; for (i = 0; i < RTE_MAX_LCORE; i++) { if (! rte_lcore_is_enabled(i)) continue; if (i == rte_get_master_lcore()) continue; fwd_lcores_cpuids[nb_lc++] = i; } nb_lcores = (lcoreid_t) nb_lc; nb_cfg_lcores = nb_lcores; nb_fwd_lcores = 1; } static void set_def_peer_eth_addrs(void) { portid_t i; for (i = 0; i < RTE_MAX_ETHPORTS; i++) { peer_eth_addrs[i].addr_bytes[0] = ETHER_LOCAL_ADMIN_ADDR; peer_eth_addrs[i].addr_bytes[5] = i; } } static void set_default_fwd_ports_config(void) { portid_t pt_id; for (pt_id = 0; pt_id < nb_ports; pt_id++) fwd_ports_ids[pt_id] = pt_id; nb_cfg_ports = nb_ports; nb_fwd_ports = nb_ports; } void set_def_fwd_config(void) { set_default_fwd_lcores_config(); set_def_peer_eth_addrs(); set_default_fwd_ports_config(); } /* * Configuration initialisation done once at init time. */ struct mbuf_ctor_arg { uint16_t seg_buf_offset; /**< offset of data in data segment of mbuf. */ uint16_t seg_buf_size; /**< size of data segment in mbuf. */ }; struct mbuf_pool_ctor_arg { uint16_t seg_buf_size; /**< size of data segment in mbuf. */ }; static void testpmd_mbuf_ctor(struct rte_mempool *mp, void *opaque_arg, void *raw_mbuf, __attribute__((unused)) unsigned i) { struct mbuf_ctor_arg *mb_ctor_arg; struct rte_mbuf *mb; mb_ctor_arg = (struct mbuf_ctor_arg *) opaque_arg; mb = (struct rte_mbuf *) raw_mbuf; mb->pool = mp; mb->buf_addr = (void *) ((char *)mb + mb_ctor_arg->seg_buf_offset); mb->buf_physaddr = (uint64_t) (rte_mempool_virt2phy(mp, mb) + mb_ctor_arg->seg_buf_offset); mb->buf_len = mb_ctor_arg->seg_buf_size; mb->ol_flags = 0; mb->data_off = RTE_PKTMBUF_HEADROOM; mb->nb_segs = 1; mb->l2_l3_len = 0; mb->vlan_tci = 0; mb->hash.rss = 0; } static void testpmd_mbuf_pool_ctor(struct rte_mempool *mp, void *opaque_arg) { struct mbuf_pool_ctor_arg *mbp_ctor_arg; struct rte_pktmbuf_pool_private *mbp_priv; if (mp->private_data_size < sizeof(struct rte_pktmbuf_pool_private)) { printf("%s(%s) private_data_size %d < %d\n", __func__, mp->name, (int) mp->private_data_size, (int) sizeof(struct rte_pktmbuf_pool_private)); return; } mbp_ctor_arg = (struct mbuf_pool_ctor_arg *) opaque_arg; mbp_priv = rte_mempool_get_priv(mp); mbp_priv->mbuf_data_room_size = mbp_ctor_arg->seg_buf_size; } static void mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, unsigned int socket_id) { char pool_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *rte_mp; struct mbuf_pool_ctor_arg mbp_ctor_arg; struct mbuf_ctor_arg mb_ctor_arg; uint32_t mb_size; mbp_ctor_arg.seg_buf_size = (uint16_t) (RTE_PKTMBUF_HEADROOM + mbuf_seg_size); mb_ctor_arg.seg_buf_offset = (uint16_t) CACHE_LINE_ROUNDUP(sizeof(struct rte_mbuf)); mb_ctor_arg.seg_buf_size = mbp_ctor_arg.seg_buf_size; mb_size = mb_ctor_arg.seg_buf_offset + mb_ctor_arg.seg_buf_size; mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name)); #ifdef RTE_LIBRTE_PMD_XENVIRT rte_mp = rte_mempool_gntalloc_create(pool_name, nb_mbuf, mb_size, (unsigned) mb_mempool_cache, sizeof(struct rte_pktmbuf_pool_private), testpmd_mbuf_pool_ctor, &mbp_ctor_arg, testpmd_mbuf_ctor, &mb_ctor_arg, socket_id, 0); #else if (mp_anon != 0) rte_mp = mempool_anon_create(pool_name, nb_mbuf, mb_size, (unsigned) mb_mempool_cache, sizeof(struct rte_pktmbuf_pool_private), testpmd_mbuf_pool_ctor, &mbp_ctor_arg, testpmd_mbuf_ctor, &mb_ctor_arg, socket_id, 0); else rte_mp = rte_mempool_create(pool_name, nb_mbuf, mb_size, (unsigned) mb_mempool_cache, sizeof(struct rte_pktmbuf_pool_private), testpmd_mbuf_pool_ctor, &mbp_ctor_arg, testpmd_mbuf_ctor, &mb_ctor_arg, socket_id, 0); #endif if (rte_mp == NULL) { rte_exit(EXIT_FAILURE, "Creation of mbuf pool for socket %u " "failed\n", socket_id); } else if (verbose_level > 0) { rte_mempool_dump(stdout, rte_mp); } } /* * Check given socket id is valid or not with NUMA mode, * if valid, return 0, else return -1 */ static int check_socket_id(const unsigned int socket_id) { static int warning_once = 0; if (socket_id >= MAX_SOCKET) { if (!warning_once && numa_support) printf("Warning: NUMA should be configured manually by" " using --port-numa-config and" " --ring-numa-config parameters along with" " --numa.\n"); warning_once = 1; return -1; } return 0; } static void init_config(void) { portid_t pid; struct rte_port *port; struct rte_mempool *mbp; unsigned int nb_mbuf_per_pool; lcoreid_t lc_id; uint8_t port_per_socket[MAX_SOCKET]; memset(port_per_socket,0,MAX_SOCKET); /* Configuration of logical cores. */ fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", sizeof(struct fwd_lcore *) * nb_lcores, CACHE_LINE_SIZE); if (fwd_lcores == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " "failed\n", nb_lcores); } for (lc_id = 0; lc_id < nb_lcores; lc_id++) { fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", sizeof(struct fwd_lcore), CACHE_LINE_SIZE); if (fwd_lcores[lc_id] == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " "failed\n"); } fwd_lcores[lc_id]->cpuid_idx = lc_id; } /* * Create pools of mbuf. * If NUMA support is disabled, create a single pool of mbuf in * socket 0 memory by default. * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. * * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and * nb_txd can be configured at run time. */ if (param_total_num_mbufs) nb_mbuf_per_pool = param_total_num_mbufs; else { nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + (nb_lcores * mb_mempool_cache) + RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; if (!numa_support) nb_mbuf_per_pool = (nb_mbuf_per_pool * nb_ports); } if (!numa_support) { if (socket_num == UMA_NO_CONFIG) mbuf_pool_create(mbuf_data_size, nb_mbuf_per_pool, 0); else mbuf_pool_create(mbuf_data_size, nb_mbuf_per_pool, socket_num); } /* Configuration of Ethernet ports. */ ports = rte_zmalloc("testpmd: ports", sizeof(struct rte_port) * nb_ports, CACHE_LINE_SIZE); if (ports == NULL) { rte_exit(EXIT_FAILURE, "rte_zmalloc(%d struct rte_port) " "failed\n", nb_ports); } for (pid = 0; pid < nb_ports; pid++) { port = &ports[pid]; rte_eth_dev_info_get(pid, &port->dev_info); if (numa_support) { if (port_numa[pid] != NUMA_NO_CONFIG) port_per_socket[port_numa[pid]]++; else { uint32_t socket_id = rte_eth_dev_socket_id(pid); /* if socket_id is invalid, set to 0 */ if (check_socket_id(socket_id) < 0) socket_id = 0; port_per_socket[socket_id]++; } } /* set flag to initialize port/queue */ port->need_reconfig = 1; port->need_reconfig_queues = 1; } if (numa_support) { uint8_t i; unsigned int nb_mbuf; if (param_total_num_mbufs) nb_mbuf_per_pool = nb_mbuf_per_pool/nb_ports; for (i = 0; i < MAX_SOCKET; i++) { nb_mbuf = (nb_mbuf_per_pool * port_per_socket[i]); if (nb_mbuf) mbuf_pool_create(mbuf_data_size, nb_mbuf,i); } } init_port_config(); /* * Records which Mbuf pool to use by each logical core, if needed. */ for (lc_id = 0; lc_id < nb_lcores; lc_id++) { mbp = mbuf_pool_find( rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id])); if (mbp == NULL) mbp = mbuf_pool_find(0); fwd_lcores[lc_id]->mbp = mbp; } /* Configuration of packet forwarding streams. */ if (init_fwd_streams() < 0) rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n"); } void reconfig(portid_t new_port_id) { struct rte_port *port; /* Reconfiguration of Ethernet ports. */ ports = rte_realloc(ports, sizeof(struct rte_port) * nb_ports, CACHE_LINE_SIZE); if (ports == NULL) { rte_exit(EXIT_FAILURE, "rte_realloc(%d struct rte_port) failed\n", nb_ports); } port = &ports[new_port_id]; rte_eth_dev_info_get(new_port_id, &port->dev_info); /* set flag to initialize port/queue */ port->need_reconfig = 1; port->need_reconfig_queues = 1; init_port_config(); } int init_fwd_streams(void) { portid_t pid; struct rte_port *port; streamid_t sm_id, nb_fwd_streams_new; /* set socket id according to numa or not */ for (pid = 0; pid < nb_ports; pid++) { port = &ports[pid]; if (nb_rxq > port->dev_info.max_rx_queues) { printf("Fail: nb_rxq(%d) is greater than " "max_rx_queues(%d)\n", nb_rxq, port->dev_info.max_rx_queues); return -1; } if (nb_txq > port->dev_info.max_tx_queues) { printf("Fail: nb_txq(%d) is greater than " "max_tx_queues(%d)\n", nb_txq, port->dev_info.max_tx_queues); return -1; } if (numa_support) { if (port_numa[pid] != NUMA_NO_CONFIG) port->socket_id = port_numa[pid]; else { port->socket_id = rte_eth_dev_socket_id(pid); /* if socket_id is invalid, set to 0 */ if (check_socket_id(port->socket_id) < 0) port->socket_id = 0; } } else { if (socket_num == UMA_NO_CONFIG) port->socket_id = 0; else port->socket_id = socket_num; } } nb_fwd_streams_new = (streamid_t)(nb_ports * nb_rxq); if (nb_fwd_streams_new == nb_fwd_streams) return 0; /* clear the old */ if (fwd_streams != NULL) { for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { if (fwd_streams[sm_id] == NULL) continue; rte_free(fwd_streams[sm_id]); fwd_streams[sm_id] = NULL; } rte_free(fwd_streams); fwd_streams = NULL; } /* init new */ nb_fwd_streams = nb_fwd_streams_new; fwd_streams = rte_zmalloc("testpmd: fwd_streams", sizeof(struct fwd_stream *) * nb_fwd_streams, CACHE_LINE_SIZE); if (fwd_streams == NULL) rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_stream *)) " "failed\n", nb_fwd_streams); for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { fwd_streams[sm_id] = rte_zmalloc("testpmd: struct fwd_stream", sizeof(struct fwd_stream), CACHE_LINE_SIZE); if (fwd_streams[sm_id] == NULL) rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_stream)" " failed\n"); } return 0; } #ifdef RTE_TEST_PMD_RECORD_BURST_STATS static void pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) { unsigned int total_burst; unsigned int nb_burst; unsigned int burst_stats[3]; uint16_t pktnb_stats[3]; uint16_t nb_pkt; int burst_percent[3]; /* * First compute the total number of packet bursts and the * two highest numbers of bursts of the same number of packets. */ total_burst = 0; burst_stats[0] = burst_stats[1] = burst_stats[2] = 0; pktnb_stats[0] = pktnb_stats[1] = pktnb_stats[2] = 0; for (nb_pkt = 0; nb_pkt < MAX_PKT_BURST; nb_pkt++) { nb_burst = pbs->pkt_burst_spread[nb_pkt]; if (nb_burst == 0) continue; total_burst += nb_burst; if (nb_burst > burst_stats[0]) { burst_stats[1] = burst_stats[0]; pktnb_stats[1] = pktnb_stats[0]; burst_stats[0] = nb_burst; pktnb_stats[0] = nb_pkt; } } if (total_burst == 0) return; burst_percent[0] = (burst_stats[0] * 100) / total_burst; printf(" %s-bursts : %u [%d%% of %d pkts", rx_tx, total_burst, burst_percent[0], (int) pktnb_stats[0]); if (burst_stats[0] == total_burst) { printf("]\n"); return; } if (burst_stats[0] + burst_stats[1] == total_burst) { printf(" + %d%% of %d pkts]\n", 100 - burst_percent[0], pktnb_stats[1]); return; } burst_percent[1] = (burst_stats[1] * 100) / total_burst; burst_percent[2] = 100 - (burst_percent[0] + burst_percent[1]); if ((burst_percent[1] == 0) || (burst_percent[2] == 0)) { printf(" + %d%% of others]\n", 100 - burst_percent[0]); return; } printf(" + %d%% of %d pkts + %d%% of others]\n", burst_percent[1], (int) pktnb_stats[1], burst_percent[2]); } #endif /* RTE_TEST_PMD_RECORD_BURST_STATS */ static void fwd_port_stats_display(portid_t port_id, struct rte_eth_stats *stats) { struct rte_port *port; uint8_t i; static const char *fwd_stats_border = "----------------------"; port = &ports[port_id]; printf("\n %s Forward statistics for port %-2d %s\n", fwd_stats_border, port_id, fwd_stats_border); if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " "%-"PRIu64"\n", stats->ipackets, stats->imissed, (uint64_t) (stats->ipackets + stats->imissed)); if (cur_fwd_eng == &csum_fwd_engine) printf(" Bad-ipcsum: %-14"PRIu64" Bad-l4csum: %-14"PRIu64" \n", port->rx_bad_ip_csum, port->rx_bad_l4_csum); if (((stats->ierrors - stats->imissed) + stats->rx_nombuf) > 0) { printf(" RX-badcrc: %-14"PRIu64" RX-badlen: %-14"PRIu64 "RX-error: %-"PRIu64"\n", stats->ibadcrc, stats->ibadlen, stats->ierrors); printf(" RX-nombufs: %-14"PRIu64"\n", stats->rx_nombuf); } printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " "%-"PRIu64"\n", stats->opackets, port->tx_dropped, (uint64_t) (stats->opackets + port->tx_dropped)); } else { printf(" RX-packets: %14"PRIu64" RX-dropped:%14"PRIu64" RX-total:" "%14"PRIu64"\n", stats->ipackets, stats->imissed, (uint64_t) (stats->ipackets + stats->imissed)); if (cur_fwd_eng == &csum_fwd_engine) printf(" Bad-ipcsum:%14"PRIu64" Bad-l4csum:%14"PRIu64"\n", port->rx_bad_ip_csum, port->rx_bad_l4_csum); if (((stats->ierrors - stats->imissed) + stats->rx_nombuf) > 0) { printf(" RX-badcrc: %14"PRIu64" RX-badlen: %14"PRIu64 " RX-error:%"PRIu64"\n", stats->ibadcrc, stats->ibadlen, stats->ierrors); printf(" RX-nombufs: %14"PRIu64"\n", stats->rx_nombuf); } printf(" TX-packets: %14"PRIu64" TX-dropped:%14"PRIu64" TX-total:" "%14"PRIu64"\n", stats->opackets, port->tx_dropped, (uint64_t) (stats->opackets + port->tx_dropped)); } /* Display statistics of XON/XOFF pause frames, if any. */ if ((stats->tx_pause_xon | stats->rx_pause_xon | stats->tx_pause_xoff | stats->rx_pause_xoff) > 0) { printf(" RX-XOFF: %-14"PRIu64" RX-XON: %-14"PRIu64"\n", stats->rx_pause_xoff, stats->rx_pause_xon); printf(" TX-XOFF: %-14"PRIu64" TX-XON: %-14"PRIu64"\n", stats->tx_pause_xoff, stats->tx_pause_xon); } #ifdef RTE_TEST_PMD_RECORD_BURST_STATS if (port->rx_stream) pkt_burst_stats_display("RX", &port->rx_stream->rx_burst_stats); if (port->tx_stream) pkt_burst_stats_display("TX", &port->tx_stream->tx_burst_stats); #endif /* stats fdir */ if (fdir_conf.mode != RTE_FDIR_MODE_NONE) printf(" Fdirmiss:%14"PRIu64" Fdirmatch:%14"PRIu64"\n", stats->fdirmiss, stats->fdirmatch); if (port->rx_queue_stats_mapping_enabled) { printf("\n"); for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { printf(" Stats reg %2d RX-packets:%14"PRIu64 " RX-errors:%14"PRIu64 " RX-bytes:%14"PRIu64"\n", i, stats->q_ipackets[i], stats->q_errors[i], stats->q_ibytes[i]); } printf("\n"); } if (port->tx_queue_stats_mapping_enabled) { for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { printf(" Stats reg %2d TX-packets:%14"PRIu64 " TX-bytes:%14"PRIu64"\n", i, stats->q_opackets[i], stats->q_obytes[i]); } } printf(" %s--------------------------------%s\n", fwd_stats_border, fwd_stats_border); } static void fwd_stream_stats_display(streamid_t stream_id) { struct fwd_stream *fs; static const char *fwd_top_stats_border = "-------"; fs = fwd_streams[stream_id]; if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && (fs->fwd_dropped == 0)) return; printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " "TX Port=%2d/Queue=%2d %s\n", fwd_top_stats_border, fs->rx_port, fs->rx_queue, fs->tx_port, fs->tx_queue, fwd_top_stats_border); printf(" RX-packets: %-14u TX-packets: %-14u TX-dropped: %-14u", fs->rx_packets, fs->tx_packets, fs->fwd_dropped); /* if checksum mode */ if (cur_fwd_eng == &csum_fwd_engine) { printf(" RX- bad IP checksum: %-14u Rx- bad L4 checksum: " "%-14u\n", fs->rx_bad_ip_csum, fs->rx_bad_l4_csum); } #ifdef RTE_TEST_PMD_RECORD_BURST_STATS pkt_burst_stats_display("RX", &fs->rx_burst_stats); pkt_burst_stats_display("TX", &fs->tx_burst_stats); #endif } static void flush_fwd_rx_queues(void) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; portid_t rxp; portid_t port_id; queueid_t rxq; uint16_t nb_rx; uint16_t i; uint8_t j; for (j = 0; j < 2; j++) { for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { for (rxq = 0; rxq < nb_rxq; rxq++) { port_id = fwd_ports_ids[rxp]; do { nb_rx = rte_eth_rx_burst(port_id, rxq, pkts_burst, MAX_PKT_BURST); for (i = 0; i < nb_rx; i++) rte_pktmbuf_free(pkts_burst[i]); } while (nb_rx > 0); } } rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ } } static void run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) { struct fwd_stream **fsm; streamid_t nb_fs; streamid_t sm_id; fsm = &fwd_streams[fc->stream_idx]; nb_fs = fc->stream_nb; do { for (sm_id = 0; sm_id < nb_fs; sm_id++) (*pkt_fwd)(fsm[sm_id]); } while (! fc->stopped); } static int start_pkt_forward_on_core(void *fwd_arg) { run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, cur_fwd_config.fwd_eng->packet_fwd); return 0; } /* * Run the TXONLY packet forwarding engine to send a single burst of packets. * Used to start communication flows in network loopback test configurations. */ static int run_one_txonly_burst_on_core(void *fwd_arg) { struct fwd_lcore *fwd_lc; struct fwd_lcore tmp_lcore; fwd_lc = (struct fwd_lcore *) fwd_arg; tmp_lcore = *fwd_lc; tmp_lcore.stopped = 1; run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); return 0; } /* * Launch packet forwarding: * - Setup per-port forwarding context. * - launch logical cores with their forwarding configuration. */ static void launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) { port_fwd_begin_t port_fwd_begin; unsigned int i; unsigned int lc_id; int diag; port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; if (port_fwd_begin != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_begin)(fwd_ports_ids[i]); } for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { lc_id = fwd_lcores_cpuids[i]; if ((interactive == 0) || (lc_id != rte_lcore_id())) { fwd_lcores[i]->stopped = 0; diag = rte_eal_remote_launch(pkt_fwd_on_lcore, fwd_lcores[i], lc_id); if (diag != 0) printf("launch lcore %u failed - diag=%d\n", lc_id, diag); } } } /* * Launch packet forwarding configuration. */ void start_packet_forwarding(int with_tx_first) { port_fwd_begin_t port_fwd_begin; port_fwd_end_t port_fwd_end; struct rte_port *port; unsigned int i; portid_t pt_id; streamid_t sm_id; if (all_ports_started() == 0) { printf("Not all ports were started\n"); return; } if (test_done == 0) { printf("Packet forwarding already started\n"); return; } if(dcb_test) { for (i = 0; i < nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; if (!port->dcb_flag) { printf("In DCB mode, all forwarding ports must " "be configured in this mode.\n"); return; } } if (nb_fwd_lcores == 1) { printf("In DCB mode,the nb forwarding cores " "should be larger than 1.\n"); return; } } test_done = 0; if(!no_flush_rx) flush_fwd_rx_queues(); fwd_config_setup(); rxtx_config_display(); for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; rte_eth_stats_get(pt_id, &port->stats); port->tx_dropped = 0; map_port_queue_stats_mapping_registers(pt_id, port); } for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { fwd_streams[sm_id]->rx_packets = 0; fwd_streams[sm_id]->tx_packets = 0; fwd_streams[sm_id]->fwd_dropped = 0; fwd_streams[sm_id]->rx_bad_ip_csum = 0; fwd_streams[sm_id]->rx_bad_l4_csum = 0; #ifdef RTE_TEST_PMD_RECORD_BURST_STATS memset(&fwd_streams[sm_id]->rx_burst_stats, 0, sizeof(fwd_streams[sm_id]->rx_burst_stats)); memset(&fwd_streams[sm_id]->tx_burst_stats, 0, sizeof(fwd_streams[sm_id]->tx_burst_stats)); #endif #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES fwd_streams[sm_id]->core_cycles = 0; #endif } if (with_tx_first) { port_fwd_begin = tx_only_engine.port_fwd_begin; if (port_fwd_begin != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_begin)(fwd_ports_ids[i]); } launch_packet_forwarding(run_one_txonly_burst_on_core); rte_eal_mp_wait_lcore(); port_fwd_end = tx_only_engine.port_fwd_end; if (port_fwd_end != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) (*port_fwd_end)(fwd_ports_ids[i]); } } launch_packet_forwarding(start_pkt_forward_on_core); } void stop_packet_forwarding(void) { struct rte_eth_stats stats; struct rte_port *port; port_fwd_end_t port_fwd_end; int i; portid_t pt_id; streamid_t sm_id; lcoreid_t lc_id; uint64_t total_recv; uint64_t total_xmit; uint64_t total_rx_dropped; uint64_t total_tx_dropped; uint64_t total_rx_nombuf; uint64_t tx_dropped; uint64_t rx_bad_ip_csum; uint64_t rx_bad_l4_csum; #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES uint64_t fwd_cycles; #endif static const char *acc_stats_border = "+++++++++++++++"; if (all_ports_started() == 0) { printf("Not all ports were started\n"); return; } if (test_done) { printf("Packet forwarding not started\n"); return; } printf("Telling cores to stop..."); for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) fwd_lcores[lc_id]->stopped = 1; printf("\nWaiting for lcores to finish...\n"); rte_eal_mp_wait_lcore(); port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; if (port_fwd_end != NULL) { for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; (*port_fwd_end)(pt_id); } } #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES fwd_cycles = 0; #endif for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { if (cur_fwd_config.nb_fwd_streams > cur_fwd_config.nb_fwd_ports) { fwd_stream_stats_display(sm_id); ports[fwd_streams[sm_id]->tx_port].tx_stream = NULL; ports[fwd_streams[sm_id]->rx_port].rx_stream = NULL; } else { ports[fwd_streams[sm_id]->tx_port].tx_stream = fwd_streams[sm_id]; ports[fwd_streams[sm_id]->rx_port].rx_stream = fwd_streams[sm_id]; } tx_dropped = ports[fwd_streams[sm_id]->tx_port].tx_dropped; tx_dropped = (uint64_t) (tx_dropped + fwd_streams[sm_id]->fwd_dropped); ports[fwd_streams[sm_id]->tx_port].tx_dropped = tx_dropped; rx_bad_ip_csum = ports[fwd_streams[sm_id]->rx_port].rx_bad_ip_csum; rx_bad_ip_csum = (uint64_t) (rx_bad_ip_csum + fwd_streams[sm_id]->rx_bad_ip_csum); ports[fwd_streams[sm_id]->rx_port].rx_bad_ip_csum = rx_bad_ip_csum; rx_bad_l4_csum = ports[fwd_streams[sm_id]->rx_port].rx_bad_l4_csum; rx_bad_l4_csum = (uint64_t) (rx_bad_l4_csum + fwd_streams[sm_id]->rx_bad_l4_csum); ports[fwd_streams[sm_id]->rx_port].rx_bad_l4_csum = rx_bad_l4_csum; #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES fwd_cycles = (uint64_t) (fwd_cycles + fwd_streams[sm_id]->core_cycles); #endif } total_recv = 0; total_xmit = 0; total_rx_dropped = 0; total_tx_dropped = 0; total_rx_nombuf = 0; for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; rte_eth_stats_get(pt_id, &stats); stats.ipackets -= port->stats.ipackets; port->stats.ipackets = 0; stats.opackets -= port->stats.opackets; port->stats.opackets = 0; stats.ibytes -= port->stats.ibytes; port->stats.ibytes = 0; stats.obytes -= port->stats.obytes; port->stats.obytes = 0; stats.imissed -= port->stats.imissed; port->stats.imissed = 0; stats.oerrors -= port->stats.oerrors; port->stats.oerrors = 0; stats.rx_nombuf -= port->stats.rx_nombuf; port->stats.rx_nombuf = 0; stats.fdirmatch -= port->stats.fdirmatch; port->stats.rx_nombuf = 0; stats.fdirmiss -= port->stats.fdirmiss; port->stats.rx_nombuf = 0; total_recv += stats.ipackets; total_xmit += stats.opackets; total_rx_dropped += stats.imissed; total_tx_dropped += port->tx_dropped; total_rx_nombuf += stats.rx_nombuf; fwd_port_stats_display(pt_id, &stats); } printf("\n %s Accumulated forward statistics for all ports" "%s\n", acc_stats_border, acc_stats_border); printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " "%-"PRIu64"\n" " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " "%-"PRIu64"\n", total_recv, total_rx_dropped, total_recv + total_rx_dropped, total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); if (total_rx_nombuf > 0) printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" "%s\n", acc_stats_border, acc_stats_border); #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES if (total_recv > 0) printf("\n CPU cycles/packet=%u (total cycles=" "%"PRIu64" / total RX packets=%"PRIu64")\n", (unsigned int)(fwd_cycles / total_recv), fwd_cycles, total_recv); #endif printf("\nDone.\n"); test_done = 1; } void dev_set_link_up(portid_t pid) { if (rte_eth_dev_set_link_up((uint8_t)pid) < 0) printf("\nSet link up fail.\n"); } void dev_set_link_down(portid_t pid) { if (rte_eth_dev_set_link_down((uint8_t)pid) < 0) printf("\nSet link down fail.\n"); } static int all_ports_started(void) { portid_t pi; struct rte_port *port; for (pi = 0; pi < nb_ports; pi++) { port = &ports[pi]; /* Check if there is a port which is not started */ if (port->port_status != RTE_PORT_STARTED) return 0; } /* No port is not started */ return 1; } int start_port(portid_t pid) { int diag, need_check_link_status = 0; portid_t pi; queueid_t qi; struct rte_port *port; struct ether_addr mac_addr; if (test_done == 0) { printf("Please stop forwarding first\n"); return -1; } if (init_fwd_streams() < 0) { printf("Fail from init_fwd_streams()\n"); return -1; } if(dcb_config) dcb_test = 1; for (pi = 0; pi < nb_ports; pi++) { if (pid < nb_ports && pid != pi) continue; port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, RTE_PORT_HANDLING) == 0) { printf("Port %d is now not stopped\n", pi); continue; } if (port->need_reconfig > 0) { port->need_reconfig = 0; printf("Configuring Port %d (socket %u)\n", pi, port->socket_id); /* configure port */ diag = rte_eth_dev_configure(pi, nb_rxq, nb_txq, &(port->dev_conf)); if (diag != 0) { if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d\n", pi); /* try to reconfigure port next time */ port->need_reconfig = 1; return -1; } } if (port->need_reconfig_queues > 0) { port->need_reconfig_queues = 0; /* setup tx queues */ for (qi = 0; qi < nb_txq; qi++) { if ((numa_support) && (txring_numa[pi] != NUMA_NO_CONFIG)) diag = rte_eth_tx_queue_setup(pi, qi, nb_txd,txring_numa[pi], &(port->tx_conf)); else diag = rte_eth_tx_queue_setup(pi, qi, nb_txd,port->socket_id, &(port->tx_conf)); if (diag == 0) continue; /* Fail to setup tx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d tx queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } /* setup rx queues */ for (qi = 0; qi < nb_rxq; qi++) { if ((numa_support) && (rxring_numa[pi] != NUMA_NO_CONFIG)) { struct rte_mempool * mp = mbuf_pool_find(rxring_numa[pi]); if (mp == NULL) { printf("Failed to setup RX queue:" "No mempool allocation" "on the socket %d\n", rxring_numa[pi]); return -1; } diag = rte_eth_rx_queue_setup(pi, qi, nb_rxd,rxring_numa[pi], &(port->rx_conf),mp); } else diag = rte_eth_rx_queue_setup(pi, qi, nb_rxd,port->socket_id, &(port->rx_conf), mbuf_pool_find(port->socket_id)); if (diag == 0) continue; /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back " "to stopped\n", pi); printf("Fail to configure port %d rx queues\n", pi); /* try to reconfigure queues next time */ port->need_reconfig_queues = 1; return -1; } } /* start port */ if (rte_eth_dev_start(pi) < 0) { printf("Fail to start port %d\n", pi); /* Fail to setup rx queue, return */ if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set back to " "stopped\n", pi); continue; } if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) printf("Port %d can not be set into started\n", pi); rte_eth_macaddr_get(pi, &mac_addr); printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]); /* at least one port started, need checking link status */ need_check_link_status = 1; } if (need_check_link_status && !no_link_check) check_all_ports_link_status(nb_ports, RTE_PORT_ALL); else printf("Please stop the ports first\n"); printf("Done\n"); return 0; } void stop_port(portid_t pid) { portid_t pi; struct rte_port *port; int need_check_link_status = 0; if (test_done == 0) { printf("Please stop forwarding first\n"); return; } if (dcb_test) { dcb_test = 0; dcb_config = 0; } printf("Stopping ports...\n"); for (pi = 0; pi < nb_ports; pi++) { if (pid < nb_ports && pid != pi) continue; port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, RTE_PORT_HANDLING) == 0) continue; rte_eth_dev_stop(pi); if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) printf("Port %d can not be set into stopped\n", pi); need_check_link_status = 1; } if (need_check_link_status && !no_link_check) check_all_ports_link_status(nb_ports, RTE_PORT_ALL); printf("Done\n"); } void close_port(portid_t pid) { portid_t pi; struct rte_port *port; if (test_done == 0) { printf("Please stop forwarding first\n"); return; } printf("Closing ports...\n"); for (pi = 0; pi < nb_ports; pi++) { if (pid < nb_ports && pid != pi) continue; port = &ports[pi]; if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, RTE_PORT_HANDLING) == 0) { printf("Port %d is now not stopped\n", pi); continue; } rte_eth_dev_close(pi); if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_HANDLING, RTE_PORT_CLOSED) == 0) printf("Port %d can not be set into stopped\n", pi); } printf("Done\n"); } int all_ports_stopped(void) { portid_t pi; struct rte_port *port; for (pi = 0; pi < nb_ports; pi++) { port = &ports[pi]; if (port->port_status != RTE_PORT_STOPPED) return 0; } return 1; } int port_is_started(portid_t port_id) { if (port_id_is_invalid(port_id)) return -1; if (ports[port_id].port_status != RTE_PORT_STARTED) return 0; return 1; } void pmd_test_exit(void) { portid_t pt_id; for (pt_id = 0; pt_id < nb_ports; pt_id++) { printf("Stopping port %d...", pt_id); fflush(stdout); rte_eth_dev_close(pt_id); printf("done\n"); } printf("bye...\n"); } typedef void (*cmd_func_t)(void); struct pmd_test_command { const char *cmd_name; cmd_func_t cmd_func; }; #define PMD_TEST_CMD_NB (sizeof(pmd_test_menu) / sizeof(pmd_test_menu[0])) /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint8_t portid, count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("Checking link statuses...\n"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf("Port %d Link Up - speed %u " "Mbps - %s\n", (uint8_t)portid, (unsigned)link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", (uint8_t)portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == 0) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; } } } static int set_tx_queue_stats_mapping_registers(uint8_t port_id, struct rte_port *port) { uint16_t i; int diag; uint8_t mapping_found = 0; for (i = 0; i < nb_tx_queue_stats_mappings; i++) { if ((tx_queue_stats_mappings[i].port_id == port_id) && (tx_queue_stats_mappings[i].queue_id < nb_txq )) { diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id, tx_queue_stats_mappings[i].queue_id, tx_queue_stats_mappings[i].stats_counter_id); if (diag != 0) return diag; mapping_found = 1; } } if (mapping_found) port->tx_queue_stats_mapping_enabled = 1; return 0; } static int set_rx_queue_stats_mapping_registers(uint8_t port_id, struct rte_port *port) { uint16_t i; int diag; uint8_t mapping_found = 0; for (i = 0; i < nb_rx_queue_stats_mappings; i++) { if ((rx_queue_stats_mappings[i].port_id == port_id) && (rx_queue_stats_mappings[i].queue_id < nb_rxq )) { diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id, rx_queue_stats_mappings[i].queue_id, rx_queue_stats_mappings[i].stats_counter_id); if (diag != 0) return diag; mapping_found = 1; } } if (mapping_found) port->rx_queue_stats_mapping_enabled = 1; return 0; } static void map_port_queue_stats_mapping_registers(uint8_t pi, struct rte_port *port) { int diag = 0; diag = set_tx_queue_stats_mapping_registers(pi, port); if (diag != 0) { if (diag == -ENOTSUP) { port->tx_queue_stats_mapping_enabled = 0; printf("TX queue stats mapping not supported port id=%d\n", pi); } else rte_exit(EXIT_FAILURE, "set_tx_queue_stats_mapping_registers " "failed for port id=%d diag=%d\n", pi, diag); } diag = set_rx_queue_stats_mapping_registers(pi, port); if (diag != 0) { if (diag == -ENOTSUP) { port->rx_queue_stats_mapping_enabled = 0; printf("RX queue stats mapping not supported port id=%d\n", pi); } else rte_exit(EXIT_FAILURE, "set_rx_queue_stats_mapping_registers " "failed for port id=%d diag=%d\n", pi, diag); } } void init_port_config(void) { portid_t pid; struct rte_port *port; for (pid = 0; pid < nb_ports; pid++) { port = &ports[pid]; port->dev_conf.rxmode = rx_mode; port->dev_conf.fdir_conf = fdir_conf; if (nb_rxq > 1) { port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; port->dev_conf.rx_adv_conf.rss_conf.rss_hf = rss_hf; } else { port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; } /* In SR-IOV mode, RSS mode is not available */ if (port->dcb_flag == 0 && port->dev_info.max_vfs == 0) { if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_RSS; else port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; } port->rx_conf.rx_thresh = rx_thresh; port->rx_conf.rx_free_thresh = rx_free_thresh; port->rx_conf.rx_drop_en = rx_drop_en; port->tx_conf.tx_thresh = tx_thresh; port->tx_conf.tx_rs_thresh = tx_rs_thresh; port->tx_conf.tx_free_thresh = tx_free_thresh; port->tx_conf.txq_flags = txq_flags; rte_eth_macaddr_get(pid, &port->eth_addr); map_port_queue_stats_mapping_registers(pid, port); #ifdef RTE_NIC_BYPASS rte_eth_dev_bypass_init(pid); #endif } } const uint16_t vlan_tags[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }; static int get_eth_dcb_conf(struct rte_eth_conf *eth_conf, struct dcb_config *dcb_conf) { uint8_t i; /* * Builds up the correct configuration for dcb+vt based on the vlan tags array * given above, and the number of traffic classes available for use. */ if (dcb_conf->dcb_mode == DCB_VT_ENABLED) { struct rte_eth_vmdq_dcb_conf vmdq_rx_conf; struct rte_eth_vmdq_dcb_tx_conf vmdq_tx_conf; /* VMDQ+DCB RX and TX configrations */ vmdq_rx_conf.enable_default_pool = 0; vmdq_rx_conf.default_pool = 0; vmdq_rx_conf.nb_queue_pools = (dcb_conf->num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); vmdq_tx_conf.nb_queue_pools = (dcb_conf->num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); vmdq_rx_conf.nb_pool_maps = sizeof( vlan_tags )/sizeof( vlan_tags[ 0 ]); for (i = 0; i < vmdq_rx_conf.nb_pool_maps; i++) { vmdq_rx_conf.pool_map[i].vlan_id = vlan_tags[ i ]; vmdq_rx_conf.pool_map[i].pools = 1 << (i % vmdq_rx_conf.nb_queue_pools); } for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { vmdq_rx_conf.dcb_queue[i] = i; vmdq_tx_conf.dcb_queue[i] = i; } /*set DCB mode of RX and TX of multiple queues*/ eth_conf->rxmode.mq_mode = ETH_MQ_RX_VMDQ_DCB; eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; if (dcb_conf->pfc_en) eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT|ETH_DCB_PFC_SUPPORT; else eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &vmdq_rx_conf, sizeof(struct rte_eth_vmdq_dcb_conf))); (void)(rte_memcpy(ð_conf->tx_adv_conf.vmdq_dcb_tx_conf, &vmdq_tx_conf, sizeof(struct rte_eth_vmdq_dcb_tx_conf))); } else { struct rte_eth_dcb_rx_conf rx_conf; struct rte_eth_dcb_tx_conf tx_conf; /* queue mapping configuration of DCB RX and TX */ if (dcb_conf->num_tcs == ETH_4_TCS) dcb_q_mapping = DCB_4_TCS_Q_MAPPING; else dcb_q_mapping = DCB_8_TCS_Q_MAPPING; rx_conf.nb_tcs = dcb_conf->num_tcs; tx_conf.nb_tcs = dcb_conf->num_tcs; for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){ rx_conf.dcb_queue[i] = i; tx_conf.dcb_queue[i] = i; } eth_conf->rxmode.mq_mode = ETH_MQ_RX_DCB; eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; if (dcb_conf->pfc_en) eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT|ETH_DCB_PFC_SUPPORT; else eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; (void)(rte_memcpy(ð_conf->rx_adv_conf.dcb_rx_conf, &rx_conf, sizeof(struct rte_eth_dcb_rx_conf))); (void)(rte_memcpy(ð_conf->tx_adv_conf.dcb_tx_conf, &tx_conf, sizeof(struct rte_eth_dcb_tx_conf))); } return 0; } int init_port_dcb_config(portid_t pid,struct dcb_config *dcb_conf) { struct rte_eth_conf port_conf; struct rte_port *rte_port; int retval; uint16_t nb_vlan; uint16_t i; /* rxq and txq configuration in dcb mode */ nb_rxq = 128; nb_txq = 128; rx_free_thresh = 64; memset(&port_conf,0,sizeof(struct rte_eth_conf)); /* Enter DCB configuration status */ dcb_config = 1; nb_vlan = sizeof( vlan_tags )/sizeof( vlan_tags[ 0 ]); /*set configuration of DCB in vt mode and DCB in non-vt mode*/ retval = get_eth_dcb_conf(&port_conf, dcb_conf); if (retval < 0) return retval; rte_port = &ports[pid]; memcpy(&rte_port->dev_conf, &port_conf,sizeof(struct rte_eth_conf)); rte_port->rx_conf.rx_thresh = rx_thresh; rte_port->rx_conf.rx_free_thresh = rx_free_thresh; rte_port->tx_conf.tx_thresh = tx_thresh; rte_port->tx_conf.tx_rs_thresh = tx_rs_thresh; rte_port->tx_conf.tx_free_thresh = tx_free_thresh; /* VLAN filter */ rte_port->dev_conf.rxmode.hw_vlan_filter = 1; for (i = 0; i < nb_vlan; i++){ rx_vft_set(pid, vlan_tags[i], 1); } rte_eth_macaddr_get(pid, &rte_port->eth_addr); map_port_queue_stats_mapping_registers(pid, rte_port); rte_port->dcb_flag = 1; return 0; } #ifdef RTE_EXEC_ENV_BAREMETAL #define main _main #endif int main(int argc, char** argv) { int diag; uint8_t port_id; diag = rte_eal_init(argc, argv); if (diag < 0) rte_panic("Cannot init EAL\n"); nb_ports = (portid_t) rte_eth_dev_count(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No probed ethernet devices - " "check that " "CONFIG_RTE_LIBRTE_IGB_PMD=y and that " "CONFIG_RTE_LIBRTE_EM_PMD=y and that " "CONFIG_RTE_LIBRTE_IXGBE_PMD=y in your " "configuration file\n"); set_def_fwd_config(); if (nb_lcores == 0) rte_panic("Empty set of forwarding logical cores - check the " "core mask supplied in the command parameters\n"); argc -= diag; argv += diag; if (argc > 1) launch_args_parse(argc, argv); if (nb_rxq > nb_txq) printf("Warning: nb_rxq=%d enables RSS configuration, " "but nb_txq=%d will prevent to fully test it.\n", nb_rxq, nb_txq); init_config(); if (start_port(RTE_PORT_ALL) != 0) rte_exit(EXIT_FAILURE, "Start ports failed\n"); /* set all ports to promiscuous mode by default */ for (port_id = 0; port_id < nb_ports; port_id++) rte_eth_promiscuous_enable(port_id); #ifdef RTE_LIBRTE_CMDLINE if (interactive == 1) { if (auto_start) { printf("Start automatic packet forwarding\n"); start_packet_forwarding(0); } prompt(); } else #endif { char c; int rc; printf("No commandline core given, start packet forwarding\n"); start_packet_forwarding(0); printf("Press enter to exit\n"); rc = read(0, &c, 1); if (rc < 0) return 1; } return 0; }