/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2020 Mellanox Technologies, Ltd * * This file contain the application main file * This application provides the user the ability to test the * insertion rate for specific rte_flow rule under stress state ~4M rule/ * * Then it will also provide packet per second measurement after installing * all rules, the user may send traffic to test the PPS that match the rules * after all rules are installed, to check performance or functionality after * the stress. * * The flows insertion will go for all ports first, then it will print the * results, after that the application will go into forwarding packets mode * it will start receiving traffic if any and then forwarding it back and * gives packet per second measurement. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "flow_gen.h" #define MAX_ITERATIONS 100 #define DEFAULT_RULES_COUNT 4000000 #define DEFAULT_ITERATION 100000 struct rte_flow *flow; static uint8_t flow_group; static uint64_t flow_items; static uint64_t flow_actions; static uint64_t flow_attrs; static volatile bool force_quit; static bool dump_iterations; static bool delete_flag; static bool dump_socket_mem_flag; static bool enable_fwd; static struct rte_mempool *mbuf_mp; static uint32_t nb_lcores; static uint32_t flows_count; static uint32_t iterations_number; static uint32_t hairpinq; static uint32_t nb_lcores; #define MAX_PKT_BURST 32 #define LCORE_MODE_PKT 1 #define LCORE_MODE_STATS 2 #define MAX_STREAMS 64 #define MAX_LCORES 64 struct stream { int tx_port; int tx_queue; int rx_port; int rx_queue; }; struct lcore_info { int mode; int streams_nb; struct stream streams[MAX_STREAMS]; /* stats */ uint64_t tx_pkts; uint64_t tx_drops; uint64_t rx_pkts; struct rte_mbuf *pkts[MAX_PKT_BURST]; } __rte_cache_aligned; static struct lcore_info lcore_infos[MAX_LCORES]; static void usage(char *progname) { printf("\nusage: %s\n", progname); printf("\nControl configurations:\n"); printf(" --flows-count=N: to set the number of needed" " flows to insert, default is 4,000,000\n"); printf(" --dump-iterations: To print rates for each" " iteration\n"); printf(" --deletion-rate: Enable deletion rate" " calculations\n"); printf(" --dump-socket-mem: To dump all socket memory\n"); printf(" --enable-fwd: To enable packets forwarding" " after insertion\n"); printf("To set flow attributes:\n"); printf(" --ingress: set ingress attribute in flows\n"); printf(" --egress: set egress attribute in flows\n"); printf(" --transfer: set transfer attribute in flows\n"); printf(" --group=N: set group for all flows," " default is 0\n"); printf("To set flow items:\n"); printf(" --ether: add ether layer in flow items\n"); printf(" --vlan: add vlan layer in flow items\n"); printf(" --ipv4: add ipv4 layer in flow items\n"); printf(" --ipv6: add ipv6 layer in flow items\n"); printf(" --tcp: add tcp layer in flow items\n"); printf(" --udp: add udp layer in flow items\n"); printf(" --vxlan: add vxlan layer in flow items\n"); printf(" --vxlan-gpe: add vxlan-gpe layer in flow items\n"); printf(" --gre: add gre layer in flow items\n"); printf(" --geneve: add geneve layer in flow items\n"); printf(" --gtp: add gtp layer in flow items\n"); printf(" --meta: add meta layer in flow items\n"); printf(" --tag: add tag layer in flow items\n"); printf("To set flow actions:\n"); printf(" --port-id: add port-id action in flow actions\n"); printf(" --rss: add rss action in flow actions\n"); printf(" --queue: add queue action in flow actions\n"); printf(" --jump: add jump action in flow actions\n"); printf(" --mark: add mark action in flow actions\n"); printf(" --count: add count action in flow actions\n"); printf(" --set-meta: add set meta action in flow actions\n"); printf(" --set-tag: add set tag action in flow actions\n"); printf(" --drop: add drop action in flow actions\n"); printf(" --hairpin-queue=N: add hairpin-queue action in flow actions\n"); printf(" --hairpin-rss=N: add hairping-rss action in flow actions\n"); } static void args_parse(int argc, char **argv) { char **argvopt; int n, opt; int opt_idx; size_t i; static const struct option_dict { const char *str; const uint64_t mask; uint64_t *bitmap; } flow_options[] = { { .str = "ether", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH), .bitmap = &flow_items }, { .str = "ipv4", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4), .bitmap = &flow_items }, { .str = "ipv6", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6), .bitmap = &flow_items }, { .str = "vlan", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN), .bitmap = &flow_items }, { .str = "tcp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TCP), .bitmap = &flow_items }, { .str = "udp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP), .bitmap = &flow_items }, { .str = "vxlan", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN), .bitmap = &flow_items }, { .str = "vxlan-gpe", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE), .bitmap = &flow_items }, { .str = "gre", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE), .bitmap = &flow_items }, { .str = "geneve", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE), .bitmap = &flow_items }, { .str = "gtp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP), .bitmap = &flow_items }, { .str = "meta", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_META), .bitmap = &flow_items }, { .str = "tag", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TAG), .bitmap = &flow_items }, { .str = "ingress", .mask = INGRESS, .bitmap = &flow_attrs }, { .str = "egress", .mask = EGRESS, .bitmap = &flow_attrs }, { .str = "transfer", .mask = TRANSFER, .bitmap = &flow_attrs }, { .str = "port-id", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID), .bitmap = &flow_actions }, { .str = "rss", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS), .bitmap = &flow_actions }, { .str = "queue", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE), .bitmap = &flow_actions }, { .str = "jump", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP), .bitmap = &flow_actions }, { .str = "mark", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK), .bitmap = &flow_actions }, { .str = "count", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT), .bitmap = &flow_actions }, { .str = "set-meta", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META), .bitmap = &flow_actions }, { .str = "set-tag", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG), .bitmap = &flow_actions }, { .str = "drop", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP), .bitmap = &flow_actions } }; static const struct option lgopts[] = { /* Control */ { "help", 0, 0, 0 }, { "flows-count", 1, 0, 0 }, { "dump-iterations", 0, 0, 0 }, { "deletion-rate", 0, 0, 0 }, { "dump-socket-mem", 0, 0, 0 }, { "enable-fwd", 0, 0, 0 }, /* Attributes */ { "ingress", 0, 0, 0 }, { "egress", 0, 0, 0 }, { "transfer", 0, 0, 0 }, { "group", 1, 0, 0 }, /* Items */ { "ether", 0, 0, 0 }, { "vlan", 0, 0, 0 }, { "ipv4", 0, 0, 0 }, { "ipv6", 0, 0, 0 }, { "tcp", 0, 0, 0 }, { "udp", 0, 0, 0 }, { "vxlan", 0, 0, 0 }, { "vxlan-gpe", 0, 0, 0 }, { "gre", 0, 0, 0 }, { "geneve", 0, 0, 0 }, { "gtp", 0, 0, 0 }, { "meta", 0, 0, 0 }, { "tag", 0, 0, 0 }, /* Actions */ { "port-id", 0, 0, 0 }, { "rss", 0, 0, 0 }, { "queue", 0, 0, 0 }, { "jump", 0, 0, 0 }, { "mark", 0, 0, 0 }, { "count", 0, 0, 0 }, { "set-meta", 0, 0, 0 }, { "set-tag", 0, 0, 0 }, { "drop", 0, 0, 0 }, { "hairpin-queue", 1, 0, 0 }, { "hairpin-rss", 1, 0, 0 }, }; flow_items = 0; flow_actions = 0; flow_attrs = 0; hairpinq = 0; argvopt = argv; printf(":: Flow -> "); while ((opt = getopt_long(argc, argvopt, "", lgopts, &opt_idx)) != EOF) { switch (opt) { case 0: if (strcmp(lgopts[opt_idx].name, "help") == 0) { usage(argv[0]); rte_exit(EXIT_SUCCESS, "Displayed help\n"); } if (strcmp(lgopts[opt_idx].name, "group") == 0) { n = atoi(optarg); if (n >= 0) flow_group = n; else rte_exit(EXIT_SUCCESS, "flow group should be >= 0\n"); printf("group %d ", flow_group); } for (i = 0; i < RTE_DIM(flow_options); i++) if (strcmp(lgopts[opt_idx].name, flow_options[i].str) == 0) { *flow_options[i].bitmap |= flow_options[i].mask; printf("%s / ", flow_options[i].str); } if (strcmp(lgopts[opt_idx].name, "hairpin-rss") == 0) { n = atoi(optarg); if (n > 0) hairpinq = n; else rte_exit(EXIT_SUCCESS, "Hairpin queues should be > 0\n"); flow_actions |= HAIRPIN_RSS_ACTION; printf("hairpin-rss / "); } if (strcmp(lgopts[opt_idx].name, "hairpin-queue") == 0) { n = atoi(optarg); if (n > 0) hairpinq = n; else rte_exit(EXIT_SUCCESS, "Hairpin queues should be > 0\n"); flow_actions |= HAIRPIN_QUEUE_ACTION; printf("hairpin-queue / "); } /* Control */ if (strcmp(lgopts[opt_idx].name, "flows-count") == 0) { n = atoi(optarg); if (n > (int) iterations_number) flows_count = n; else { printf("\n\nflows_count should be > %d\n", iterations_number); rte_exit(EXIT_SUCCESS, " "); } } if (strcmp(lgopts[opt_idx].name, "dump-iterations") == 0) dump_iterations = true; if (strcmp(lgopts[opt_idx].name, "deletion-rate") == 0) delete_flag = true; if (strcmp(lgopts[opt_idx].name, "dump-socket-mem") == 0) dump_socket_mem_flag = true; if (strcmp(lgopts[opt_idx].name, "enable-fwd") == 0) enable_fwd = true; break; default: fprintf(stderr, "Invalid option: %s\n", argv[optind]); usage(argv[0]); rte_exit(EXIT_SUCCESS, "Invalid option\n"); break; } } printf("end_flow\n"); } /* Dump the socket memory statistics on console */ static size_t dump_socket_mem(FILE *f) { struct rte_malloc_socket_stats socket_stats; unsigned int i = 0; size_t total = 0; size_t alloc = 0; size_t free = 0; unsigned int n_alloc = 0; unsigned int n_free = 0; bool active_nodes = false; for (i = 0; i < RTE_MAX_NUMA_NODES; i++) { if (rte_malloc_get_socket_stats(i, &socket_stats) || !socket_stats.heap_totalsz_bytes) continue; active_nodes = true; total += socket_stats.heap_totalsz_bytes; alloc += socket_stats.heap_allocsz_bytes; free += socket_stats.heap_freesz_bytes; n_alloc += socket_stats.alloc_count; n_free += socket_stats.free_count; if (dump_socket_mem_flag) { fprintf(f, "::::::::::::::::::::::::::::::::::::::::"); fprintf(f, "\nSocket %u:\nsize(M) total: %.6lf\nalloc:" " %.6lf(%.3lf%%)\nfree: %.6lf" "\nmax: %.6lf" "\ncount alloc: %u\nfree: %u\n", i, socket_stats.heap_totalsz_bytes / 1.0e6, socket_stats.heap_allocsz_bytes / 1.0e6, (double)socket_stats.heap_allocsz_bytes * 100 / (double)socket_stats.heap_totalsz_bytes, socket_stats.heap_freesz_bytes / 1.0e6, socket_stats.greatest_free_size / 1.0e6, socket_stats.alloc_count, socket_stats.free_count); fprintf(f, "::::::::::::::::::::::::::::::::::::::::"); } } if (dump_socket_mem_flag && active_nodes) { fprintf(f, "\nTotal: size(M)\ntotal: %.6lf" "\nalloc: %.6lf(%.3lf%%)\nfree: %.6lf" "\ncount alloc: %u\nfree: %u\n", total / 1.0e6, alloc / 1.0e6, (double)alloc * 100 / (double)total, free / 1.0e6, n_alloc, n_free); fprintf(f, "::::::::::::::::::::::::::::::::::::::::\n"); } return alloc; } static void print_flow_error(struct rte_flow_error error) { printf("Flow can't be created %d message: %s\n", error.type, error.message ? error.message : "(no stated reason)"); } static inline void destroy_flows(int port_id, struct rte_flow **flow_list) { struct rte_flow_error error; clock_t start_iter, end_iter; double cpu_time_used = 0; double flows_rate; double cpu_time_per_iter[MAX_ITERATIONS]; double delta; uint32_t i; int iter_id; for (i = 0; i < MAX_ITERATIONS; i++) cpu_time_per_iter[i] = -1; if (iterations_number > flows_count) iterations_number = flows_count; /* Deletion Rate */ printf("Flows Deletion on port = %d\n", port_id); start_iter = clock(); for (i = 0; i < flows_count; i++) { if (flow_list[i] == 0) break; memset(&error, 0x33, sizeof(error)); if (rte_flow_destroy(port_id, flow_list[i], &error)) { print_flow_error(error); rte_exit(EXIT_FAILURE, "Error in deleting flow"); } if (i && !((i + 1) % iterations_number)) { /* Save the deletion rate of each iter */ end_iter = clock(); delta = (double) (end_iter - start_iter); iter_id = ((i + 1) / iterations_number) - 1; cpu_time_per_iter[iter_id] = delta / CLOCKS_PER_SEC; cpu_time_used += cpu_time_per_iter[iter_id]; start_iter = clock(); } } /* Deletion rate per iteration */ if (dump_iterations) for (i = 0; i < MAX_ITERATIONS; i++) { if (cpu_time_per_iter[i] == -1) continue; delta = (double)(iterations_number / cpu_time_per_iter[i]); flows_rate = delta / 1000; printf(":: Iteration #%d: %d flows " "in %f sec[ Rate = %f K/Sec ]\n", i, iterations_number, cpu_time_per_iter[i], flows_rate); } /* Deletion rate for all flows */ flows_rate = ((double) (flows_count / cpu_time_used) / 1000); printf("\n:: Total flow deletion rate -> %f K/Sec\n", flows_rate); printf(":: The time for deleting %d in flows %f seconds\n", flows_count, cpu_time_used); } static inline void flows_handler(void) { struct rte_flow **flow_list; struct rte_flow_error error; clock_t start_iter, end_iter; double cpu_time_used; double flows_rate; double cpu_time_per_iter[MAX_ITERATIONS]; double delta; uint16_t nr_ports; uint32_t i; int port_id; int iter_id; uint32_t flow_index; nr_ports = rte_eth_dev_count_avail(); for (i = 0; i < MAX_ITERATIONS; i++) cpu_time_per_iter[i] = -1; if (iterations_number > flows_count) iterations_number = flows_count; printf(":: Flows Count per port: %d\n", flows_count); flow_list = rte_zmalloc("flow_list", (sizeof(struct rte_flow *) * flows_count) + 1, 0); if (flow_list == NULL) rte_exit(EXIT_FAILURE, "No Memory available!"); for (port_id = 0; port_id < nr_ports; port_id++) { cpu_time_used = 0; flow_index = 0; if (flow_group > 0) { /* * Create global rule to jump into flow_group, * this way the app will avoid the default rules. * * Global rule: * group 0 eth / end actions jump group * */ flow = generate_flow(port_id, 0, flow_attrs, FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH), FLOW_ITEM_MASK(RTE_FLOW_ACTION_TYPE_JUMP), flow_group, 0, 0, &error); if (flow == NULL) { print_flow_error(error); rte_exit(EXIT_FAILURE, "error in creating flow"); } flow_list[flow_index++] = flow; } /* Insertion Rate */ printf("Flows insertion on port = %d\n", port_id); start_iter = clock(); for (i = 0; i < flows_count; i++) { flow = generate_flow(port_id, flow_group, flow_attrs, flow_items, flow_actions, JUMP_ACTION_TABLE, i, hairpinq, &error); if (force_quit) i = flows_count; if (!flow) { print_flow_error(error); rte_exit(EXIT_FAILURE, "error in creating flow"); } flow_list[flow_index++] = flow; if (i && !((i + 1) % iterations_number)) { /* Save the insertion rate of each iter */ end_iter = clock(); delta = (double) (end_iter - start_iter); iter_id = ((i + 1) / iterations_number) - 1; cpu_time_per_iter[iter_id] = delta / CLOCKS_PER_SEC; cpu_time_used += cpu_time_per_iter[iter_id]; start_iter = clock(); } } /* Iteration rate per iteration */ if (dump_iterations) for (i = 0; i < MAX_ITERATIONS; i++) { if (cpu_time_per_iter[i] == -1) continue; delta = (double)(iterations_number / cpu_time_per_iter[i]); flows_rate = delta / 1000; printf(":: Iteration #%d: %d flows " "in %f sec[ Rate = %f K/Sec ]\n", i, iterations_number, cpu_time_per_iter[i], flows_rate); } /* Insertion rate for all flows */ flows_rate = ((double) (flows_count / cpu_time_used) / 1000); printf("\n:: Total flow insertion rate -> %f K/Sec\n", flows_rate); printf(":: The time for creating %d in flows %f seconds\n", flows_count, cpu_time_used); if (delete_flag) destroy_flows(port_id, flow_list); } } static void signal_handler(int signum) { if (signum == SIGINT || signum == SIGTERM) { printf("\n\nSignal %d received, preparing to exit...\n", signum); printf("Error: Stats are wrong due to sudden signal!\n\n"); force_quit = true; } } static inline uint16_t do_rx(struct lcore_info *li, uint16_t rx_port, uint16_t rx_queue) { uint16_t cnt = 0; cnt = rte_eth_rx_burst(rx_port, rx_queue, li->pkts, MAX_PKT_BURST); li->rx_pkts += cnt; return cnt; } static inline void do_tx(struct lcore_info *li, uint16_t cnt, uint16_t tx_port, uint16_t tx_queue) { uint16_t nr_tx = 0; uint16_t i; nr_tx = rte_eth_tx_burst(tx_port, tx_queue, li->pkts, cnt); li->tx_pkts += nr_tx; li->tx_drops += cnt - nr_tx; for (i = nr_tx; i < cnt; i++) rte_pktmbuf_free(li->pkts[i]); } /* * Method to convert numbers into pretty numbers that easy * to read. The design here is to add comma after each three * digits and set all of this inside buffer. * * For example if n = 1799321, the output will be * 1,799,321 after this method which is easier to read. */ static char * pretty_number(uint64_t n, char *buf) { char p[6][4]; int i = 0; int off = 0; while (n > 1000) { sprintf(p[i], "%03d", (int)(n % 1000)); n /= 1000; i += 1; } sprintf(p[i++], "%d", (int)n); while (i--) off += sprintf(buf + off, "%s,", p[i]); buf[strlen(buf) - 1] = '\0'; return buf; } static void packet_per_second_stats(void) { struct lcore_info *old; struct lcore_info *li, *oli; int nr_lines = 0; int i; old = rte_zmalloc("old", sizeof(struct lcore_info) * MAX_LCORES, 0); if (old == NULL) rte_exit(EXIT_FAILURE, "No Memory available!"); memcpy(old, lcore_infos, sizeof(struct lcore_info) * MAX_LCORES); while (!force_quit) { uint64_t total_tx_pkts = 0; uint64_t total_rx_pkts = 0; uint64_t total_tx_drops = 0; uint64_t tx_delta, rx_delta, drops_delta; char buf[3][32]; int nr_valid_core = 0; sleep(1); if (nr_lines) { char go_up_nr_lines[16]; sprintf(go_up_nr_lines, "%c[%dA\r", 27, nr_lines); printf("%s\r", go_up_nr_lines); } printf("\n%6s %16s %16s %16s\n", "core", "tx", "tx drops", "rx"); printf("%6s %16s %16s %16s\n", "------", "----------------", "----------------", "----------------"); nr_lines = 3; for (i = 0; i < MAX_LCORES; i++) { li = &lcore_infos[i]; oli = &old[i]; if (li->mode != LCORE_MODE_PKT) continue; tx_delta = li->tx_pkts - oli->tx_pkts; rx_delta = li->rx_pkts - oli->rx_pkts; drops_delta = li->tx_drops - oli->tx_drops; printf("%6d %16s %16s %16s\n", i, pretty_number(tx_delta, buf[0]), pretty_number(drops_delta, buf[1]), pretty_number(rx_delta, buf[2])); total_tx_pkts += tx_delta; total_rx_pkts += rx_delta; total_tx_drops += drops_delta; nr_valid_core++; nr_lines += 1; } if (nr_valid_core > 1) { printf("%6s %16s %16s %16s\n", "total", pretty_number(total_tx_pkts, buf[0]), pretty_number(total_tx_drops, buf[1]), pretty_number(total_rx_pkts, buf[2])); nr_lines += 1; } memcpy(old, lcore_infos, sizeof(struct lcore_info) * MAX_LCORES); } } static int start_forwarding(void *data __rte_unused) { int lcore = rte_lcore_id(); int stream_id; uint16_t cnt; struct lcore_info *li = &lcore_infos[lcore]; if (!li->mode) return 0; if (li->mode == LCORE_MODE_STATS) { printf(":: started stats on lcore %u\n", lcore); packet_per_second_stats(); return 0; } while (!force_quit) for (stream_id = 0; stream_id < MAX_STREAMS; stream_id++) { if (li->streams[stream_id].rx_port == -1) continue; cnt = do_rx(li, li->streams[stream_id].rx_port, li->streams[stream_id].rx_queue); if (cnt) do_tx(li, cnt, li->streams[stream_id].tx_port, li->streams[stream_id].tx_queue); } return 0; } static void init_lcore_info(void) { int i, j; unsigned int lcore; uint16_t nr_port; uint16_t queue; int port; int stream_id = 0; int streams_per_core; int unassigned_streams; int nb_fwd_streams; nr_port = rte_eth_dev_count_avail(); /* First logical core is reserved for stats printing */ lcore = rte_get_next_lcore(-1, 0, 0); lcore_infos[lcore].mode = LCORE_MODE_STATS; /* * Initialize all cores * All cores at first must have -1 value in all streams * This means that this stream is not used, or not set * yet. */ for (i = 0; i < MAX_LCORES; i++) for (j = 0; j < MAX_STREAMS; j++) { lcore_infos[i].streams[j].tx_port = -1; lcore_infos[i].streams[j].rx_port = -1; lcore_infos[i].streams[j].tx_queue = -1; lcore_infos[i].streams[j].rx_queue = -1; lcore_infos[i].streams_nb = 0; } /* * Calculate the total streams count. * Also distribute those streams count between the available * logical cores except first core, since it's reserved for * stats prints. */ nb_fwd_streams = nr_port * RXQ_NUM; if ((int)(nb_lcores - 1) >= nb_fwd_streams) for (i = 0; i < (int)(nb_lcores - 1); i++) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].streams_nb = 1; } else { streams_per_core = nb_fwd_streams / (nb_lcores - 1); unassigned_streams = nb_fwd_streams % (nb_lcores - 1); for (i = 0; i < (int)(nb_lcores - 1); i++) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].streams_nb = streams_per_core; if (unassigned_streams) { lcore_infos[lcore].streams_nb++; unassigned_streams--; } } } /* * Set the streams for the cores according to each logical * core stream count. * The streams is built on the design of what received should * forward as well, this means that if you received packets on * port 0 queue 0 then the same queue should forward the * packets, using the same logical core. */ lcore = rte_get_next_lcore(-1, 0, 0); for (port = 0; port < nr_port; port++) { /* Create FWD stream */ for (queue = 0; queue < RXQ_NUM; queue++) { if (!lcore_infos[lcore].streams_nb || !(stream_id % lcore_infos[lcore].streams_nb)) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].mode = LCORE_MODE_PKT; stream_id = 0; } lcore_infos[lcore].streams[stream_id].rx_queue = queue; lcore_infos[lcore].streams[stream_id].tx_queue = queue; lcore_infos[lcore].streams[stream_id].rx_port = port; lcore_infos[lcore].streams[stream_id].tx_port = port; stream_id++; } } /* Print all streams */ printf(":: Stream -> core id[N]: (rx_port, rx_queue)->(tx_port, tx_queue)\n"); for (i = 0; i < MAX_LCORES; i++) for (j = 0; j < MAX_STREAMS; j++) { /* No streams for this core */ if (lcore_infos[i].streams[j].tx_port == -1) break; printf("Stream -> core id[%d]: (%d,%d)->(%d,%d)\n", i, lcore_infos[i].streams[j].rx_port, lcore_infos[i].streams[j].rx_queue, lcore_infos[i].streams[j].tx_port, lcore_infos[i].streams[j].tx_queue); } } static void init_port(void) { int ret; uint16_t std_queue; uint16_t hairpin_q; uint16_t port_id; uint16_t nr_ports; uint16_t nr_queues; struct rte_eth_hairpin_conf hairpin_conf = { .peer_count = 1, }; struct rte_eth_conf port_conf = { .rx_adv_conf = { .rss_conf.rss_hf = GET_RSS_HF(), } }; struct rte_eth_txconf txq_conf; struct rte_eth_rxconf rxq_conf; struct rte_eth_dev_info dev_info; nr_queues = RXQ_NUM; if (hairpinq != 0) nr_queues = RXQ_NUM + hairpinq; nr_ports = rte_eth_dev_count_avail(); if (nr_ports == 0) rte_exit(EXIT_FAILURE, "Error: no port detected\n"); mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool", TOTAL_MBUF_NUM, MBUF_CACHE_SIZE, 0, MBUF_SIZE, rte_socket_id()); if (mbuf_mp == NULL) rte_exit(EXIT_FAILURE, "Error: can't init mbuf pool\n"); for (port_id = 0; port_id < nr_ports; port_id++) { ret = rte_eth_dev_info_get(port_id, &dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "Error during getting device" " (port %u) info: %s\n", port_id, strerror(-ret)); port_conf.txmode.offloads &= dev_info.tx_offload_capa; port_conf.rxmode.offloads &= dev_info.rx_offload_capa; printf(":: initializing port: %d\n", port_id); ret = rte_eth_dev_configure(port_id, nr_queues, nr_queues, &port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, ":: cannot configure device: err=%d, port=%u\n", ret, port_id); rxq_conf = dev_info.default_rxconf; for (std_queue = 0; std_queue < RXQ_NUM; std_queue++) { ret = rte_eth_rx_queue_setup(port_id, std_queue, NR_RXD, rte_eth_dev_socket_id(port_id), &rxq_conf, mbuf_mp); if (ret < 0) rte_exit(EXIT_FAILURE, ":: Rx queue setup failed: err=%d, port=%u\n", ret, port_id); } txq_conf = dev_info.default_txconf; for (std_queue = 0; std_queue < TXQ_NUM; std_queue++) { ret = rte_eth_tx_queue_setup(port_id, std_queue, NR_TXD, rte_eth_dev_socket_id(port_id), &txq_conf); if (ret < 0) rte_exit(EXIT_FAILURE, ":: Tx queue setup failed: err=%d, port=%u\n", ret, port_id); } /* Catch all packets from traffic generator. */ ret = rte_eth_promiscuous_enable(port_id); if (ret != 0) rte_exit(EXIT_FAILURE, ":: promiscuous mode enable failed: err=%s, port=%u\n", rte_strerror(-ret), port_id); if (hairpinq != 0) { for (hairpin_q = RXQ_NUM, std_queue = 0; std_queue < nr_queues; hairpin_q++, std_queue++) { hairpin_conf.peers[0].port = port_id; hairpin_conf.peers[0].queue = std_queue + TXQ_NUM; ret = rte_eth_rx_hairpin_queue_setup( port_id, hairpin_q, NR_RXD, &hairpin_conf); if (ret != 0) rte_exit(EXIT_FAILURE, ":: Hairpin rx queue setup failed: err=%d, port=%u\n", ret, port_id); } for (hairpin_q = TXQ_NUM, std_queue = 0; std_queue < nr_queues; hairpin_q++, std_queue++) { hairpin_conf.peers[0].port = port_id; hairpin_conf.peers[0].queue = std_queue + RXQ_NUM; ret = rte_eth_tx_hairpin_queue_setup( port_id, hairpin_q, NR_TXD, &hairpin_conf); if (ret != 0) rte_exit(EXIT_FAILURE, ":: Hairpin tx queue setup failed: err=%d, port=%u\n", ret, port_id); } } ret = rte_eth_dev_start(port_id); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, port_id); printf(":: initializing port: %d done\n", port_id); } } int main(int argc, char **argv) { int ret; uint16_t port; struct rte_flow_error error; int64_t alloc, last_alloc; ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "EAL init failed\n"); force_quit = false; dump_iterations = false; flows_count = DEFAULT_RULES_COUNT; iterations_number = DEFAULT_ITERATION; delete_flag = false; dump_socket_mem_flag = false; flow_group = 0; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); argc -= ret; argv += ret; if (argc > 1) args_parse(argc, argv); init_port(); nb_lcores = rte_lcore_count(); if (nb_lcores <= 1) rte_exit(EXIT_FAILURE, "This app needs at least two cores\n"); last_alloc = (int64_t)dump_socket_mem(stdout); flows_handler(); alloc = (int64_t)dump_socket_mem(stdout); if (last_alloc) fprintf(stdout, ":: Memory allocation change(M): %.6lf\n", (alloc - last_alloc) / 1.0e6); if (enable_fwd) { init_lcore_info(); rte_eal_mp_remote_launch(start_forwarding, NULL, CALL_MASTER); } RTE_ETH_FOREACH_DEV(port) { rte_flow_flush(port, &error); rte_eth_dev_stop(port); rte_eth_dev_close(port); } return 0; }