/*- * BSD LICENSE * * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. * Copyright(c) 2014 6WIND S.A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535 #define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN #define RTE_ETH_PCAP_PROMISC 1 #define RTE_ETH_PCAP_TIMEOUT -1 #define ETH_PCAP_RX_PCAP_ARG "rx_pcap" #define ETH_PCAP_TX_PCAP_ARG "tx_pcap" #define ETH_PCAP_RX_IFACE_ARG "rx_iface" #define ETH_PCAP_TX_IFACE_ARG "tx_iface" #define ETH_PCAP_IFACE_ARG "iface" #define ETH_PCAP_ARG_MAXLEN 64 #define RTE_PMD_PCAP_MAX_QUEUES 16 static char errbuf[PCAP_ERRBUF_SIZE]; static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN]; static struct timeval start_time; static uint64_t start_cycles; static uint64_t hz; struct queue_stat { volatile unsigned long pkts; volatile unsigned long bytes; volatile unsigned long err_pkts; }; struct pcap_rx_queue { pcap_t *pcap; uint8_t in_port; struct rte_mempool *mb_pool; struct queue_stat rx_stat; char name[PATH_MAX]; char type[ETH_PCAP_ARG_MAXLEN]; }; struct pcap_tx_queue { pcap_dumper_t *dumper; pcap_t *pcap; struct queue_stat tx_stat; char name[PATH_MAX]; char type[ETH_PCAP_ARG_MAXLEN]; }; struct pmd_internals { struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES]; struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES]; int if_index; int single_iface; }; struct pmd_devargs { unsigned num_of_queue; struct devargs_queue { pcap_dumper_t *dumper; pcap_t *pcap; const char *name; const char *type; } queue[RTE_PMD_PCAP_MAX_QUEUES]; }; static const char *valid_arguments[] = { ETH_PCAP_RX_PCAP_ARG, ETH_PCAP_TX_PCAP_ARG, ETH_PCAP_RX_IFACE_ARG, ETH_PCAP_TX_IFACE_ARG, ETH_PCAP_IFACE_ARG, NULL }; static int open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper); static int open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap); static int open_single_iface(const char *iface, pcap_t **pcap); static struct ether_addr eth_addr = { .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 } }; static const char *drivername = "Pcap PMD"; static struct rte_eth_link pmd_link = { .link_speed = ETH_SPEED_NUM_10G, .link_duplex = ETH_LINK_FULL_DUPLEX, .link_status = ETH_LINK_DOWN, .link_autoneg = ETH_LINK_SPEED_FIXED, }; static int eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf, const u_char *data, uint16_t data_len) { struct rte_mbuf *m = mbuf; /* Copy the first segment. */ uint16_t len = rte_pktmbuf_tailroom(mbuf); rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len); data_len -= len; data += len; while (data_len > 0) { /* Allocate next mbuf and point to that. */ m->next = rte_pktmbuf_alloc(mb_pool); if (unlikely(!m->next)) return -1; m = m->next; /* Headroom is not needed in chained mbufs. */ rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m)); m->pkt_len = 0; m->data_len = 0; /* Copy next segment. */ len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len); rte_memcpy(rte_pktmbuf_append(m, len), data, len); mbuf->nb_segs++; data_len -= len; data += len; } return mbuf->nb_segs; } /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */ static void eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf) { uint16_t data_len = 0; while (mbuf) { rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *), mbuf->data_len); data_len += mbuf->data_len; mbuf = mbuf->next; } } static uint16_t eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { unsigned i; struct pcap_pkthdr header; const u_char *packet; struct rte_mbuf *mbuf; struct pcap_rx_queue *pcap_q = queue; uint16_t num_rx = 0; uint16_t buf_size; uint32_t rx_bytes = 0; if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0)) return 0; /* Reads the given number of packets from the pcap file one by one * and copies the packet data into a newly allocated mbuf to return. */ for (i = 0; i < nb_pkts; i++) { /* Get the next PCAP packet */ packet = pcap_next(pcap_q->pcap, &header); if (unlikely(packet == NULL)) break; else mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool); if (unlikely(mbuf == NULL)) break; /* Now get the space available for data in the mbuf */ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(pcap_q->mb_pool) - RTE_PKTMBUF_HEADROOM); if (header.caplen <= buf_size) { /* pcap packet will fit in the mbuf, go ahead and copy */ rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet, header.caplen); mbuf->data_len = (uint16_t)header.caplen; } else { /* Try read jumbo frame into multi mbufs. */ if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool, mbuf, packet, header.caplen) == -1)) break; } mbuf->pkt_len = (uint16_t)header.caplen; mbuf->port = pcap_q->in_port; bufs[num_rx] = mbuf; num_rx++; rx_bytes += header.caplen; } pcap_q->rx_stat.pkts += num_rx; pcap_q->rx_stat.bytes += rx_bytes; return num_rx; } static inline void calculate_timestamp(struct timeval *ts) { uint64_t cycles; struct timeval cur_time; cycles = rte_get_timer_cycles() - start_cycles; cur_time.tv_sec = cycles / hz; cur_time.tv_usec = (cycles % hz) * 10e6 / hz; timeradd(&start_time, &cur_time, ts); } /* * Callback to handle writing packets to a pcap file. */ static uint16_t eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { unsigned i; struct rte_mbuf *mbuf; struct pcap_tx_queue *dumper_q = queue; uint16_t num_tx = 0; uint32_t tx_bytes = 0; struct pcap_pkthdr header; if (dumper_q->dumper == NULL || nb_pkts == 0) return 0; /* writes the nb_pkts packets to the previously opened pcap file dumper */ for (i = 0; i < nb_pkts; i++) { mbuf = bufs[i]; calculate_timestamp(&header.ts); header.len = mbuf->pkt_len; header.caplen = header.len; if (likely(mbuf->nb_segs == 1)) { pcap_dump((u_char *)dumper_q->dumper, &header, rte_pktmbuf_mtod(mbuf, void*)); } else { if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) { eth_pcap_gather_data(tx_pcap_data, mbuf); pcap_dump((u_char *)dumper_q->dumper, &header, tx_pcap_data); } else { RTE_LOG(ERR, PMD, "Dropping PCAP packet. " "Size (%d) > max jumbo size (%d).\n", mbuf->pkt_len, ETHER_MAX_JUMBO_FRAME_LEN); rte_pktmbuf_free(mbuf); break; } } rte_pktmbuf_free(mbuf); num_tx++; tx_bytes += mbuf->pkt_len; } /* * Since there's no place to hook a callback when the forwarding * process stops and to make sure the pcap file is actually written, * we flush the pcap dumper within each burst. */ pcap_dump_flush(dumper_q->dumper); dumper_q->tx_stat.pkts += num_tx; dumper_q->tx_stat.bytes += tx_bytes; dumper_q->tx_stat.err_pkts += nb_pkts - num_tx; return num_tx; } /* * Callback to handle sending packets through a real NIC. */ static uint16_t eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { unsigned i; int ret; struct rte_mbuf *mbuf; struct pcap_tx_queue *tx_queue = queue; uint16_t num_tx = 0; uint32_t tx_bytes = 0; if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL)) return 0; for (i = 0; i < nb_pkts; i++) { mbuf = bufs[i]; if (likely(mbuf->nb_segs == 1)) { ret = pcap_sendpacket(tx_queue->pcap, rte_pktmbuf_mtod(mbuf, u_char *), mbuf->pkt_len); } else { if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) { eth_pcap_gather_data(tx_pcap_data, mbuf); ret = pcap_sendpacket(tx_queue->pcap, tx_pcap_data, mbuf->pkt_len); } else { RTE_LOG(ERR, PMD, "Dropping PCAP packet. " "Size (%d) > max jumbo size (%d).\n", mbuf->pkt_len, ETHER_MAX_JUMBO_FRAME_LEN); rte_pktmbuf_free(mbuf); break; } } if (unlikely(ret != 0)) break; num_tx++; tx_bytes += mbuf->pkt_len; rte_pktmbuf_free(mbuf); } tx_queue->tx_stat.pkts += num_tx; tx_queue->tx_stat.bytes += tx_bytes; tx_queue->tx_stat.err_pkts += nb_pkts - num_tx; return num_tx; } static int eth_dev_start(struct rte_eth_dev *dev) { unsigned i; struct pmd_internals *internals = dev->data->dev_private; struct pcap_tx_queue *tx; struct pcap_rx_queue *rx; /* Special iface case. Single pcap is open and shared between tx/rx. */ if (internals->single_iface) { tx = &internals->tx_queue[0]; rx = &internals->rx_queue[0]; if (!tx->pcap && strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) { if (open_single_iface(tx->name, &tx->pcap) < 0) return -1; rx->pcap = tx->pcap; } goto status_up; } /* If not open already, open tx pcaps/dumpers */ for (i = 0; i < dev->data->nb_tx_queues; i++) { tx = &internals->tx_queue[i]; if (!tx->dumper && strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) { if (open_single_tx_pcap(tx->name, &tx->dumper) < 0) return -1; } else if (!tx->pcap && strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) { if (open_single_iface(tx->name, &tx->pcap) < 0) return -1; } } /* If not open already, open rx pcaps */ for (i = 0; i < dev->data->nb_rx_queues; i++) { rx = &internals->rx_queue[i]; if (rx->pcap != NULL) continue; if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) { if (open_single_rx_pcap(rx->name, &rx->pcap) < 0) return -1; } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) { if (open_single_iface(rx->name, &rx->pcap) < 0) return -1; } } status_up: dev->data->dev_link.link_status = ETH_LINK_UP; return 0; } /* * This function gets called when the current port gets stopped. * Is the only place for us to close all the tx streams dumpers. * If not called the dumpers will be flushed within each tx burst. */ static void eth_dev_stop(struct rte_eth_dev *dev) { unsigned i; struct pmd_internals *internals = dev->data->dev_private; struct pcap_tx_queue *tx; struct pcap_rx_queue *rx; /* Special iface case. Single pcap is open and shared between tx/rx. */ if (internals->single_iface) { tx = &internals->tx_queue[0]; rx = &internals->rx_queue[0]; pcap_close(tx->pcap); tx->pcap = NULL; rx->pcap = NULL; goto status_down; } for (i = 0; i < dev->data->nb_tx_queues; i++) { tx = &internals->tx_queue[i]; if (tx->dumper != NULL) { pcap_dump_close(tx->dumper); tx->dumper = NULL; } if (tx->pcap != NULL) { pcap_close(tx->pcap); tx->pcap = NULL; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rx = &internals->rx_queue[i]; if (rx->pcap != NULL) { pcap_close(rx->pcap); rx->pcap = NULL; } } status_down: dev->data->dev_link.link_status = ETH_LINK_DOWN; } static int eth_dev_configure(struct rte_eth_dev *dev __rte_unused) { return 0; } static void eth_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct pmd_internals *internals = dev->data->dev_private; dev_info->driver_name = drivername; dev_info->if_index = internals->if_index; dev_info->max_mac_addrs = 1; dev_info->max_rx_pktlen = (uint32_t) -1; dev_info->max_rx_queues = dev->data->nb_rx_queues; dev_info->max_tx_queues = dev->data->nb_tx_queues; dev_info->min_rx_bufsize = 0; dev_info->pci_dev = NULL; } static void eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { unsigned i; unsigned long rx_packets_total = 0, rx_bytes_total = 0; unsigned long tx_packets_total = 0, tx_bytes_total = 0; unsigned long tx_packets_err_total = 0; const struct pmd_internals *internal = dev->data->dev_private; for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < dev->data->nb_rx_queues; i++) { stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts; stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes; rx_packets_total += stats->q_ipackets[i]; rx_bytes_total += stats->q_ibytes[i]; } for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < dev->data->nb_tx_queues; i++) { stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts; stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes; stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts; tx_packets_total += stats->q_opackets[i]; tx_bytes_total += stats->q_obytes[i]; tx_packets_err_total += stats->q_errors[i]; } stats->ipackets = rx_packets_total; stats->ibytes = rx_bytes_total; stats->opackets = tx_packets_total; stats->obytes = tx_bytes_total; stats->oerrors = tx_packets_err_total; } static void eth_stats_reset(struct rte_eth_dev *dev) { unsigned i; struct pmd_internals *internal = dev->data->dev_private; for (i = 0; i < dev->data->nb_rx_queues; i++) { internal->rx_queue[i].rx_stat.pkts = 0; internal->rx_queue[i].rx_stat.bytes = 0; } for (i = 0; i < dev->data->nb_tx_queues; i++) { internal->tx_queue[i].tx_stat.pkts = 0; internal->tx_queue[i].tx_stat.bytes = 0; internal->tx_queue[i].tx_stat.err_pkts = 0; } } static void eth_dev_close(struct rte_eth_dev *dev __rte_unused) { } static void eth_queue_release(void *q __rte_unused) { } static int eth_link_update(struct rte_eth_dev *dev __rte_unused, int wait_to_complete __rte_unused) { return 0; } static int eth_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc __rte_unused, unsigned int socket_id __rte_unused, const struct rte_eth_rxconf *rx_conf __rte_unused, struct rte_mempool *mb_pool) { struct pmd_internals *internals = dev->data->dev_private; struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id]; pcap_q->mb_pool = mb_pool; dev->data->rx_queues[rx_queue_id] = pcap_q; pcap_q->in_port = dev->data->port_id; return 0; } static int eth_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc __rte_unused, unsigned int socket_id __rte_unused, const struct rte_eth_txconf *tx_conf __rte_unused) { struct pmd_internals *internals = dev->data->dev_private; dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id]; return 0; } static const struct eth_dev_ops ops = { .dev_start = eth_dev_start, .dev_stop = eth_dev_stop, .dev_close = eth_dev_close, .dev_configure = eth_dev_configure, .dev_infos_get = eth_dev_info, .rx_queue_setup = eth_rx_queue_setup, .tx_queue_setup = eth_tx_queue_setup, .rx_queue_release = eth_queue_release, .tx_queue_release = eth_queue_release, .link_update = eth_link_update, .stats_get = eth_stats_get, .stats_reset = eth_stats_reset, }; /* * Function handler that opens the pcap file for reading a stores a * reference of it for use it later on. */ static int open_rx_pcap(const char *key, const char *value, void *extra_args) { unsigned i; const char *pcap_filename = value; struct pmd_devargs *rx = extra_args; pcap_t *pcap = NULL; for (i = 0; i < rx->num_of_queue; i++) { if (open_single_rx_pcap(pcap_filename, &pcap) < 0) return -1; rx->queue[i].pcap = pcap; rx->queue[i].name = pcap_filename; rx->queue[i].type = key; } return 0; } static int open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap) { if ((*pcap = pcap_open_offline(pcap_filename, errbuf)) == NULL) { RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename, errbuf); return -1; } return 0; } /* * Opens a pcap file for writing and stores a reference to it * for use it later on. */ static int open_tx_pcap(const char *key, const char *value, void *extra_args) { unsigned i; const char *pcap_filename = value; struct pmd_devargs *dumpers = extra_args; pcap_dumper_t *dumper; for (i = 0; i < dumpers->num_of_queue; i++) { if (open_single_tx_pcap(pcap_filename, &dumper) < 0) return -1; dumpers->queue[i].dumper = dumper; dumpers->queue[i].name = pcap_filename; dumpers->queue[i].type = key; } return 0; } static int open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper) { pcap_t *tx_pcap; /* * We need to create a dummy empty pcap_t to use it * with pcap_dump_open(). We create big enough an Ethernet * pcap holder. */ if ((tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN)) == NULL) { RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n"); return -1; } /* The dumper is created using the previous pcap_t reference */ if ((*dumper = pcap_dump_open(tx_pcap, pcap_filename)) == NULL) { RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n", pcap_filename); return -1; } return 0; } /* * pcap_open_live wrapper function */ static inline int open_iface_live(const char *iface, pcap_t **pcap) { *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN, RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf); if (*pcap == NULL) { RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf); return -1; } return 0; } /* * Opens an interface for reading and writing */ static inline int open_rx_tx_iface(const char *key, const char *value, void *extra_args) { const char *iface = value; struct pmd_devargs *tx = extra_args; pcap_t *pcap = NULL; if (open_single_iface(iface, &pcap) < 0) return -1; tx->queue[0].pcap = pcap; tx->queue[0].name = iface; tx->queue[0].type = key; return 0; } /* * Opens a NIC for reading packets from it */ static inline int open_rx_iface(const char *key, const char *value, void *extra_args) { unsigned i; const char *iface = value; struct pmd_devargs *rx = extra_args; pcap_t *pcap = NULL; for (i = 0; i < rx->num_of_queue; i++) { if (open_single_iface(iface, &pcap) < 0) return -1; rx->queue[i].pcap = pcap; rx->queue[i].name = iface; rx->queue[i].type = key; } return 0; } /* * Opens a NIC for writing packets to it */ static int open_tx_iface(const char *key, const char *value, void *extra_args) { unsigned i; const char *iface = value; struct pmd_devargs *tx = extra_args; pcap_t *pcap; for (i = 0; i < tx->num_of_queue; i++) { if (open_single_iface(iface, &pcap) < 0) return -1; tx->queue[i].pcap = pcap; tx->queue[i].name = iface; tx->queue[i].type = key; } return 0; } static int open_single_iface(const char *iface, pcap_t **pcap) { if (open_iface_live(iface, pcap) < 0) { RTE_LOG(ERR, PMD, "Couldn't open interface %s\n", iface); return -1; } return 0; } static int rte_pmd_init_internals(const char *name, const unsigned nb_rx_queues, const unsigned nb_tx_queues, struct pmd_internals **internals, struct rte_eth_dev **eth_dev) { struct rte_eth_dev_data *data = NULL; unsigned int numa_node = rte_socket_id(); RTE_LOG(INFO, PMD, "Creating pcap-backed ethdev on numa socket %u\n", numa_node); /* now do all data allocation - for eth_dev structure * and internal (private) data */ data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node); if (data == NULL) goto error; *internals = rte_zmalloc_socket(name, sizeof(**internals), 0, numa_node); if (*internals == NULL) goto error; /* reserve an ethdev entry */ *eth_dev = rte_eth_dev_allocate(name); if (*eth_dev == NULL) goto error; /* check length of device name */ if ((strlen((*eth_dev)->data->name) + 1) > sizeof(data->name)) goto error; /* now put it all together * - store queue data in internals, * - store numa_node info in eth_dev * - point eth_dev_data to internals * - and point eth_dev structure to new eth_dev_data structure */ data->dev_private = *internals; data->port_id = (*eth_dev)->data->port_id; snprintf(data->name, sizeof(data->name), "%s", (*eth_dev)->data->name); data->nb_rx_queues = (uint16_t)nb_rx_queues; data->nb_tx_queues = (uint16_t)nb_tx_queues; data->dev_link = pmd_link; data->mac_addrs = ð_addr; strncpy(data->name, (*eth_dev)->data->name, strlen((*eth_dev)->data->name)); /* * NOTE: we'll replace the data element, of originally allocated * eth_dev so the rings are local per-process */ (*eth_dev)->data = data; (*eth_dev)->dev_ops = &ops; (*eth_dev)->driver = NULL; data->dev_flags = RTE_ETH_DEV_DETACHABLE; data->kdrv = RTE_KDRV_NONE; data->drv_name = drivername; data->numa_node = numa_node; return 0; error: rte_free(data); rte_free(*internals); return -1; } static int rte_eth_from_pcaps_common(const char *name, struct pmd_devargs *rx_queues, const unsigned nb_rx_queues, struct pmd_devargs *tx_queues, const unsigned nb_tx_queues, struct rte_kvargs *kvlist, struct pmd_internals **internals, struct rte_eth_dev **eth_dev) { struct rte_kvargs_pair *pair = NULL; unsigned k_idx; unsigned i; /* do some parameter checking */ if (rx_queues == NULL && nb_rx_queues > 0) return -1; if (tx_queues == NULL && nb_tx_queues > 0) return -1; if (rte_pmd_init_internals(name, nb_rx_queues, nb_tx_queues, internals, eth_dev) < 0) return -1; for (i = 0; i < nb_rx_queues; i++) { (*internals)->rx_queue[i].pcap = rx_queues->queue[i].pcap; snprintf((*internals)->rx_queue[i].name, sizeof((*internals)->rx_queue[i].name), "%s", rx_queues->queue[i].name); snprintf((*internals)->rx_queue[i].type, sizeof((*internals)->rx_queue[i].type), "%s", rx_queues->queue[i].type); } for (i = 0; i < nb_tx_queues; i++) { (*internals)->tx_queue[i].dumper = tx_queues->queue[i].dumper; snprintf((*internals)->tx_queue[i].name, sizeof((*internals)->tx_queue[i].name), "%s", tx_queues->queue[i].name); snprintf((*internals)->tx_queue[i].type, sizeof((*internals)->tx_queue[i].type), "%s", tx_queues->queue[i].type); } for (k_idx = 0; k_idx < kvlist->count; k_idx++) { pair = &kvlist->pairs[k_idx]; if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL) break; } if (pair == NULL) (*internals)->if_index = 0; else (*internals)->if_index = if_nametoindex(pair->value); return 0; } static int rte_eth_from_pcaps(const char *name, struct pmd_devargs *rx_queues, const unsigned nb_rx_queues, struct pmd_devargs *tx_queues, const unsigned nb_tx_queues, struct rte_kvargs *kvlist, int single_iface, unsigned int using_dumpers) { struct pmd_internals *internals = NULL; struct rte_eth_dev *eth_dev = NULL; int ret; ret = rte_eth_from_pcaps_common(name, rx_queues, nb_rx_queues, tx_queues, nb_tx_queues, kvlist, &internals, ð_dev); if (ret < 0) return ret; /* store wether we are using a single interface for rx/tx or not */ internals->single_iface = single_iface; eth_dev->rx_pkt_burst = eth_pcap_rx; if (using_dumpers) eth_dev->tx_pkt_burst = eth_pcap_tx_dumper; else eth_dev->tx_pkt_burst = eth_pcap_tx; return 0; } static int rte_pmd_pcap_devinit(const char *name, const char *params) { unsigned int is_rx_pcap = 0, is_tx_pcap = 0; struct rte_kvargs *kvlist; struct pmd_devargs pcaps = {0}; struct pmd_devargs dumpers = {0}; int single_iface = 0; int ret; RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name); gettimeofday(&start_time, NULL); start_cycles = rte_get_timer_cycles(); hz = rte_get_timer_hz(); kvlist = rte_kvargs_parse(params, valid_arguments); if (kvlist == NULL) return -1; /* * If iface argument is passed we open the NICs and use them for * reading / writing */ if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG, &open_rx_tx_iface, &pcaps); if (ret < 0) goto free_kvlist; dumpers.queue[0].pcap = pcaps.queue[0].pcap; dumpers.queue[0].name = pcaps.queue[0].name; dumpers.queue[0].type = pcaps.queue[0].type; single_iface = 1; ret = rte_eth_from_pcaps(name, &pcaps, 1, &dumpers, 1, kvlist, single_iface, is_tx_pcap); goto free_kvlist; } /* * We check whether we want to open a RX stream from a real NIC or a * pcap file */ pcaps.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG); if (pcaps.num_of_queue) is_rx_pcap = 1; else pcaps.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG); if (pcaps.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES) pcaps.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES; if (is_rx_pcap) ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG, &open_rx_pcap, &pcaps); else ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG, &open_rx_iface, &pcaps); if (ret < 0) goto free_kvlist; /* * We check whether we want to open a TX stream to a real NIC or a * pcap file */ dumpers.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG); if (dumpers.num_of_queue) is_tx_pcap = 1; else dumpers.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG); if (dumpers.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES) dumpers.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES; if (is_tx_pcap) ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG, &open_tx_pcap, &dumpers); else ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG, &open_tx_iface, &dumpers); if (ret < 0) goto free_kvlist; ret = rte_eth_from_pcaps(name, &pcaps, pcaps.num_of_queue, &dumpers, dumpers.num_of_queue, kvlist, single_iface, is_tx_pcap); free_kvlist: rte_kvargs_free(kvlist); return ret; } static int rte_pmd_pcap_devuninit(const char *name) { struct rte_eth_dev *eth_dev = NULL; RTE_LOG(INFO, PMD, "Closing pcap ethdev on numa socket %u\n", rte_socket_id()); if (name == NULL) return -1; /* reserve an ethdev entry */ eth_dev = rte_eth_dev_allocated(name); if (eth_dev == NULL) return -1; rte_free(eth_dev->data->dev_private); rte_free(eth_dev->data); rte_eth_dev_release_port(eth_dev); return 0; } static struct rte_vdev_driver pmd_pcap_drv = { .init = rte_pmd_pcap_devinit, .uninit = rte_pmd_pcap_devuninit, }; DRIVER_REGISTER_VDEV(net_pcap, pmd_pcap_drv); DRIVER_REGISTER_PARAM_STRING(net_pcap, ETH_PCAP_RX_PCAP_ARG "= " ETH_PCAP_TX_PCAP_ARG "= " ETH_PCAP_RX_IFACE_ARG "= " ETH_PCAP_TX_IFACE_ARG "= " ETH_PCAP_IFACE_ARG "=");