/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include "rte_approx.h" /* * Based on paper "Approximating Rational Numbers by Fractions" by Michal * Forisek forisek@dcs.fmph.uniba.sk * * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and * q is minimal. * * http://people.ksp.sk/~misof/publications/2007approx.pdf */ /* fraction comparison: compare (a/b) and (c/d) */ static inline uint32_t less(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { return a*d < b*c; } static inline uint32_t less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { return a*d <= b*c; } /* check whether a/b is a valid approximation */ static inline uint32_t matches(uint32_t a, uint32_t b, uint32_t alpha_num, uint32_t d_num, uint32_t denum) { if (less_or_equal(a, b, alpha_num - d_num, denum)) return 0; if (less(a ,b, alpha_num + d_num, denum)) return 1; return 0; } static inline void find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b, uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q) { uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b; uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a; uint32_t k = (k_num / k_denum) + 1; *p = p_b + k * p_a; *q = q_b + k * q_a; } static inline void find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b, uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q) { uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b; uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a; uint32_t k = (k_num / k_denum) + 1; *p = p_b + k * p_a; *q = q_b + k * q_a; } static int find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q) { uint32_t p_a, q_a, p_b, q_b; /* check assumptions on the inputs */ if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) { return -1; } /* set initial bounds for the search */ p_a = 0; q_a = 1; p_b = 1; q_b = 1; while (1) { uint32_t new_p_a, new_q_a, new_p_b, new_q_b; uint32_t x_num, x_denum, x; int aa, bb; /* compute the number of steps to the left */ x_num = denum * p_b - alpha_num * q_b; x_denum = - denum * p_a + alpha_num * q_a; x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */ /* check whether we have a valid approximation */ aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum); bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum); if (aa || bb) { find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q); return 0; } /* update the interval */ new_p_a = p_b + (x - 1) * p_a ; new_q_a = q_b + (x - 1) * q_a; new_p_b = p_b + x * p_a ; new_q_b = q_b + x * q_a; p_a = new_p_a ; q_a = new_q_a; p_b = new_p_b ; q_b = new_q_b; /* compute the number of steps to the right */ x_num = alpha_num * q_b - denum * p_b; x_denum = - alpha_num * q_a + denum * p_a; x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */ /* check whether we have a valid approximation */ aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum); bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum); if (aa || bb) { find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q); return 0; } /* update the interval */ new_p_a = p_b + (x - 1) * p_a; new_q_a = q_b + (x - 1) * q_a; new_p_b = p_b + x * p_a; new_q_b = q_b + x * q_a; p_a = new_p_a; q_a = new_q_a; p_b = new_p_b; q_b = new_q_b; } } int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q) { uint32_t alpha_num, d_num, denum; /* Check input arguments */ if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) { return -1; } if ((p == NULL) || (q == NULL)) { return -2; } /* Compute alpha_num, d_num and denum */ denum = 1; while (d < 1) { alpha *= 10; d *= 10; denum *= 10; } alpha_num = (uint32_t) alpha; d_num = (uint32_t) d; /* Perform approximation */ return find_best_rational_approximation(alpha_num, d_num, denum, p, q); } /* fraction comparison (64 bit version): compare (a/b) and (c/d) */ static inline uint64_t less_64(uint64_t a, uint64_t b, uint64_t c, uint64_t d) { return a*d < b*c; } static inline uint64_t less_or_equal_64(uint64_t a, uint64_t b, uint64_t c, uint64_t d) { return a*d <= b*c; } /* check whether a/b is a valid approximation (64 bit version) */ static inline uint64_t matches_64(uint64_t a, uint64_t b, uint64_t alpha_num, uint64_t d_num, uint64_t denum) { if (less_or_equal_64(a, b, alpha_num - d_num, denum)) return 0; if (less_64(a, b, alpha_num + d_num, denum)) return 1; return 0; } static inline void find_exact_solution_left_64(uint64_t p_a, uint64_t q_a, uint64_t p_b, uint64_t q_b, uint64_t alpha_num, uint64_t d_num, uint64_t denum, uint64_t *p, uint64_t *q) { uint64_t k_num = denum * p_b - (alpha_num + d_num) * q_b; uint64_t k_denum = (alpha_num + d_num) * q_a - denum * p_a; uint64_t k = (k_num / k_denum) + 1; *p = p_b + k * p_a; *q = q_b + k * q_a; } static inline void find_exact_solution_right_64(uint64_t p_a, uint64_t q_a, uint64_t p_b, uint64_t q_b, uint64_t alpha_num, uint64_t d_num, uint64_t denum, uint64_t *p, uint64_t *q) { uint64_t k_num = -denum * p_b + (alpha_num - d_num) * q_b; uint64_t k_denum = -(alpha_num - d_num) * q_a + denum * p_a; uint64_t k = (k_num / k_denum) + 1; *p = p_b + k * p_a; *q = q_b + k * q_a; } static int find_best_rational_approximation_64(uint64_t alpha_num, uint64_t d_num, uint64_t denum, uint64_t *p, uint64_t *q) { uint64_t p_a, q_a, p_b, q_b; /* check assumptions on the inputs */ if (!((d_num > 0) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) { return -1; } /* set initial bounds for the search */ p_a = 0; q_a = 1; p_b = 1; q_b = 1; while (1) { uint64_t new_p_a, new_q_a, new_p_b, new_q_b; uint64_t x_num, x_denum, x; int aa, bb; /* compute the number of steps to the left */ x_num = denum * p_b - alpha_num * q_b; x_denum = -denum * p_a + alpha_num * q_a; x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */ /* check whether we have a valid approximation */ aa = matches_64(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum); bb = matches_64(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum); if (aa || bb) { find_exact_solution_left_64(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q); return 0; } /* update the interval */ new_p_a = p_b + (x - 1) * p_a; new_q_a = q_b + (x - 1) * q_a; new_p_b = p_b + x * p_a; new_q_b = q_b + x * q_a; p_a = new_p_a; q_a = new_q_a; p_b = new_p_b; q_b = new_q_b; /* compute the number of steps to the right */ x_num = alpha_num * q_b - denum * p_b; x_denum = -alpha_num * q_a + denum * p_a; x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */ /* check whether we have a valid approximation */ aa = matches_64(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum); bb = matches_64(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum); if (aa || bb) { find_exact_solution_right_64(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q); return 0; } /* update the interval */ new_p_a = p_b + (x - 1) * p_a; new_q_a = q_b + (x - 1) * q_a; new_p_b = p_b + x * p_a; new_q_b = q_b + x * q_a; p_a = new_p_a; q_a = new_q_a; p_b = new_p_b; q_b = new_q_b; } } int rte_approx_64(double alpha, double d, uint64_t *p, uint64_t *q) { uint64_t alpha_num, d_num, denum; /* Check input arguments */ if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) return -1; if ((p == NULL) || (q == NULL)) return -2; /* Compute alpha_num, d_num and denum */ denum = 1; while (d < 1) { alpha *= 10; d *= 10; denum *= 10; } alpha_num = (uint64_t) alpha; d_num = (uint64_t) d; /* Perform approximation */ return find_best_rational_approximation_64(alpha_num, d_num, denum, p, q); }