/*- * BSD LICENSE * * Copyright(c) 2010-2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_logs.h" #include "e1000/e1000_api.h" #include "e1000_ethdev.h" #include "e1000/e1000_osdep.h" #define E1000_TXD_VLAN_SHIFT 16 #define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ static inline struct rte_mbuf * rte_rxmbuf_alloc(struct rte_mempool *mp) { struct rte_mbuf *m; m = __rte_mbuf_raw_alloc(mp); __rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0); return (m); } #define RTE_MBUF_DATA_DMA_ADDR(mb) \ (uint64_t) ((mb)->buf_physaddr + \ (uint64_t) ((char *)((mb)->pkt.data) - (char *)(mb)->buf_addr)) #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \ (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM) /** * Structure associated with each descriptor of the RX ring of a RX queue. */ struct em_rx_entry { struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ }; /** * Structure associated with each descriptor of the TX ring of a TX queue. */ struct em_tx_entry { struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ uint16_t next_id; /**< Index of next descriptor in ring. */ uint16_t last_id; /**< Index of last scattered descriptor. */ }; /** * Structure associated with each RX queue. */ struct em_rx_queue { struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ struct em_rx_entry *sw_ring; /**< address of RX software ring. */ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ uint16_t nb_rx_desc; /**< number of RX descriptors. */ uint16_t rx_tail; /**< current value of RDT register. */ uint16_t nb_rx_hold; /**< number of held free RX desc. */ uint16_t rx_free_thresh; /**< max free RX desc to hold. */ uint16_t queue_id; /**< RX queue index. */ uint8_t port_id; /**< Device port identifier. */ uint8_t pthresh; /**< Prefetch threshold register. */ uint8_t hthresh; /**< Host threshold register. */ uint8_t wthresh; /**< Write-back threshold register. */ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ }; /** * Hardware context number */ enum { EM_CTX_0 = 0, /**< CTX0 */ EM_CTX_NUM = 1, /**< CTX NUM */ }; /** * Structure to check if new context need be built */ struct em_ctx_info { uint16_t flags; /**< ol_flags related to context build. */ uint32_t cmp_mask; /**< compare mask */ union rte_vlan_macip hdrlen; /**< L2 and L3 header lenghts */ }; /** * Structure associated with each TX queue. */ struct em_tx_queue { volatile struct e1000_data_desc *tx_ring; /**< TX ring address */ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ uint16_t nb_tx_desc; /**< number of TX descriptors. */ uint16_t tx_tail; /**< Current value of TDT register. */ uint16_t tx_free_thresh;/**< minimum TX before freeing. */ /**< Number of TX descriptors to use before RS bit is set. */ uint16_t tx_rs_thresh; /** Number of TX descriptors used since RS bit was set. */ uint16_t nb_tx_used; /** Index to last TX descriptor to have been cleaned. */ uint16_t last_desc_cleaned; /** Total number of TX descriptors ready to be allocated. */ uint16_t nb_tx_free; uint16_t queue_id; /**< TX queue index. */ uint8_t port_id; /**< Device port identifier. */ uint8_t pthresh; /**< Prefetch threshold register. */ uint8_t hthresh; /**< Host threshold register. */ uint8_t wthresh; /**< Write-back threshold register. */ struct em_ctx_info ctx_cache; /**< Hardware context history.*/ }; #if 1 #define RTE_PMD_USE_PREFETCH #endif #ifdef RTE_PMD_USE_PREFETCH #define rte_em_prefetch(p) rte_prefetch0(p) #else #define rte_em_prefetch(p) do {} while(0) #endif #ifdef RTE_PMD_PACKET_PREFETCH #define rte_packet_prefetch(p) rte_prefetch1(p) #else #define rte_packet_prefetch(p) do {} while(0) #endif #ifndef DEFAULT_TX_FREE_THRESH #define DEFAULT_TX_FREE_THRESH 32 #endif /* DEFAULT_TX_FREE_THRESH */ #ifndef DEFAULT_TX_RS_THRESH #define DEFAULT_TX_RS_THRESH 32 #endif /* DEFAULT_TX_RS_THRESH */ /********************************************************************* * * TX function * **********************************************************************/ /* * Populates TX context descriptor. */ static inline void em_set_xmit_ctx(struct em_tx_queue* txq, volatile struct e1000_context_desc *ctx_txd, uint16_t flags, union rte_vlan_macip hdrlen) { uint32_t cmp_mask, cmd_len; uint16_t ipcse, l2len; struct e1000_context_desc ctx; cmp_mask = 0; cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C; l2len = hdrlen.f.l2_len; ipcse = (uint16_t)(l2len + hdrlen.f.l3_len); /* setup IPCS* fields */ ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len; ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len + offsetof(struct ipv4_hdr, hdr_checksum)); /* * When doing checksum or TCP segmentation with IPv6 headers, * IPCSE field should be set t0 0. */ if (flags & PKT_TX_IP_CKSUM) { ctx.lower_setup.ip_fields.ipcse = (uint16_t)rte_cpu_to_le_16(ipcse - 1); cmd_len |= E1000_TXD_CMD_IP; cmp_mask |= TX_MACIP_LEN_CMP_MASK; } else { ctx.lower_setup.ip_fields.ipcse = 0; } /* setup TUCS* fields */ ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse; ctx.upper_setup.tcp_fields.tucse = 0; switch (flags & PKT_TX_L4_MASK) { case PKT_TX_UDP_CKSUM: ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + offsetof(struct udp_hdr, dgram_cksum)); cmp_mask |= TX_MACIP_LEN_CMP_MASK; break; case PKT_TX_TCP_CKSUM: ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + offsetof(struct tcp_hdr, cksum)); cmd_len |= E1000_TXD_CMD_TCP; cmp_mask |= TX_MACIP_LEN_CMP_MASK; break; default: ctx.upper_setup.tcp_fields.tucso = 0; } ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len); ctx.tcp_seg_setup.data = 0; *ctx_txd = ctx; txq->ctx_cache.flags = flags; txq->ctx_cache.cmp_mask = cmp_mask; txq->ctx_cache.hdrlen = hdrlen; } /* * Check which hardware context can be used. Use the existing match * or create a new context descriptor. */ static inline uint32_t what_ctx_update(struct em_tx_queue *txq, uint16_t flags, union rte_vlan_macip hdrlen) { /* If match with the current context */ if (likely (txq->ctx_cache.flags == flags && ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) & txq->ctx_cache.cmp_mask) == 0)) return (EM_CTX_0); /* Mismatch */ return (EM_CTX_NUM); } /* Reset transmit descriptors after they have been used */ static inline int em_xmit_cleanup(struct em_tx_queue *txq) { struct em_tx_entry *sw_ring = txq->sw_ring; volatile struct e1000_data_desc *txr = txq->tx_ring; uint16_t last_desc_cleaned = txq->last_desc_cleaned; uint16_t nb_tx_desc = txq->nb_tx_desc; uint16_t desc_to_clean_to; uint16_t nb_tx_to_clean; /* Determine the last descriptor needing to be cleaned */ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh); if (desc_to_clean_to >= nb_tx_desc) desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); /* Check to make sure the last descriptor to clean is done */ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD)) { PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done" "(port=%d queue=%d)", desc_to_clean_to, txq->port_id, txq->queue_id); /* Failed to clean any descriptors, better luck next time */ return -(1); } /* Figure out how many descriptors will be cleaned */ if (last_desc_cleaned > desc_to_clean_to) nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + desc_to_clean_to); else nb_tx_to_clean = (uint16_t)(desc_to_clean_to - last_desc_cleaned); PMD_TX_FREE_LOG(DEBUG, "Cleaning %4u TX descriptors: %4u to %4u " "(port=%d queue=%d)", nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to, txq->port_id, txq->queue_id); /* * The last descriptor to clean is done, so that means all the * descriptors from the last descriptor that was cleaned * up to the last descriptor with the RS bit set * are done. Only reset the threshold descriptor. */ txr[desc_to_clean_to].upper.fields.status = 0; /* Update the txq to reflect the last descriptor that was cleaned */ txq->last_desc_cleaned = desc_to_clean_to; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); /* No Error */ return (0); } static inline uint32_t tx_desc_cksum_flags_to_upper(uint16_t ol_flags) { static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8}; static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8}; uint32_t tmp; tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; return (tmp); } uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct em_tx_queue *txq; struct em_tx_entry *sw_ring; struct em_tx_entry *txe, *txn; volatile struct e1000_data_desc *txr; volatile struct e1000_data_desc *txd; struct rte_mbuf *tx_pkt; struct rte_mbuf *m_seg; uint64_t buf_dma_addr; uint32_t popts_spec; uint32_t cmd_type_len; uint16_t slen; uint16_t ol_flags; uint16_t tx_id; uint16_t tx_last; uint16_t nb_tx; uint16_t nb_used; uint16_t tx_ol_req; uint32_t ctx; uint32_t new_ctx; union rte_vlan_macip hdrlen; txq = tx_queue; sw_ring = txq->sw_ring; txr = txq->tx_ring; tx_id = txq->tx_tail; txe = &sw_ring[tx_id]; /* Determine if the descriptor ring needs to be cleaned. */ if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) { em_xmit_cleanup(txq); } /* TX loop */ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { new_ctx = 0; tx_pkt = *tx_pkts++; RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); /* * Determine how many (if any) context descriptors * are needed for offload functionality. */ ol_flags = tx_pkt->ol_flags; /* If hardware offload required */ tx_ol_req = (uint16_t)(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)); if (tx_ol_req) { hdrlen = tx_pkt->pkt.vlan_macip; /* If new context to be built or reuse the exist ctx. */ ctx = what_ctx_update(txq, tx_ol_req, hdrlen); /* Only allocate context descriptor if required*/ new_ctx = (ctx == EM_CTX_NUM); } /* * Keep track of how many descriptors are used this loop * This will always be the number of segments + the number of * Context descriptors required to transmit the packet */ nb_used = (uint16_t)(tx_pkt->pkt.nb_segs + new_ctx); /* * The number of descriptors that must be allocated for a * packet is the number of segments of that packet, plus 1 * Context Descriptor for the hardware offload, if any. * Determine the last TX descriptor to allocate in the TX ring * for the packet, starting from the current position (tx_id) * in the ring. */ tx_last = (uint16_t) (tx_id + nb_used - 1); /* Circular ring */ if (tx_last >= txq->nb_tx_desc) tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" " tx_first=%u tx_last=%u\n", (unsigned) txq->port_id, (unsigned) txq->queue_id, (unsigned) tx_pkt->pkt.pkt_len, (unsigned) tx_id, (unsigned) tx_last); /* * Make sure there are enough TX descriptors available to * transmit the entire packet. * nb_used better be less than or equal to txq->tx_rs_thresh */ while (unlikely (nb_used > txq->nb_tx_free)) { PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors " "nb_used=%4u nb_free=%4u " "(port=%d queue=%d)", nb_used, txq->nb_tx_free, txq->port_id, txq->queue_id); if (em_xmit_cleanup(txq) != 0) { /* Could not clean any descriptors */ if (nb_tx == 0) return (0); goto end_of_tx; } } /* * By now there are enough free TX descriptors to transmit * the packet. */ /* * Set common flags of all TX Data Descriptors. * * The following bits must be set in all Data Descriptors: * - E1000_TXD_DTYP_DATA * - E1000_TXD_DTYP_DEXT * * The following bits must be set in the first Data Descriptor * and are ignored in the other ones: * - E1000_TXD_POPTS_IXSM * - E1000_TXD_POPTS_TXSM * * The following bits must be set in the last Data Descriptor * and are ignored in the other ones: * - E1000_TXD_CMD_VLE * - E1000_TXD_CMD_IFCS * * The following bits must only be set in the last Data * Descriptor: * - E1000_TXD_CMD_EOP * * The following bits can be set in any Data Descriptor, but * are only set in the last Data Descriptor: * - E1000_TXD_CMD_RS */ cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | E1000_TXD_CMD_IFCS; popts_spec = 0; /* Set VLAN Tag offload fields. */ if (ol_flags & PKT_TX_VLAN_PKT) { cmd_type_len |= E1000_TXD_CMD_VLE; popts_spec = tx_pkt->pkt.vlan_macip.f.vlan_tci << E1000_TXD_VLAN_SHIFT; } if (tx_ol_req) { /* * Setup the TX Context Descriptor if required */ if (new_ctx) { volatile struct e1000_context_desc *ctx_txd; ctx_txd = (volatile struct e1000_context_desc *) &txr[tx_id]; txn = &sw_ring[txe->next_id]; RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); if (txe->mbuf != NULL) { rte_pktmbuf_free_seg(txe->mbuf); txe->mbuf = NULL; } em_set_xmit_ctx(txq, ctx_txd, tx_ol_req, hdrlen); txe->last_id = tx_last; tx_id = txe->next_id; txe = txn; } /* * Setup the TX Data Descriptor, * This path will go through * whatever new/reuse the context descriptor */ popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags); } m_seg = tx_pkt; do { txd = &txr[tx_id]; txn = &sw_ring[txe->next_id]; if (txe->mbuf != NULL) rte_pktmbuf_free_seg(txe->mbuf); txe->mbuf = m_seg; /* * Set up Transmit Data Descriptor. */ slen = m_seg->pkt.data_len; buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg); txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen); txd->upper.data = rte_cpu_to_le_32(popts_spec); txe->last_id = tx_last; tx_id = txe->next_id; txe = txn; m_seg = m_seg->pkt.next; } while (m_seg != NULL); /* * The last packet data descriptor needs End Of Packet (EOP) */ cmd_type_len |= E1000_TXD_CMD_EOP; txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); /* Set RS bit only on threshold packets' last descriptor */ if (txq->nb_tx_used >= txq->tx_rs_thresh) { PMD_TX_FREE_LOG(DEBUG, "Setting RS bit on TXD id=" "%4u (port=%d queue=%d)", tx_last, txq->port_id, txq->queue_id); cmd_type_len |= E1000_TXD_CMD_RS; /* Update txq RS bit counters */ txq->nb_tx_used = 0; } txd->lower.data |= rte_cpu_to_le_32(cmd_type_len); } end_of_tx: rte_wmb(); /* * Set the Transmit Descriptor Tail (TDT) */ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", (unsigned) txq->port_id, (unsigned) txq->queue_id, (unsigned) tx_id, (unsigned) nb_tx); E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id); txq->tx_tail = tx_id; return (nb_tx); } /********************************************************************* * * RX functions * **********************************************************************/ static inline uint16_t rx_desc_status_to_pkt_flags(uint32_t rx_status) { uint16_t pkt_flags; /* Check if VLAN present */ pkt_flags = (uint16_t)((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0); return pkt_flags; } static inline uint16_t rx_desc_error_to_pkt_flags(uint32_t rx_error) { uint16_t pkt_flags = 0; if (rx_error & E1000_RXD_ERR_IPE) pkt_flags |= PKT_RX_IP_CKSUM_BAD; if (rx_error & E1000_RXD_ERR_TCPE) pkt_flags |= PKT_RX_L4_CKSUM_BAD; return (pkt_flags); } uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { volatile struct e1000_rx_desc *rx_ring; volatile struct e1000_rx_desc *rxdp; struct em_rx_queue *rxq; struct em_rx_entry *sw_ring; struct em_rx_entry *rxe; struct rte_mbuf *rxm; struct rte_mbuf *nmb; struct e1000_rx_desc rxd; uint64_t dma_addr; uint16_t pkt_len; uint16_t rx_id; uint16_t nb_rx; uint16_t nb_hold; uint8_t status; rxq = rx_queue; nb_rx = 0; nb_hold = 0; rx_id = rxq->rx_tail; rx_ring = rxq->rx_ring; sw_ring = rxq->sw_ring; while (nb_rx < nb_pkts) { /* * The order of operations here is important as the DD status * bit must not be read after any other descriptor fields. * rx_ring and rxdp are pointing to volatile data so the order * of accesses cannot be reordered by the compiler. If they were * not volatile, they could be reordered which could lead to * using invalid descriptor fields when read from rxd. */ rxdp = &rx_ring[rx_id]; status = rxdp->status; if (! (status & E1000_RXD_STAT_DD)) break; rxd = *rxdp; /* * End of packet. * * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is * likely to be invalid and to be dropped by the various * validation checks performed by the network stack. * * Allocate a new mbuf to replenish the RX ring descriptor. * If the allocation fails: * - arrange for that RX descriptor to be the first one * being parsed the next time the receive function is * invoked [on the same queue]. * * - Stop parsing the RX ring and return immediately. * * This policy do not drop the packet received in the RX * descriptor for which the allocation of a new mbuf failed. * Thus, it allows that packet to be later retrieved if * mbuf have been freed in the mean time. * As a side effect, holding RX descriptors instead of * systematically giving them back to the NIC may lead to * RX ring exhaustion situations. * However, the NIC can gracefully prevent such situations * to happen by sending specific "back-pressure" flow control * frames to its peer(s). */ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u " "status=0x%x pkt_len=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id, (unsigned) rx_id, (unsigned) status, (unsigned) rte_le_to_cpu_16(rxd.length)); nmb = rte_rxmbuf_alloc(rxq->mb_pool); if (nmb == NULL) { PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " "queue_id=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id); rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; break; } nb_hold++; rxe = &sw_ring[rx_id]; rx_id++; if (rx_id == rxq->nb_rx_desc) rx_id = 0; /* Prefetch next mbuf while processing current one. */ rte_em_prefetch(sw_ring[rx_id].mbuf); /* * When next RX descriptor is on a cache-line boundary, * prefetch the next 4 RX descriptors and the next 8 pointers * to mbufs. */ if ((rx_id & 0x3) == 0) { rte_em_prefetch(&rx_ring[rx_id]); rte_em_prefetch(&sw_ring[rx_id]); } /* Rearm RXD: attach new mbuf and reset status to zero. */ rxm = rxe->mbuf; rxe->mbuf = nmb; dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); rxdp->buffer_addr = dma_addr; rxdp->status = 0; /* * Initialize the returned mbuf. * 1) setup generic mbuf fields: * - number of segments, * - next segment, * - packet length, * - RX port identifier. * 2) integrate hardware offload data, if any: * - RSS flag & hash, * - IP checksum flag, * - VLAN TCI, if any, * - error flags. */ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) - rxq->crc_len); rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM; rte_packet_prefetch(rxm->pkt.data); rxm->pkt.nb_segs = 1; rxm->pkt.next = NULL; rxm->pkt.pkt_len = pkt_len; rxm->pkt.data_len = pkt_len; rxm->pkt.in_port = rxq->port_id; rxm->ol_flags = rx_desc_status_to_pkt_flags(status); rxm->ol_flags = (uint16_t)(rxm->ol_flags | rx_desc_error_to_pkt_flags(rxd.errors)); /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ rxm->pkt.vlan_macip.f.vlan_tci = rte_le_to_cpu_16(rxd.special); /* * Store the mbuf address into the next entry of the array * of returned packets. */ rx_pkts[nb_rx++] = rxm; } rxq->rx_tail = rx_id; /* * If the number of free RX descriptors is greater than the RX free * threshold of the queue, advance the Receive Descriptor Tail (RDT) * register. * Update the RDT with the value of the last processed RX descriptor * minus 1, to guarantee that the RDT register is never equal to the * RDH register, which creates a "full" ring situtation from the * hardware point of view... */ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); if (nb_hold > rxq->rx_free_thresh) { PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "nb_hold=%u nb_rx=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id, (unsigned) rx_id, (unsigned) nb_hold, (unsigned) nb_rx); rx_id = (uint16_t) ((rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1)); E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); nb_hold = 0; } rxq->nb_rx_hold = nb_hold; return (nb_rx); } uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct em_rx_queue *rxq; volatile struct e1000_rx_desc *rx_ring; volatile struct e1000_rx_desc *rxdp; struct em_rx_entry *sw_ring; struct em_rx_entry *rxe; struct rte_mbuf *first_seg; struct rte_mbuf *last_seg; struct rte_mbuf *rxm; struct rte_mbuf *nmb; struct e1000_rx_desc rxd; uint64_t dma; /* Physical address of mbuf data buffer */ uint16_t rx_id; uint16_t nb_rx; uint16_t nb_hold; uint16_t data_len; uint8_t status; rxq = rx_queue; nb_rx = 0; nb_hold = 0; rx_id = rxq->rx_tail; rx_ring = rxq->rx_ring; sw_ring = rxq->sw_ring; /* * Retrieve RX context of current packet, if any. */ first_seg = rxq->pkt_first_seg; last_seg = rxq->pkt_last_seg; while (nb_rx < nb_pkts) { next_desc: /* * The order of operations here is important as the DD status * bit must not be read after any other descriptor fields. * rx_ring and rxdp are pointing to volatile data so the order * of accesses cannot be reordered by the compiler. If they were * not volatile, they could be reordered which could lead to * using invalid descriptor fields when read from rxd. */ rxdp = &rx_ring[rx_id]; status = rxdp->status; if (! (status & E1000_RXD_STAT_DD)) break; rxd = *rxdp; /* * Descriptor done. * * Allocate a new mbuf to replenish the RX ring descriptor. * If the allocation fails: * - arrange for that RX descriptor to be the first one * being parsed the next time the receive function is * invoked [on the same queue]. * * - Stop parsing the RX ring and return immediately. * * This policy does not drop the packet received in the RX * descriptor for which the allocation of a new mbuf failed. * Thus, it allows that packet to be later retrieved if * mbuf have been freed in the mean time. * As a side effect, holding RX descriptors instead of * systematically giving them back to the NIC may lead to * RX ring exhaustion situations. * However, the NIC can gracefully prevent such situations * to happen by sending specific "back-pressure" flow control * frames to its peer(s). */ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u " "status=0x%x data_len=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id, (unsigned) rx_id, (unsigned) status, (unsigned) rte_le_to_cpu_16(rxd.length)); nmb = rte_rxmbuf_alloc(rxq->mb_pool); if (nmb == NULL) { PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " "queue_id=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id); rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; break; } nb_hold++; rxe = &sw_ring[rx_id]; rx_id++; if (rx_id == rxq->nb_rx_desc) rx_id = 0; /* Prefetch next mbuf while processing current one. */ rte_em_prefetch(sw_ring[rx_id].mbuf); /* * When next RX descriptor is on a cache-line boundary, * prefetch the next 4 RX descriptors and the next 8 pointers * to mbufs. */ if ((rx_id & 0x3) == 0) { rte_em_prefetch(&rx_ring[rx_id]); rte_em_prefetch(&sw_ring[rx_id]); } /* * Update RX descriptor with the physical address of the new * data buffer of the new allocated mbuf. */ rxm = rxe->mbuf; rxe->mbuf = nmb; dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); rxdp->buffer_addr = dma; rxdp->status = 0; /* * Set data length & data buffer address of mbuf. */ data_len = rte_le_to_cpu_16(rxd.length); rxm->pkt.data_len = data_len; rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM; /* * If this is the first buffer of the received packet, * set the pointer to the first mbuf of the packet and * initialize its context. * Otherwise, update the total length and the number of segments * of the current scattered packet, and update the pointer to * the last mbuf of the current packet. */ if (first_seg == NULL) { first_seg = rxm; first_seg->pkt.pkt_len = data_len; first_seg->pkt.nb_segs = 1; } else { first_seg->pkt.pkt_len += data_len; first_seg->pkt.nb_segs++; last_seg->pkt.next = rxm; } /* * If this is not the last buffer of the received packet, * update the pointer to the last mbuf of the current scattered * packet and continue to parse the RX ring. */ if (! (status & E1000_RXD_STAT_EOP)) { last_seg = rxm; goto next_desc; } /* * This is the last buffer of the received packet. * If the CRC is not stripped by the hardware: * - Subtract the CRC length from the total packet length. * - If the last buffer only contains the whole CRC or a part * of it, free the mbuf associated to the last buffer. * If part of the CRC is also contained in the previous * mbuf, subtract the length of that CRC part from the * data length of the previous mbuf. */ rxm->pkt.next = NULL; if (unlikely(rxq->crc_len > 0)) { first_seg->pkt.pkt_len -= ETHER_CRC_LEN; if (data_len <= ETHER_CRC_LEN) { rte_pktmbuf_free_seg(rxm); first_seg->pkt.nb_segs--; last_seg->pkt.data_len = (uint16_t) (last_seg->pkt.data_len - (ETHER_CRC_LEN - data_len)); last_seg->pkt.next = NULL; } else rxm->pkt.data_len = (uint16_t) (data_len - ETHER_CRC_LEN); } /* * Initialize the first mbuf of the returned packet: * - RX port identifier, * - hardware offload data, if any: * - IP checksum flag, * - error flags. */ first_seg->pkt.in_port = rxq->port_id; first_seg->ol_flags = rx_desc_status_to_pkt_flags(status); first_seg->ol_flags = (uint16_t)(first_seg->ol_flags | rx_desc_error_to_pkt_flags(rxd.errors)); /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ rxm->pkt.vlan_macip.f.vlan_tci = rte_le_to_cpu_16(rxd.special); /* Prefetch data of first segment, if configured to do so. */ rte_packet_prefetch(first_seg->pkt.data); /* * Store the mbuf address into the next entry of the array * of returned packets. */ rx_pkts[nb_rx++] = first_seg; /* * Setup receipt context for a new packet. */ first_seg = NULL; } /* * Record index of the next RX descriptor to probe. */ rxq->rx_tail = rx_id; /* * Save receive context. */ rxq->pkt_first_seg = first_seg; rxq->pkt_last_seg = last_seg; /* * If the number of free RX descriptors is greater than the RX free * threshold of the queue, advance the Receive Descriptor Tail (RDT) * register. * Update the RDT with the value of the last processed RX descriptor * minus 1, to guarantee that the RDT register is never equal to the * RDH register, which creates a "full" ring situtation from the * hardware point of view... */ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); if (nb_hold > rxq->rx_free_thresh) { PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "nb_hold=%u nb_rx=%u\n", (unsigned) rxq->port_id, (unsigned) rxq->queue_id, (unsigned) rx_id, (unsigned) nb_hold, (unsigned) nb_rx); rx_id = (uint16_t) ((rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1)); E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); nb_hold = 0; } rxq->nb_rx_hold = nb_hold; return (nb_rx); } /* * Rings setup and release. * * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. * This will also optimize cache line size effect. * H/W supports up to cache line size 128. */ #define EM_ALIGN 128 /* * Maximum number of Ring Descriptors. * * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring * desscriptors should meet the following condition: * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 */ #define EM_MIN_RING_DESC 32 #define EM_MAX_RING_DESC 4096 #define EM_MAX_BUF_SIZE 16384 #define EM_RCTL_FLXBUF_STEP 1024 static const struct rte_memzone * ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name, uint16_t queue_id, uint32_t ring_size, int socket_id) { const struct rte_memzone *mz; char z_name[RTE_MEMZONE_NAMESIZE]; rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", dev->driver->pci_drv.name, ring_name, dev->data->port_id, queue_id); if ((mz = rte_memzone_lookup(z_name)) != 0) return (mz); return rte_memzone_reserve(z_name, ring_size, socket_id, 0); } static void em_tx_queue_release_mbufs(struct em_tx_queue *txq) { unsigned i; if (txq->sw_ring != NULL) { for (i = 0; i != txq->nb_tx_desc; i++) { if (txq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } } } } static void em_tx_queue_release(struct em_tx_queue *txq) { if (txq != NULL) { em_tx_queue_release_mbufs(txq); rte_free(txq->sw_ring); rte_free(txq); } } void eth_em_tx_queue_release(void *txq) { em_tx_queue_release(txq); } /* (Re)set dynamic em_tx_queue fields to defaults */ static void em_reset_tx_queue(struct em_tx_queue *txq) { uint16_t i, nb_desc, prev; static const struct e1000_data_desc txd_init = { .upper.fields = {.status = E1000_TXD_STAT_DD}, }; nb_desc = txq->nb_tx_desc; /* Initialize ring entries */ prev = (uint16_t) (nb_desc - 1); for (i = 0; i < nb_desc; i++) { txq->tx_ring[i] = txd_init; txq->sw_ring[i].mbuf = NULL; txq->sw_ring[i].last_id = i; txq->sw_ring[prev].next_id = i; prev = i; } /* * Always allow 1 descriptor to be un-allocated to avoid * a H/W race condition */ txq->nb_tx_free = (uint16_t)(nb_desc - 1); txq->last_desc_cleaned = (uint16_t)(nb_desc - 1); txq->nb_tx_used = 0; txq->tx_tail = 0; memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache)); } int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { const struct rte_memzone *tz; struct em_tx_queue *txq; struct e1000_hw *hw; uint32_t tsize; uint16_t tx_rs_thresh, tx_free_thresh; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* * Validate number of transmit descriptors. * It must not exceed hardware maximum, and must be multiple * of EM_ALIGN. */ if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 || (nb_desc > EM_MAX_RING_DESC) || (nb_desc < EM_MIN_RING_DESC)) { return -(EINVAL); } tx_free_thresh = tx_conf->tx_free_thresh; if (tx_free_thresh == 0) tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4, DEFAULT_TX_FREE_THRESH); tx_rs_thresh = tx_conf->tx_rs_thresh; if (tx_rs_thresh == 0) tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh, DEFAULT_TX_RS_THRESH); if (tx_free_thresh >= (nb_desc - 3)) { RTE_LOG(ERR, PMD, "tx_free_thresh must be less than the " "number of TX descriptors minus 3. (tx_free_thresh=%u " "port=%d queue=%d)\n", (unsigned int)tx_free_thresh, (int)dev->data->port_id, (int)queue_idx); return -(EINVAL); } if (tx_rs_thresh > tx_free_thresh) { RTE_LOG(ERR, PMD, "tx_rs_thresh must be less than or equal to " "tx_free_thresh. (tx_free_thresh=%u tx_rs_thresh=%u " "port=%d queue=%d)\n", (unsigned int)tx_free_thresh, (unsigned int)tx_rs_thresh, (int)dev->data->port_id, (int)queue_idx); return -(EINVAL); } /* * If rs_bit_thresh is greater than 1, then TX WTHRESH should be * set to 0. If WTHRESH is greater than zero, the RS bit is ignored * by the NIC and all descriptors are written back after the NIC * accumulates WTHRESH descriptors. */ if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) { RTE_LOG(ERR, PMD, "TX WTHRESH must be set to 0 if " "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u " "port=%d queue=%d)\n", (unsigned int)tx_rs_thresh, (int)dev->data->port_id, (int)queue_idx); return -(EINVAL); } /* Free memory prior to re-allocation if needed... */ if (dev->data->tx_queues[queue_idx] != NULL) { em_tx_queue_release(dev->data->tx_queues[queue_idx]); dev->data->tx_queues[queue_idx] = NULL; } /* * Allocate TX ring hardware descriptors. A memzone large enough to * handle the maximum ring size is allocated in order to allow for * resizing in later calls to the queue setup function. */ tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC; if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize, socket_id)) == NULL) return (-ENOMEM); /* Allocate the tx queue data structure. */ if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq), CACHE_LINE_SIZE)) == NULL) return (-ENOMEM); /* Allocate software ring */ if ((txq->sw_ring = rte_zmalloc("txq->sw_ring", sizeof(txq->sw_ring[0]) * nb_desc, CACHE_LINE_SIZE)) == NULL) { em_tx_queue_release(txq); return (-ENOMEM); } txq->nb_tx_desc = nb_desc; txq->tx_free_thresh = tx_free_thresh; txq->tx_rs_thresh = tx_rs_thresh; txq->pthresh = tx_conf->tx_thresh.pthresh; txq->hthresh = tx_conf->tx_thresh.hthresh; txq->wthresh = tx_conf->tx_thresh.wthresh; if (txq->wthresh > 0 && hw->mac.type == e1000_82576) txq->wthresh = 1; txq->queue_id = queue_idx; txq->port_id = dev->data->port_id; txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx)); txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr; txq->tx_ring = (struct e1000_data_desc *) tz->addr; PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n", txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); em_reset_tx_queue(txq); dev->data->tx_queues[queue_idx] = txq; return (0); } static void em_rx_queue_release_mbufs(struct em_rx_queue *rxq) { unsigned i; if (rxq->sw_ring != NULL) { for (i = 0; i != rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); rxq->sw_ring[i].mbuf = NULL; } } } } static void em_rx_queue_release(struct em_rx_queue *rxq) { if (rxq != NULL) { em_rx_queue_release_mbufs(rxq); rte_free(rxq->sw_ring); rte_free(rxq); } } void eth_em_rx_queue_release(void *rxq) { em_rx_queue_release(rxq); } /* Reset dynamic em_rx_queue fields back to defaults */ static void em_reset_rx_queue(struct em_rx_queue *rxq) { rxq->rx_tail = 0; rxq->nb_rx_hold = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; } int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { const struct rte_memzone *rz; struct em_rx_queue *rxq; struct e1000_hw *hw; uint32_t rsize; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* * Validate number of receive descriptors. * It must not exceed hardware maximum, and must be multiple * of EM_ALIGN. */ if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 || (nb_desc > EM_MAX_RING_DESC) || (nb_desc < EM_MIN_RING_DESC)) { return (-EINVAL); } /* * EM devices don't support drop_en functionality */ if (rx_conf->rx_drop_en) { RTE_LOG(ERR, PMD, "drop_en functionality not supported by device\n"); return (-EINVAL); } /* Free memory prior to re-allocation if needed. */ if (dev->data->rx_queues[queue_idx] != NULL) { em_rx_queue_release(dev->data->rx_queues[queue_idx]); dev->data->rx_queues[queue_idx] = NULL; } /* Allocate RX ring for max possible mumber of hardware descriptors. */ rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC; if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize, socket_id)) == NULL) return (-ENOMEM); /* Allocate the RX queue data structure. */ if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq), CACHE_LINE_SIZE)) == NULL) return (-ENOMEM); /* Allocate software ring. */ if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring", sizeof (rxq->sw_ring[0]) * nb_desc, CACHE_LINE_SIZE)) == NULL) { em_rx_queue_release(rxq); return (-ENOMEM); } rxq->mb_pool = mp; rxq->nb_rx_desc = nb_desc; rxq->pthresh = rx_conf->rx_thresh.pthresh; rxq->hthresh = rx_conf->rx_thresh.hthresh; rxq->wthresh = rx_conf->rx_thresh.wthresh; if (rxq->wthresh > 0 && hw->mac.type == e1000_82576) rxq->wthresh = 1; rxq->rx_free_thresh = rx_conf->rx_free_thresh; rxq->queue_id = queue_idx; rxq->port_id = dev->data->port_id; rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 : ETHER_CRC_LEN); rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx)); rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx)); rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr; rxq->rx_ring = (struct e1000_rx_desc *) rz->addr; PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n", rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); dev->data->rx_queues[queue_idx] = rxq; em_reset_rx_queue(rxq); return (0); } uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) { #define EM_RXQ_SCAN_INTERVAL 4 volatile struct e1000_rx_desc *rxdp; struct em_rx_queue *rxq; uint32_t desc = 0; if (rx_queue_id >= dev->data->nb_rx_queues) { PMD_RX_LOG(DEBUG,"Invalid RX queue_id=%d\n", rx_queue_id); return 0; } rxq = dev->data->rx_queues[rx_queue_id]; rxdp = &(rxq->rx_ring[rxq->rx_tail]); while ((desc < rxq->nb_rx_desc) && (rxdp->status & E1000_RXD_STAT_DD)) { desc += EM_RXQ_SCAN_INTERVAL; rxdp += EM_RXQ_SCAN_INTERVAL; if (rxq->rx_tail + desc >= rxq->nb_rx_desc) rxdp = &(rxq->rx_ring[rxq->rx_tail + desc - rxq->nb_rx_desc]); } return desc; } int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset) { volatile struct e1000_rx_desc *rxdp; struct em_rx_queue *rxq = rx_queue; uint32_t desc; if (unlikely(offset >= rxq->nb_rx_desc)) return 0; desc = rxq->rx_tail + offset; if (desc >= rxq->nb_rx_desc) desc -= rxq->nb_rx_desc; rxdp = &rxq->rx_ring[desc]; return !!(rxdp->status & E1000_RXD_STAT_DD); } void em_dev_clear_queues(struct rte_eth_dev *dev) { uint16_t i; struct em_tx_queue *txq; struct em_rx_queue *rxq; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq != NULL) { em_tx_queue_release_mbufs(txq); em_reset_tx_queue(txq); } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq != NULL) { em_rx_queue_release_mbufs(rxq); em_reset_rx_queue(rxq); } } } /* * Takes as input/output parameter RX buffer size. * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register. */ static uint32_t em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz) { /* * For BSIZE & BSEX all configurable sizes are: * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); * 2048: rctl |= E1000_RCTL_SZ_2048; * 1024: rctl |= E1000_RCTL_SZ_1024; * 512: rctl |= E1000_RCTL_SZ_512; * 256: rctl |= E1000_RCTL_SZ_256; */ static const struct { uint32_t bufsz; uint32_t rctl; } bufsz_to_rctl[] = { {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)}, {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)}, {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)}, {2048, E1000_RCTL_SZ_2048}, {1024, E1000_RCTL_SZ_1024}, {512, E1000_RCTL_SZ_512}, {256, E1000_RCTL_SZ_256}, }; int i; uint32_t rctl_bsize; rctl_bsize = *bufsz; /* * Starting from 82571 it is possible to specify RX buffer size * by RCTL.FLXBUF. When this field is different from zero, the * RX buffer size = RCTL.FLXBUF * 1K * (e.g. t is possible to specify RX buffer size 1,2,...,15KB). * It is working ok on real HW, but by some reason doesn't work * on VMware emulated 82574L. * So for now, always use BSIZE/BSEX to setup RX buffer size. * If you don't plan to use it on VMware emulated 82574L and * would like to specify RX buffer size in 1K granularity, * uncomment the following lines: * *************************************************************** * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 && * rctl_bsize >= EM_RCTL_FLXBUF_STEP) { * rctl_bsize /= EM_RCTL_FLXBUF_STEP; * *bufsz = rctl_bsize; * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT & * E1000_RCTL_FLXBUF_MASK); * } * *************************************************************** */ for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]); i++) { if (rctl_bsize >= bufsz_to_rctl[i].bufsz) { *bufsz = bufsz_to_rctl[i].bufsz; return (bufsz_to_rctl[i].rctl); } } /* Should never happen. */ return (-EINVAL); } static int em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq) { struct em_rx_entry *rxe = rxq->sw_ring; uint64_t dma_addr; unsigned i; static const struct e1000_rx_desc rxd_init = { .buffer_addr = 0, }; /* Initialize software ring entries */ for (i = 0; i < rxq->nb_rx_desc; i++) { volatile struct e1000_rx_desc *rxd; struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool); if (mbuf == NULL) { PMD_INIT_LOG(ERR, "RX mbuf alloc failed " "queue_id=%hu\n", rxq->queue_id); em_rx_queue_release(rxq); return (-ENOMEM); } dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf)); /* Clear HW ring memory */ rxq->rx_ring[i] = rxd_init; rxd = &rxq->rx_ring[i]; rxd->buffer_addr = dma_addr; rxe[i].mbuf = mbuf; } return 0; } /********************************************************************* * * Enable receive unit. * **********************************************************************/ int eth_em_rx_init(struct rte_eth_dev *dev) { struct e1000_hw *hw; struct em_rx_queue *rxq; uint32_t rctl; uint32_t rfctl; uint32_t rxcsum; uint32_t rctl_bsize; uint16_t i; int ret; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* * Make sure receives are disabled while setting * up the descriptor ring. */ rctl = E1000_READ_REG(hw, E1000_RCTL); E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); rfctl = E1000_READ_REG(hw, E1000_RFCTL); /* Disable extended descriptor type. */ rfctl &= ~E1000_RFCTL_EXTEN; /* Disable accelerated acknowledge */ if (hw->mac.type == e1000_82574) rfctl |= E1000_RFCTL_ACK_DIS; E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); /* * XXX TEMPORARY WORKAROUND: on some systems with 82573 * long latencies are observed, like Lenovo X60. This * change eliminates the problem, but since having positive * values in RDTR is a known source of problems on other * platforms another solution is being sought. */ if (hw->mac.type == e1000_82573) E1000_WRITE_REG(hw, E1000_RDTR, 0x20); dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts; /* Determine RX bufsize. */ rctl_bsize = EM_MAX_BUF_SIZE; for (i = 0; i < dev->data->nb_rx_queues; i++) { struct rte_pktmbuf_pool_private *mbp_priv; uint32_t buf_size; rxq = dev->data->rx_queues[i]; mbp_priv = rte_mempool_get_priv(rxq->mb_pool); buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM; rctl_bsize = RTE_MIN(rctl_bsize, buf_size); } rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize); /* Configure and enable each RX queue. */ for (i = 0; i < dev->data->nb_rx_queues; i++) { uint64_t bus_addr; uint32_t rxdctl; rxq = dev->data->rx_queues[i]; /* Allocate buffers for descriptor rings and setup queue */ ret = em_alloc_rx_queue_mbufs(rxq); if (ret) return ret; /* * Reset crc_len in case it was changed after queue setup by a * call to configure */ rxq->crc_len = (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ? 0 : ETHER_CRC_LEN); bus_addr = rxq->rx_ring_phys_addr; E1000_WRITE_REG(hw, E1000_RDLEN(i), rxq->nb_rx_desc * sizeof(*rxq->rx_ring)); E1000_WRITE_REG(hw, E1000_RDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); E1000_WRITE_REG(hw, E1000_RDH(i), 0); E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); rxdctl &= 0xFE000000; rxdctl |= rxq->pthresh & 0x3F; rxdctl |= (rxq->hthresh & 0x3F) << 8; rxdctl |= (rxq->wthresh & 0x3F) << 16; rxdctl |= E1000_RXDCTL_GRAN; E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); /* * Due to EM devices not having any sort of hardware * limit for packet length, jumbo frame of any size * can be accepted, thus we have to enable scattered * rx if jumbo frames are enabled (or if buffer size * is too small to accomodate non-jumbo packets) * to avoid splitting packets that don't fit into * one buffer. */ if (dev->data->dev_conf.rxmode.jumbo_frame || rctl_bsize < ETHER_MAX_LEN) { dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_scattered_pkts; dev->data->scattered_rx = 1; } } /* * Setup the Checksum Register. * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); if (dev->data->dev_conf.rxmode.hw_ip_checksum) rxcsum |= E1000_RXCSUM_IPOFL; else rxcsum &= ~E1000_RXCSUM_IPOFL; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); /* No MRQ or RSS support for now */ /* Set early receive threshold on appropriate hw */ if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan || hw->mac.type == e1000_ich10lan) && dev->data->dev_conf.rxmode.jumbo_frame == 1) { u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13)); } if (hw->mac.type == e1000_pch2lan) { if (dev->data->dev_conf.rxmode.jumbo_frame == 1) e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); else e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); } /* Setup the Receive Control Register. */ if (dev->data->dev_conf.rxmode.hw_strip_crc) rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ else rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* Make sure VLAN Filters are off. */ rctl &= ~E1000_RCTL_VFE; /* Don't store bad packets. */ rctl &= ~E1000_RCTL_SBP; /* Legacy descriptor type. */ rctl &= ~E1000_RCTL_DTYP_MASK; /* * Configure support of jumbo frames, if any. */ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) rctl |= E1000_RCTL_LPE; else rctl &= ~E1000_RCTL_LPE; /* Enable Receives. */ E1000_WRITE_REG(hw, E1000_RCTL, rctl); return 0; } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ void eth_em_tx_init(struct rte_eth_dev *dev) { struct e1000_hw *hw; struct em_tx_queue *txq; uint32_t tctl; uint32_t txdctl; uint16_t i; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Setup the Base and Length of the Tx Descriptor Rings. */ for (i = 0; i < dev->data->nb_tx_queues; i++) { uint64_t bus_addr; txq = dev->data->tx_queues[i]; bus_addr = txq->tx_ring_phys_addr; E1000_WRITE_REG(hw, E1000_TDLEN(i), txq->nb_tx_desc * sizeof(*txq->tx_ring)); E1000_WRITE_REG(hw, E1000_TDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); /* Setup the HW Tx Head and Tail descriptor pointers. */ E1000_WRITE_REG(hw, E1000_TDT(i), 0); E1000_WRITE_REG(hw, E1000_TDH(i), 0); /* Setup Transmit threshold registers. */ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); /* * bit 22 is reserved, on some models should always be 0, * on others - always 1. */ txdctl &= E1000_TXDCTL_COUNT_DESC; txdctl |= txq->pthresh & 0x3F; txdctl |= (txq->hthresh & 0x3F) << 8; txdctl |= (txq->wthresh & 0x3F) << 16; txdctl |= E1000_TXDCTL_GRAN; E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); } /* Program the Transmit Control Register. */ tctl = E1000_READ_REG(hw, E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); /* This write will effectively turn on the transmit unit. */ E1000_WRITE_REG(hw, E1000_TCTL, tctl); }