/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_distributor.h" #include "rte_distributor_single.h" #include "distributor_private.h" TAILQ_HEAD(rte_dist_burst_list, rte_distributor); static struct rte_tailq_elem rte_dist_burst_tailq = { .name = "RTE_DIST_BURST", }; EAL_REGISTER_TAILQ(rte_dist_burst_tailq) /**** APIs called by workers ****/ /**** Burst Packet APIs called by workers ****/ void rte_distributor_request_pkt(struct rte_distributor *d, unsigned int worker_id, struct rte_mbuf **oldpkt, unsigned int count) { struct rte_distributor_buffer *buf = &(d->bufs[worker_id]); unsigned int i; volatile int64_t *retptr64; if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) { rte_distributor_request_pkt_single(d->d_single, worker_id, oldpkt[0]); return; } retptr64 = &(buf->retptr64[0]); /* Spin while handshake bits are set (scheduler clears it). * Sync with worker on GET_BUF flag. */ while (unlikely(__atomic_load_n(retptr64, __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) { rte_pause(); uint64_t t = rte_rdtsc()+100; while (rte_rdtsc() < t) rte_pause(); } /* * OK, if we've got here, then the scheduler has just cleared the * handshake bits. Populate the retptrs with returning packets. */ for (i = count; i < RTE_DIST_BURST_SIZE; i++) buf->retptr64[i] = 0; /* Set Return bit for each packet returned */ for (i = count; i-- > 0; ) buf->retptr64[i] = (((int64_t)(uintptr_t)(oldpkt[i])) << RTE_DISTRIB_FLAG_BITS) | RTE_DISTRIB_RETURN_BUF; /* * Finally, set the GET_BUF to signal to distributor that cache * line is ready for processing * Sync with distributor to release retptrs */ __atomic_store_n(retptr64, *retptr64 | RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE); } int rte_distributor_poll_pkt(struct rte_distributor *d, unsigned int worker_id, struct rte_mbuf **pkts) { struct rte_distributor_buffer *buf = &d->bufs[worker_id]; uint64_t ret; int count = 0; unsigned int i; if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) { pkts[0] = rte_distributor_poll_pkt_single(d->d_single, worker_id); return (pkts[0]) ? 1 : 0; } /* If bit is set, return * Sync with distributor to acquire bufptrs */ if (__atomic_load_n(&(buf->bufptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF) return -1; /* since bufptr64 is signed, this should be an arithmetic shift */ for (i = 0; i < RTE_DIST_BURST_SIZE; i++) { if (likely(buf->bufptr64[i] & RTE_DISTRIB_VALID_BUF)) { ret = buf->bufptr64[i] >> RTE_DISTRIB_FLAG_BITS; pkts[count++] = (struct rte_mbuf *)((uintptr_t)(ret)); } } /* * so now we've got the contents of the cacheline into an array of * mbuf pointers, so toggle the bit so scheduler can start working * on the next cacheline while we're working. * Sync with distributor on GET_BUF flag. Release bufptrs. */ __atomic_store_n(&(buf->bufptr64[0]), buf->bufptr64[0] | RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE); return count; } int rte_distributor_get_pkt(struct rte_distributor *d, unsigned int worker_id, struct rte_mbuf **pkts, struct rte_mbuf **oldpkt, unsigned int return_count) { int count; if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) { if (return_count <= 1) { pkts[0] = rte_distributor_get_pkt_single(d->d_single, worker_id, oldpkt[0]); return (pkts[0]) ? 1 : 0; } else return -EINVAL; } rte_distributor_request_pkt(d, worker_id, oldpkt, return_count); count = rte_distributor_poll_pkt(d, worker_id, pkts); while (count == -1) { uint64_t t = rte_rdtsc() + 100; while (rte_rdtsc() < t) rte_pause(); count = rte_distributor_poll_pkt(d, worker_id, pkts); } return count; } int rte_distributor_return_pkt(struct rte_distributor *d, unsigned int worker_id, struct rte_mbuf **oldpkt, int num) { struct rte_distributor_buffer *buf = &d->bufs[worker_id]; unsigned int i; if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) { if (num == 1) return rte_distributor_return_pkt_single(d->d_single, worker_id, oldpkt[0]); else return -EINVAL; } /* Sync with distributor to acquire retptrs */ __atomic_thread_fence(__ATOMIC_ACQUIRE); for (i = 0; i < RTE_DIST_BURST_SIZE; i++) /* Switch off the return bit first */ buf->retptr64[i] &= ~RTE_DISTRIB_RETURN_BUF; for (i = num; i-- > 0; ) buf->retptr64[i] = (((int64_t)(uintptr_t)oldpkt[i]) << RTE_DISTRIB_FLAG_BITS) | RTE_DISTRIB_RETURN_BUF; /* set the GET_BUF but even if we got no returns. * Sync with distributor on GET_BUF flag. Release retptrs. */ __atomic_store_n(&(buf->retptr64[0]), buf->retptr64[0] | RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE); return 0; } /**** APIs called on distributor core ***/ /* stores a packet returned from a worker inside the returns array */ static inline void store_return(uintptr_t oldbuf, struct rte_distributor *d, unsigned int *ret_start, unsigned int *ret_count) { if (!oldbuf) return; /* store returns in a circular buffer */ d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK] = (void *)oldbuf; *ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK); *ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK); } /* * Match then flow_ids (tags) of the incoming packets to the flow_ids * of the inflight packets (both inflight on the workers and in each worker * backlog). This will then allow us to pin those packets to the relevant * workers to give us our atomic flow pinning. */ void find_match_scalar(struct rte_distributor *d, uint16_t *data_ptr, uint16_t *output_ptr) { struct rte_distributor_backlog *bl; uint16_t i, j, w; /* * Function overview: * 1. Loop through all worker ID's * 2. Compare the current inflights to the incoming tags * 3. Compare the current backlog to the incoming tags * 4. Add any matches to the output */ for (j = 0 ; j < RTE_DIST_BURST_SIZE; j++) output_ptr[j] = 0; for (i = 0; i < d->num_workers; i++) { bl = &d->backlog[i]; for (j = 0; j < RTE_DIST_BURST_SIZE ; j++) for (w = 0; w < RTE_DIST_BURST_SIZE; w++) if (d->in_flight_tags[i][j] == data_ptr[w]) { output_ptr[j] = i+1; break; } for (j = 0; j < RTE_DIST_BURST_SIZE; j++) for (w = 0; w < RTE_DIST_BURST_SIZE; w++) if (bl->tags[j] == data_ptr[w]) { output_ptr[j] = i+1; break; } } /* * At this stage, the output contains 8 16-bit values, with * each non-zero value containing the worker ID on which the * corresponding flow is pinned to. */ } /* * When the handshake bits indicate that there are packets coming * back from the worker, this function is called to copy and store * the valid returned pointers (store_return). */ static unsigned int handle_returns(struct rte_distributor *d, unsigned int wkr) { struct rte_distributor_buffer *buf = &(d->bufs[wkr]); uintptr_t oldbuf; unsigned int ret_start = d->returns.start, ret_count = d->returns.count; unsigned int count = 0; unsigned int i; /* Sync on GET_BUF flag. Acquire retptrs. */ if (__atomic_load_n(&(buf->retptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF) { for (i = 0; i < RTE_DIST_BURST_SIZE; i++) { if (buf->retptr64[i] & RTE_DISTRIB_RETURN_BUF) { oldbuf = ((uintptr_t)(buf->retptr64[i] >> RTE_DISTRIB_FLAG_BITS)); /* store returns in a circular buffer */ store_return(oldbuf, d, &ret_start, &ret_count); count++; buf->retptr64[i] &= ~RTE_DISTRIB_RETURN_BUF; } } d->returns.start = ret_start; d->returns.count = ret_count; /* Clear for the worker to populate with more returns. * Sync with distributor on GET_BUF flag. Release retptrs. */ __atomic_store_n(&(buf->retptr64[0]), 0, __ATOMIC_RELEASE); } return count; } /* * This function releases a burst (cache line) to a worker. * It is called from the process function when a cacheline is * full to make room for more packets for that worker, or when * all packets have been assigned to bursts and need to be flushed * to the workers. * It also needs to wait for any outstanding packets from the worker * before sending out new packets. */ static unsigned int release(struct rte_distributor *d, unsigned int wkr) { struct rte_distributor_buffer *buf = &(d->bufs[wkr]); unsigned int i; /* Sync with worker on GET_BUF flag */ while (!(__atomic_load_n(&(d->bufs[wkr].bufptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) rte_pause(); handle_returns(d, wkr); buf->count = 0; for (i = 0; i < d->backlog[wkr].count; i++) { d->bufs[wkr].bufptr64[i] = d->backlog[wkr].pkts[i] | RTE_DISTRIB_GET_BUF | RTE_DISTRIB_VALID_BUF; d->in_flight_tags[wkr][i] = d->backlog[wkr].tags[i]; } buf->count = i; for ( ; i < RTE_DIST_BURST_SIZE ; i++) { buf->bufptr64[i] = RTE_DISTRIB_GET_BUF; d->in_flight_tags[wkr][i] = 0; } d->backlog[wkr].count = 0; /* Clear the GET bit. * Sync with worker on GET_BUF flag. Release bufptrs. */ __atomic_store_n(&(buf->bufptr64[0]), buf->bufptr64[0] & ~RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE); return buf->count; } /* process a set of packets to distribute them to workers */ int rte_distributor_process(struct rte_distributor *d, struct rte_mbuf **mbufs, unsigned int num_mbufs) { unsigned int next_idx = 0; static unsigned int wkr; struct rte_mbuf *next_mb = NULL; int64_t next_value = 0; uint16_t new_tag = 0; uint16_t flows[RTE_DIST_BURST_SIZE] __rte_cache_aligned; unsigned int i, j, w, wid; if (d->alg_type == RTE_DIST_ALG_SINGLE) { /* Call the old API */ return rte_distributor_process_single(d->d_single, mbufs, num_mbufs); } if (unlikely(num_mbufs == 0)) { /* Flush out all non-full cache-lines to workers. */ for (wid = 0 ; wid < d->num_workers; wid++) { /* Sync with worker on GET_BUF flag. */ if (__atomic_load_n(&(d->bufs[wid].bufptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF) { release(d, wid); handle_returns(d, wid); } } return 0; } while (next_idx < num_mbufs) { uint16_t matches[RTE_DIST_BURST_SIZE]; unsigned int pkts; /* Sync with worker on GET_BUF flag. */ if (__atomic_load_n(&(d->bufs[wkr].bufptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF) d->bufs[wkr].count = 0; if ((num_mbufs - next_idx) < RTE_DIST_BURST_SIZE) pkts = num_mbufs - next_idx; else pkts = RTE_DIST_BURST_SIZE; for (i = 0; i < pkts; i++) { if (mbufs[next_idx + i]) { /* flows have to be non-zero */ flows[i] = mbufs[next_idx + i]->hash.usr | 1; } else flows[i] = 0; } for (; i < RTE_DIST_BURST_SIZE; i++) flows[i] = 0; switch (d->dist_match_fn) { case RTE_DIST_MATCH_VECTOR: find_match_vec(d, &flows[0], &matches[0]); break; default: find_match_scalar(d, &flows[0], &matches[0]); } /* * Matches array now contain the intended worker ID (+1) of * the incoming packets. Any zeroes need to be assigned * workers. */ for (j = 0; j < pkts; j++) { next_mb = mbufs[next_idx++]; next_value = (((int64_t)(uintptr_t)next_mb) << RTE_DISTRIB_FLAG_BITS); /* * User is advocated to set tag value for each * mbuf before calling rte_distributor_process. * User defined tags are used to identify flows, * or sessions. */ /* flows MUST be non-zero */ new_tag = (uint16_t)(next_mb->hash.usr) | 1; /* * Uncommenting the next line will cause the find_match * function to be optimized out, making this function * do parallel (non-atomic) distribution */ /* matches[j] = 0; */ if (matches[j]) { struct rte_distributor_backlog *bl = &d->backlog[matches[j]-1]; if (unlikely(bl->count == RTE_DIST_BURST_SIZE)) { release(d, matches[j]-1); } /* Add to worker that already has flow */ unsigned int idx = bl->count++; bl->tags[idx] = new_tag; bl->pkts[idx] = next_value; } else { struct rte_distributor_backlog *bl = &d->backlog[wkr]; if (unlikely(bl->count == RTE_DIST_BURST_SIZE)) { release(d, wkr); } /* Add to current worker worker */ unsigned int idx = bl->count++; bl->tags[idx] = new_tag; bl->pkts[idx] = next_value; /* * Now that we've just added an unpinned flow * to a worker, we need to ensure that all * other packets with that same flow will go * to the same worker in this burst. */ for (w = j; w < pkts; w++) if (flows[w] == new_tag) matches[w] = wkr+1; } } wkr++; if (wkr >= d->num_workers) wkr = 0; } /* Flush out all non-full cache-lines to workers. */ for (wid = 0 ; wid < d->num_workers; wid++) /* Sync with worker on GET_BUF flag. */ if ((__atomic_load_n(&(d->bufs[wid].bufptr64[0]), __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) release(d, wid); return num_mbufs; } /* return to the caller, packets returned from workers */ int rte_distributor_returned_pkts(struct rte_distributor *d, struct rte_mbuf **mbufs, unsigned int max_mbufs) { struct rte_distributor_returned_pkts *returns = &d->returns; unsigned int retval = (max_mbufs < returns->count) ? max_mbufs : returns->count; unsigned int i; if (d->alg_type == RTE_DIST_ALG_SINGLE) { /* Call the old API */ return rte_distributor_returned_pkts_single(d->d_single, mbufs, max_mbufs); } for (i = 0; i < retval; i++) { unsigned int idx = (returns->start + i) & RTE_DISTRIB_RETURNS_MASK; mbufs[i] = returns->mbufs[idx]; } returns->start += i; returns->count -= i; return retval; } /* * Return the number of packets in-flight in a distributor, i.e. packets * being worked on or queued up in a backlog. */ static inline unsigned int total_outstanding(const struct rte_distributor *d) { unsigned int wkr, total_outstanding = 0; for (wkr = 0; wkr < d->num_workers; wkr++) total_outstanding += d->backlog[wkr].count; return total_outstanding; } /* * Flush the distributor, so that there are no outstanding packets in flight or * queued up. */ int rte_distributor_flush(struct rte_distributor *d) { unsigned int flushed; unsigned int wkr; if (d->alg_type == RTE_DIST_ALG_SINGLE) { /* Call the old API */ return rte_distributor_flush_single(d->d_single); } flushed = total_outstanding(d); while (total_outstanding(d) > 0) rte_distributor_process(d, NULL, 0); /* wait 10ms to allow all worker drain the pkts */ rte_delay_us(10000); /* * Send empty burst to all workers to allow them to exit * gracefully, should they need to. */ rte_distributor_process(d, NULL, 0); for (wkr = 0; wkr < d->num_workers; wkr++) handle_returns(d, wkr); return flushed; } /* clears the internal returns array in the distributor */ void rte_distributor_clear_returns(struct rte_distributor *d) { unsigned int wkr; if (d->alg_type == RTE_DIST_ALG_SINGLE) { /* Call the old API */ rte_distributor_clear_returns_single(d->d_single); return; } /* throw away returns, so workers can exit */ for (wkr = 0; wkr < d->num_workers; wkr++) /* Sync with worker. Release retptrs. */ __atomic_store_n(&(d->bufs[wkr].retptr64[0]), 0, __ATOMIC_RELEASE); } /* creates a distributor instance */ struct rte_distributor * rte_distributor_create(const char *name, unsigned int socket_id, unsigned int num_workers, unsigned int alg_type) { struct rte_distributor *d; struct rte_dist_burst_list *dist_burst_list; char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz; unsigned int i; /* TODO Reorganise function properly around RTE_DIST_ALG_SINGLE/BURST */ /* compilation-time checks */ RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0); RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0); if (name == NULL || num_workers >= (unsigned int)RTE_MIN(RTE_DISTRIB_MAX_WORKERS, RTE_MAX_LCORE)) { rte_errno = EINVAL; return NULL; } if (alg_type == RTE_DIST_ALG_SINGLE) { d = malloc(sizeof(struct rte_distributor)); if (d == NULL) { rte_errno = ENOMEM; return NULL; } d->d_single = rte_distributor_create_single(name, socket_id, num_workers); if (d->d_single == NULL) { free(d); /* rte_errno will have been set */ return NULL; } d->alg_type = alg_type; return d; } snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name); mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS); if (mz == NULL) { rte_errno = ENOMEM; return NULL; } d = mz->addr; strlcpy(d->name, name, sizeof(d->name)); d->num_workers = num_workers; d->alg_type = alg_type; d->dist_match_fn = RTE_DIST_MATCH_SCALAR; #if defined(RTE_ARCH_X86) d->dist_match_fn = RTE_DIST_MATCH_VECTOR; #endif /* * Set up the backlog tags so they're pointing at the second cache * line for performance during flow matching */ for (i = 0 ; i < num_workers ; i++) d->backlog[i].tags = &d->in_flight_tags[i][RTE_DIST_BURST_SIZE]; dist_burst_list = RTE_TAILQ_CAST(rte_dist_burst_tailq.head, rte_dist_burst_list); rte_mcfg_tailq_write_lock(); TAILQ_INSERT_TAIL(dist_burst_list, d, next); rte_mcfg_tailq_write_unlock(); return d; }